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Abstract 

Peak load forecasting plays a pivotal role in the efficient operation and planning 

of power systems, influencing decision-making processes for resource allocation 

and infrastructure development. The Ota 132/33 kV substation in Nigeria is 

facing increasing demand due to rapid industrialization and urbanization. This 

has strained the substation's infrastructure, leading to issues like transformer 

overloading, voltage fluctuations, and power outages. The area's trade center 

status and numerous industries further stress transformers, increasing wear and 

tear and potentially jeopardizing their reliability. This study delves into the 

realm of 33 kV feeders at the OTA Transmission Substation, aiming to unravel 

the intricacies of peak load patterns and provide a forecast for the next five 

years. Leveraging historical data spanning from 2018 to 2022, sourced from 

OTA Transmission Substation was used to forecast from 2023 to 2027. The 

research employs the Auto-Regressive Integrated Moving Average (ARIMA) 

model to discern trends and project future peak loads. Performance metrics, 

including Mean Absolute Error, Mean Absolute Percentage Error, Root Mean 

Square Error, and R-squared, are meticulously evaluated to assess the 

robustness of the forecasting model. The findings shed light on the unique 

characteristics of each feeder, with Sumo, Amje, and Idiroko having a better 

predictive accuracy performance with minimal errors, while Sango, FSM, and 

Estate show a moderate level of predictive accuracy probably due to the 

presence of little nuance in their data set.  Where the Sango 33 kV feeder 

displayed an upward trend of 18.91MW in 2023 and 19.34 MW in 2027. Sumo 

33 kV feeder exhibits a decline trend from 3.21 MW (2023) to 2.23 MW in 2027. 

FSM 33 kV feeder shows a fluctuation pattern while Amje 33 kV feeder indicates 

a highly stable trend of 22.29 MW all over. Idiroko 33 kV feeder shows a steadily 

increasing trend of 16.09 MW (2024) to 16.25 MW in 2027. The Estate 33 kV 

feeder on the other hand depicts a relatively stable pattern. This study not only 

contributes to the localized understanding of peak load dynamics but also serves 

as a template for similar investigations in other power distribution networks and 

unveils other alternative data science-based models for future researchers.  
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1.0  INTRODUCTION 

Electricity is a fundamental driver of economic 

growth and social development in modern societies. 

Reliable and sustainable power supply is essential for 

meeting the energy demands of industries, 

households, and other critical sectors of the economy. 

As such, accurate forecasting of future electricity load 

is imperative for efficient resource allocation, 

infrastructure planning, and policy formulation in the 

power sector [1], [25]. The practice of load forecasting 

has evolved significantly over the years, driven by 
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advancements in data analytics, technological 

innovation, and the growing complexity of energy 

systems.  

 

In the context of Nigeria's electricity industry, which 

has grappled with issues of chronic underinvestment, 

infrastructure deficits, and an increasing population 

[2], accurate load forecasting has taken on 

unprecedented importance [3]. Historical efforts at 

forecasting in the Nigerian electricity sector have 

often faced difficulties stemming from inconsistent 

data quality [4], policy uncertainties [5], and volatile 

socioeconomic conditions. Contemporary issues, such 

as inadequate generation capacity and distribution 

challenges, further compound the complexities of 

accurate load prediction [2]. With the advent of 

artificial intelligence, actionable insights could be 

inferred from Nigeria’s electricity big data for future 

policy direction. The emergence of data science has 

brought about a paradigm shift in energy data analysis. 

With the advent of big data, machine learning, and 

artificial intelligence techniques, the energy sector 

now possesses the tools to extract valuable insights 

from vast and diverse datasets. Data science offers the 

capability to uncover hidden patterns [6], forecast 

demand with greater accuracy [7], optimize resource 

allocation [8], and enhance decision-making 

processes within the energy domain [9].  

 

In the Nigerian context, where data availability and 

quality have often been stumbling blocks, leveraging 

data science techniques becomes crucial for informed 

policymaking and operational efficiency in the 

electricity industry. Among the various methods 

available for time series forecasting, the Autoregres-

sive Integrated Moving Average (ARIMA) model 

stands out as particularly relevant [10 and is 

recommended for this study. ARIMA is well-suited to 

capture the temporal dependencies and seasonality 

inherent in load data [11]. Its ability to accommodate 

non-stationary data through differencing, coupled 

with its simplicity and interpretability, makes it an 

attractive choice.  

 

Furthermore, ARIMA has a proven track record in 

load forecasting across diverse settings, including 

electricity markets with dynamics similar to those of 

the Nigerian context. Its adaptability to noisy data and 

its capacity to provide both short-term and long-term 

forecasts align closely with the multifaceted needs of 

the Nigerian electricity industry. ARIMA, a powerful 

time series forecasting method, and data visualization 

play pivotal roles in deciphering load growth trends, 

identifying seasonal variations, pinpointing yearly 

trends, and uncovering factors that influence load 

growth within the context of an electricity substation 

or grid [12].  

 

This study aims to contribute significantly to the 

understanding of load forecasting in the Nigerian 

electricity sector. By employing the ARIMA model in 

conjunction with contemporary data science 

techniques, it seeks to improve the accuracy and 

reliability of load forecasts. The study's findings are 

expected to inform policy decisions, aid in 

infrastructure planning, and facilitate efficient 

resource allocation in Nigeria's electricity industry. 

Moreover, it underscores the potential of data science 

to revolutionize energy data analysis, offering a 

valuable template for similar studies in other emerging 

economies facing energy supply challenges. The Ota 

132/33 kV substation is a crucial component of 

Nigeria's power infrastructure, which plays a pivotal 

role in ensuring a reliable supply of electricity to both 

industrial and residential areas within its service 

territory. The primary concern lies in the growing 

demand for electrical power in this region, driven by 

the rapid industrialization and urbanization of Ota and 

its neighboring areas. Over the years, the substation 

has faced an escalating load demand, and this surge in 

electricity consumption has strained its existing 

infrastructure [13].  

 

The situation is exacerbated by the fact that this area 

serves as a trade center for Ogun State and hosts 

numerous industries, making the need for a reliable 

power supply even more critical. This places 

enormous stress on the transformers, increasing their 

wear and tear and potentially jeopardizing their 

reliability [13]. It is therefore imperative to have a 

reliable load forecast system that relies on historical 

data to predict the short or long-term future electricity 

needs of the station. Several studies have attempted 

the forecast of electricity load consumption in existing 

literature, employing diverse methodological 

approaches that have richly contributed to knowledge, 

offering experimental results that avail critical 

stakeholders with informed decisions for future 

development in the electricity supply and 

management industry. [14], examines how tempera-

ture affects the short-term forecasting of energy 

demand in a Nepalese urban region, highlighting the 

vital role that precise load forecasting has in power 

system quality and reliability. An extensive analysis 

of power demand was carried out, taking into account 

factors like temperature, load fluctuation during the 

week and on weekends, and the impact of load lags on 

demand. The study looks at the relationship between 

load demand, temperature, and demand from the 

previous day throughout a full year of data collection. 
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In terms of methodology, the study uses feed-forward 

neural networks (FF-ANNs), a type of artificial neural 

network (ANN), in addition to traditional time series 

models to forecast short-term load. The results of the 

study reveal that FF-ANNs outperform the 

conventional time series model in short-term load 

forecasting, as indicated by the mean absolute 

percentage error (MAPE). Specifically, FF-ANNs 

demonstrate a 0.34% improvement on weekdays and 

an impressive 8.04% enhancement on weekends 

compared to the conventional model. 

 

[15] came up with a hybrid forecasting scheme for 

electricity demand, using time series methodology. 

The methodology leverages adaptive Fourier 

decomposition as its initial step to extract fluctuation 

characteristics from the data. The empirical findings 

of this study demonstrate the remarkable efficacy of 

the proposed hybrid forecasting scheme. This 

effectiveness can be attributed to the impact of data 

pretreatment and optimization through the use of the 

sine cosine optimization algorithm. The study's results 

conclusively indicate that the hybrid modeling 

approach yields promising prediction results while 

maintaining an acceptable level of computational 

complexity. [16] proposes a load-forecasting model 

using deep learning techniques, specifically long 

short-term memory (LSTM) networks, to improve 

electric load forecasting accuracy. The model 

accounts for the periodicity of electric load data by 

incorporating multiple input time lags a feature not 

typically addressed by standard LSTM models. The 

study develops an autoregressive model and 

autocorrelation function to improve performance in 

LSTM models. It explores LSTM and GRU variations 

and compares them against various data mining 

techniques. The models capture complex time series 

data characteristics, resulting in more accurate 

predictions.  

 

The work of [17], examines the effectiveness of the 

Auto-Regressive Integrated Moving Average 

(ARIMA) method in forecasting seasonal time series 

data, particularly for small-scale agricultural load. It 

suggests further research to improve the method's 

accuracy and reliability in this context. [18] asserted 

that COVID-19 pandemic has significantly impacted 

electricity demand and load forecasting, with a study 

analyzing data from five years until November 2020. 

The study introduces a rolling stochastic Regressive 

Integrated Moving Average with Exogenous 

(ARIMAX) model to mitigate the pandemic's impact 

on forecasting models, demonstrating superior 

performance compared to benchmark models and 

reducing forecast error by up to 23.7%.   [10] focused 

on the robustness of auto-regressive integrated 

moving average (ARIMA) models in electrical load 

forecasting. It uses a simulation-based approach to 

simulate noise levels and re-identify the model. The 

results show a weak response to random disturbances 

and a specific noise threshold that significantly 

deteriorates the model's forecasting ability. The study 

emphasizes the importance of data processing in data 

mining and learning processes.  

 

[19], investigated short-term electricity demand 

forecasting in deregulated markets using linear 

regression-based models, spline function-based 

models, and traditional time series models. It focuses 

on estimating the yearly cycle within the deterministic 

component. The research uses data from the Nordic 

electricity market from 2013 to 2016. The study finds 

the proposed component-wise estimation method 

effective, with vector autoregressive modeling and 

spline function-based regression showing superior 

performance.  A new method for electric load 

forecasting that uses support vector regression to 

automatically select lags was suggested by [20]. This 

method uses gradient descent optimization to fine-

tune the widths of an anisotropic Gaussian kernel. The 

research evaluated its effectiveness on four electricity 

demand forecasting datasets. The method showed 

superior predictive accuracy and the ability to identify 

relevant lags and seasonal patterns. It outperformed 

existing strategies and state-of-the-art models for 

automatic model selection, making it a valuable tool 

for improving electric load forecast accuracy. The 

research conducted by [21], focused on the use of R 

programming to analyze and forecast electricity 

supply and demand in Texas, enabling utility 

operators to make informed decisions for peak 

shaving strategies. 

 

[22] presents a forecasting methodology for 

improving day-ahead electric power load forecasts, 

utilizing a systematic preprocessing pipeline and 

gated recurrent units (GRU) model. The methodology 

uses multivariate time-discrete power data from the 

ENTSO-E repository and fine-tunes the GRU model 

to generate precise multi-step forecasts. The 

methodology outperforms the autoregressive 

integrated moving average with exogenous variables 

(ARIMAX) statistical model and the actual day-ahead 

forecasts generated by the ENTSO-E platform.  In 

[23], the K-means clustering algorithm is used to 

forecast peak electricity load for university buildings, 

enhancing energy management and conservation. This 

hybrid approach improves forecasting performance by 

gaining insights into electricity consumption patterns. 

It allows for early peak load prediction, providing 
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building management with lead time for load 

reduction strategies, and can be integrated into 

demand response programs. 
 

2.0  METHODOLOGY 

2.1  Description of the Case Study 

The Ota 132/33 kV substation is situated in the 

western part of Ogun State, Nigeria, and is an integral 

part of the TCN's subsidiary network. It commenced 

operations in December 2001, initially equipped with 

a single 40 MVA transformer [13]. This substation is 

supplied by the Ikeja West 330 kV transmission 

network. The lone 40 MVA transformer within the 

station serves two 33 kV outgoing feeders, namely 

Sango and Idiroko 33 kV Breakers, with their 

coverage areas presented in Table 1. The Sango 33 kV 

feeder provides power to the Ota Industrial Estate and 

the Abule Iroko area. On the other hand, the Idiroko 

33 kV breaker supplies electricity to the Idiroko 

community and the Federated Steel Mill (F.S.M). Ota, 

being a thriving industrial hub and the central trading 

point for Ogun State, has experienced rapid and 

exponential growth [13]. This surge in demand 

necessitated the urgent installation of an additional 60 

MVA transformer, referred to as T2, which became 

operational in April 2002. 

 

Alakuko and the Abule Egba Axis of Lagos State are 

currently served by the Amje, the first 60 MVA 

Transformer feeder, which was previously supplied 

power by the Ogba 132/33 kV transformer substation 

in Lagos [24]. Furthermore, the Federal Steel Mill 

(FSM) in Ota receives the majority of the power from 

this transformer's second feeder. The Mobitra (Mobile 

Transformer) 40 MVA was later installed in 2012 

(Estate & Idiroko Rd Feeders). T4 was commissioned 

in 2019, but was having little problems and was taken 

away for maintenance and later installed in 2020. 

Hence, could not be captured in this research work. 

 

2.2  Acquisition of Five-Year Monthly Electricity 

Load Consumption Data for Ota Substation 

The Data Acquisition phase of this study involved the 

collection and compilation of historical electricity 

load consumption data, which serves as the foundation 

for the load forecasting analysis. The dataset 

encompasses a comprehensive set of attributes and 

columns, each of which is crucial for understanding 

and predicting load patterns. The primary data is 

acquired from the OTA transmission station with data 

types including time-series data, which provides a 

chronological record of load consumption over time, 

and numerical data, representing the load 

consumption values in Megawatts (MW). The dataset 

comprises columns, with each column corresponding 

to a specific location or substation within the study 

area. The columns are labeled as follows: "SUMO," 

"FSM," "AMJE," "SANGO," "IDIROKO," and 

"ESTATE," denoting different substation locations or 

load measurement points.  

 

2.3  Hardware Requirements  

The data processing and machine learning 

implementation of the conceptual model is achieved 

on a computer laptop with the following 

configurations: 

i. HP Computer laptop  

ii. AMD Athlon Silver 3050U 2.30 GHz processor  

iii. 4.00 GB RAM 

iv. 64-bit Operating System, x64-based processor  

v. Windows 10 Pro operating system  

 

Table 1: Distribution of the OTA 132/33 kV 

coverage Areas 
S/N Transformers Feeders Coverage Areas 

1 
T1 (40 MVA) 

132/33 kV 

Sango 

Sango, Fowobi, Indomie 

Animasahun, Borehole, 

Cocacola, Ewupe. 

Tower Alloy Dedicated 

2 
T2 (60 MVA) 

132/33 kV 

FSM Dedicated 

Amje 
 

Toll Gate, AIT, Jankara Market, 
Ijaye. 

Sumo Dedicated 

3 

MOBITRA 

(40 MVA) 

132/33 kV 

Estate 
The Bells, Industrial Estate, 

Iyanayesi, Canan Land. 

Idiroko Rd 
Idiroko Rd, Onibuku, Iju and 

Part of Atan 

 

2.4  Software Requirements  

The integrated development environment (IDE) is 

installed and used to run the Python code for ARIMA 

implementation, alongside the trend analysis. Other 

supporting Microsoft Office user packages are used 

for data cleaning and preprocessing. The following 

software requirements are used: Anaconda navigator, 

Jupiter, Microsoft word, and Microsoft Excel. 

  

2.5  Python Implementation  

The Python implementation code leverages several 

essential libraries to conduct the trend analysis and 

forecast of 33 kV feeders' peak loads for the next five 

years (2023-2027), based on the historical data of the 

last five years of 2018 to 2022. The code, as observed 

from the code snippet in Figure 1 screenshot, relies on 

the Pandas library for data manipulation, where a 

DataFrame is constructed to organize feeder data 

across multiple years. Matplotlib is utilized for data 

visualization, enabling the creation of insightful plots. 

The critical functionality comes from the Statsmodels 

library, particularly the ARIMA model. The ARIMA 

model instantiated using the ARIMA class, is 

employed to fit the historical peak load data for each 

feeder. The 'order' parameter, set to (1, 1, 1), defines 

https://doi.org/10.4314/njt.v43i4.14
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the autoregressive, differencing, and moving average 

components of the ARIMA model. The code iterates 

through each feeder, fits an ARIMA model, forecasts 

peak loads for the next five years, and plots both 

observed and forecasted data on a single graph. The 

resulting visualization provides a comprehensive view 

of historical trends and predicted future peak loads for 

each feeder, aiding in decision-making for power 

distribution planning. The 'melt' function is employed 

to reshape the DataFrame, ensuring compatibility 

with the ARIMA model and proper plotting. The code 

seamlessly integrates these libraries, functions, and 

objects to conduct a robust trend analysis and forecast 

for the specified feeders, offering a valuable tool for 

power system planning and management. 

 

 
Figure 1:  Screenshot of the Python code snippet 

for ARIMA implementation 

 

2.6  Data Pre-processing 

This research uses trend analysis to understand long-

term electricity load consumption patterns across five 

locations of an OTA transmission station. The 

Autoregressive Integrated Moving Average (ARIMA) 

model is used, which efficiently handles temporal 

patterns like trends, seasonality, and cyclic behavior, 

based on real-world utility requirements. This model 

comprises three main components: Auto-Regressive 

(AR), Integrated (I), and Moving Average (MA).  

 

The AR component represents the linear relationship 

between the current value and previous values in a 

time series, capturing trends over time [12]. The I 

component accounts for differencing to make the data 

stationary, ensuring that the model can handle non-

constant variance [12]. The MA component captures 

the relationship between the current value and past 

forecast errors [12], helping to account for any random 

noise in the data. In this study, the ARIMA model was 

employed to perform a comprehensive trend analysis 

of the load consumption data for each location.  

 

2.7  The Training Phase 

The ARIMA model's Auto-Regressive and Moving 

Average components during the training phase, with 

historical Ota which is divided into training and 

testing phases. 

 

A. Auto-Regressive (AR) Component 

The AR component can be expressed mathematically 

as: 

X𝑡 = 𝐶 + ∅1X𝑡−1 + ∅2X𝑡−2 + ⋯ + ∅𝑝X𝑡−𝑝 +∈𝑡           (1) 

Where,  X𝑡 is the electricity load consumption at time 

t; C is a constant; Ø1, Ø2 …Øp are autoregressive 

coefficients; p is the order of the autoregressive 

component; ∈𝑡 represents white noise, which is the 

residual error at time t. 

 

B. Integrated (I) Component 

The integrated component, d, represents the order of 

differencing required to make the data stationary. It 

can be expressed as: 

Y𝑡 = (1 − B)𝑑X𝑡              (2) 

Where, Y𝑡 is the differenced series; B is the backward 

shift operator; d is the order of differencing. 

 

C. Moving Average (MA) Component 

The MA component can be expressed as: 

X𝑡 = 𝜇 +∈𝑡+ 𝜃1 ∈𝑡−1+ 𝜃2 ∈𝑡−2+ ⋯ + 𝜃𝑞 ∈𝑡−𝑞     (3) 

Where, μ is the mean of the series; ϵt represents the 

white noise error at time t; θ1,θ2,…,θq are the moving 

average coefficients; q is the order of the moving 

average component. 

 

2.8  The Testing Phase 

In the testing phase of the ARIMA the model's 

performance is assessed to evaluate its ability to 

accurately forecast future energy requirements. 

During this phase, historical data not used in training 

the ARIMA model is employed to simulate real-world 

conditions. The model's predictions are then compared 

to the actual values in the test set to measure its 

accuracy and effectiveness in capturing temporal 

patterns within the data. 

  

2.9 Model Evaluation  

To ensure the effectiveness of the ARIMA model in 

predicting load consumption, the study focused on 

several crucial evaluation metrics: 

 

i. Mean Absolute Error (MAE): MAE quantifies 

the average magnitude of errors between predicted 

and actual values [22] [26]. The mean absolute error 

(MAE) is the average of all absolute errors. The 

formula is 

MAE =
1

𝑛
∑ |𝑥𝑡 − 𝑥|𝑛

𝑡=1             (4) 
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Where, n is the number of errors, Ʃ is the summation 

symbol (which means ‘add them all up’), |𝑥𝑡 − 𝑥| is 

the absolute errors. 

 

ii. Mean Absolute Percentage Error (MAPE): 
MAPE calculates the percentage difference between 

the predicted and actual values [27].  

M =
1

𝑛
∑ |

𝐴𝑡 −  𝐹𝑡

𝐴𝑡
|

𝑛

𝑡=1
                 (5) 

Where, n is the number of fitted points; At is the actual 

value; Ft is the forecast value; Ʃ is summation notation 

(the absolute value is summed for every forecasted 

point in time). 

 

Percentage errors are calculated in terms of absolute 

errors, without regards to sign. This avoids the 

problem of positive and negative errors canceling each 

other out. It offers insights into the relative error of the 

forecasts, making it a valuable metric for assessing the 

model's accuracy in percentage terms. 

 

iii. Root Mean Square Error (RMSE): RMSE 

provides an assessment of the model's prediction error 

in the same units as the data [27].  

 

Root mean square error can be expresses as:  

𝑅 𝑀 𝑆 𝐸 =  √
Ʃ(𝑦𝑖 − ŷ𝑖)2

𝑁−𝑃
           (6) 

Where, yi is the actual value of the ith observation; ŷi 

is the predicted value for the ith observation; P is the 

number of the parameter estimated, including the 

constant; N is the number of observations. 

 

iv. R-squared (R²): R² measures the proportion of 

the variance in the dependent variable (electricity 

load) that is predictable from the independent variable 

(time). A higher R² indicates that the model explains a 

larger portion of the load's variance, reflecting its 

goodness of fit [3]. 

 

v. Residual Analysis: Examining the residuals 

(the differences between actual and predicted values) 

is crucial. Residual plots, autocorrelation plots of 

residuals, and tests for normality can reveal any 

systematic errors, bias, or patterns in the model's 

predictions. 

 

3.0  RESULTS AND DISCUSSION 

3.1  Primary Data Acquisition Result 

The historical peak load data for each of the feeders, 

between 2018 and 2022 is acquired for this study at 

the OTA transmission station. The aggregates of the 

entire peak load per year are then presented in Table 

2. Each row corresponds to a specific feeder, while 

columns represent individual years. The values in the 

table denote the recorded peak loads in megawatts 

(MW) for each respective feeder in the corresponding 

year. The feeders include SANGO, FSM, SUMO, 

AMJE, ESTATE, and IDIROKO RD. The aggregates 

in Table 2  are then used to train the ARIMA model, 

to have a yearly forecast approach for the next five 

years. The trend analysis of the data, reveals 

interesting trends and patterns. For instance, the 

SANGO feeder experienced a peak load of 19 MW in 

2018, which gradually increased to 22 MW in 2020, 

and then slightly decreased to 18 MW in 2021 and 

2022. FSM, on the other hand, exhibits a substantial 

increase from 1.0 MW in 2018 to 18 MW in 2020, 

followed by a decrease to 6 MW in 2022. SUMO 

maintains a relatively stable load of around 6 MW, 

while AMJE starts at 22.5 MW, fluctuates, and 

eventually stabilizes around 22 MW. ESTATE and 

IDIROKO RD show variations in their peak loads 

over the years. The dataset is crucial for understanding 

the power consumption patterns of each feeder by the 

ARIMA, enabling pattern recognition in electricity 

distribution before its forecast for the next five years.  

 

The dataset in Table 3 provides a detailed overview of 

the minimum and maximum load values recorded by 

33 kV feeders at the OTA Transmission Station during 

the period from 2018 to 2022. Focusing on the 2018-

2022 readings, the observed trends for each feeder are 

distinct and reveal critical insights into their 

operational behavior. In January 2019, the SUMO 

feeder exhibited the lowest recorded load at 2MW, 

indicative of a period of reduced energy demand. 

Conversely, FSM experienced its highest load in 

August 2020, reaching 18 MW, reflecting a significant 

surge in power consumption during that summer 

month. AMJE, in June 2019, recorded its maximum 

load at 23.5 MW, possibly influenced by increased 

energy demand during that particular month. SANGO, 

with a peak load of 22 MW in February 2020, and 

IDIROKO, registering 19.5 MW in July 2021, both 

captured substantial energy consumption events. 

 

Table 2: Aggregate of the Annual Peak Load for 

OTA T/S between 2018 and 2022 
FEEDERS 2018 

(MW) 
2019 

(MW) 
2020 

(MW) 
2021 

(MW) 
2022 

(MW) 

SANGO 19 20.5 22 18 18 

FSM 1.0 10 18 8 6 
SUMO 6 6.5 6 5 4 

AMJE 22.5 23.5 21 22 22.5 

ESTATE 19 18 14 16 14.5 
IDIROKO RD 13 13 16 16.5 16 

 

Finally, ESTATE noted its lowest load in April 2020 

at 8 MW, highlighting a period of reduced electricity 

demand. Examining the temporal aspects, the dates 

associated with minimum and maximum loads 
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provide additional context. For instance, SUMO's 

minimum load occurred in October 2022, indicating a 

recent period of decreased demand. FSM's minimum 

load was recorded in February 2021, possibly 

reflecting a rainy season with lower energy usage. 

AMJE's maximum load in June 2019 aligns with the 

mid-year timeframe when energy demand often rises. 

SANGO's maximum load in February 2020 and 

IDIROKO's in July 2021 coincided with months 

known for increased power consumption, likely due to 

seasonal factors. 

 

 
Figure 2:  Projected annual peak loads for the five 

feeders 

 

Table 3: OTA T/S 33 kV Feeders’ Minimum and 

Maximum Load from 2018 to 2022 
FEEDERS MIN LOADS 

(MW) 

DATES MAX LOADS 

(MW) 

DATES 

SUMO 2 OCT 2022 6.5 JAN 2019 

FSM 1 FEB 2021 18 AUG 2020 

AMJE 14 APR 2021 23.5 JUNE 2019 

SANGO 12.5 OCT 2022 22 FEB 2020 

IDIROKO 11.5 AUG 2019 19.5 MAY 2018 

ESTATE 8 APR 2020 19 OCT 2018 

 

3.2  The Result of ARIMA's Forecasted Peak 

Loads 

The data in Table 2, which is an aggregate of the 

historical load consumption history of the feeders is 

used to train the ARIMA machine learning model. 

During the training, the model does pattern 

recognition from the data to aid its time series 

forecasting ability. The experimental result includes 

the forecasted peak load to be used by the five feeders 

in the next five years. The ARIMA-based forecasts 

provide valuable insights into the expected trends in 

peak loads for each feeder from 2023 to 2027. The 

forecasted values highlight specific patterns for each 

feeder, including upward trends, fluctuations, 

stability, and declines, offering crucial information for 

power distribution planning and infrastructure 

development over the projected period. The aggregate 

forecasted loads in MW are presented in Table 4, 

while Figure 2 depicts the projected loads in 

megawatts. The trends of the forecast, including the 

fluctuations, are presented in the trend plot produced 

by ARIMA. For the SANGO feeder, the forecasted 

loads show a steady increase over the five-year period, 

ranging from approximately 18.91 in 2023 to 19.34 in 

2027.  This indicates a consistent upward trend in the 

predicted peak loads for SANGO. In the case of the 

FSM feeder, the forecasted loads exhibit a slight 

fluctuation, with values ranging from 6.83 in 2024 to 

8.02 in 2023, and this suggests a variable pattern in the 

predicted peak loads for FSM over the forecasted 

period. For the SUMO feeder, the forecasted loads 

show a decrease from 3.21 in 2023 to 2.23 in 2027, 

indicating a declining trend in the predicted peak loads 

for SUMO over the five-year period. The AMJE 

feeder demonstrates a high level of stability in the 

forecasted loads as observed with values consistently 

around 22.29 over the forecasted year. 

 

Table 4: Result of ARIMA Anticipated Peak Loads for 2023 to 2027 
YEAR SANGO FSM SUMO AMJE ESTATE IDIROKO 

2023 18.91028845947822 8.022317917005878 3.208779707265579 22.270411544411846 15.118645482394331 16.25186348321162 

2024 19.202603579088986 6.825302129431928 2.7478983897114504 22.294397442400307 14.764479509889457 16.089282909637216 

2025 19.296472866635526 7.533819214531323 2.479437645186882 22.291891552891016 14.967234625137143 16.194230409634955 

2026 19.326616511467265 7.114445915457997 2.323060789355183 22.292153351812857 14.851160129136439 16.126485675355646 

2027 19.336296347625513 7.362674176532284 2.2319721607993976 22.29212600077634 14.91761117085422 16.170215626261317 

 

 
Figure 3:  Trend analysis of the observed and 

forecast peak loads by ARIMA 

SUMO on the other hand maintains a consistent load 

of around 6MW, while AMJE initially peaks at 23.5 

MW in 2019 and stabilizes around 22 MW thereafter. 

IDIROKO demonstrates variations, reaching a peak of 

16.5 MW in 2021. Looking ahead to the forecasted 

values for 2023-2027, the data suggests a continuation 

of established trends with slight variations. Notably, 

SANGO's forecast remains within the historical range, 

and FSM experiences a gradual decline. SUMO 

maintains its stable load, while AMJE and ESTATE 

show marginal fluctuations. IDIROKO continues to 
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exhibit variability. The forecasted values align closely 

with historical patterns, reflecting the robustness of 

the ARIMA model in capturing and projecting feeder-

specific load trends. 

 

By the year 2026 and 2027, the Mobitra transformer 

should be upgraded to 60 MVA as the total load on it 

shall be reaching 31 MW by 2026. The transformer is 

expected to carry 32 MW by its rating 40 MVA 132/33 

kV i.e. (MVA rating x Power Factor). Also, T1 40 

MVA should be upgraded to 60 MVA too following 

the addition of Tower Alloy 33 kV feeders as of June 

2023. As Sango 33 kV feeder shall be carrying 

19.3MW by 2027. The load on Tower Alloy presently 

is 3 to 4 MW with the rate of development and 

Industrial growth in Ota Metropolis. Following the 

trend analysis chart of Figure 3, it could be deduced 

that never should Sango and Amje be on the same 

transformer. Both show the highest projected loads 

between 2023 to 2027. The comprehensive 

examination of each feeder's trend contributes to a 

holistic understanding of the dynamic energy 

landscape, supporting informed decision-making for 

sustainable power infrastructure. 

 

To maintain power system stability and efficiency 

during peak periods, several strategies can be 

employed. These include encouraging consumers to 

shift electricity usage to off-peak periods, 

implementing demand-side management programs, 

deploying large-scale battery systems to balance load, 

and developing microgrids for localized power 

generation. When combined, these techniques ensure 

a stable and efficient power system. This study has 

proposed recommendations for infrastructures like 

transformers, and other switch gears needed to 

improve electricity supply and optimization, risk 

mitigation strategies, and policy implications for 

energy planning, infrastructure development, and 

sustainability initiatives. 

 

3.3  Statistical Summary of the Projected Peak 

Loads 

The statistical summary is presented in Table 5, giving 

valuable insights into the projected peak loads for the 

six feeders throughout 2023 to 2027. The table 

presented the necessary metrics of min, max, mean, 

median, and interquartile range. Considering the 

SANGO feeder, the mean projected load is 

approximately 19.21 with a relatively low standard 

deviation of 0.18, indicating a consistent and stable 

forecast. The minimum and maximum values of 18.91 

and 19.34, respectively, further reinforce the narrow 

range of expected peak loads. Quartiles (Q1, Q2, and 

Q3) illustrate the distribution of the projected values, 

with Q2 (median) aligning closely with the mean, 

reinforcing the symmetry in the distribution. In the 

case of the FSM feeder, the mean load is 

approximately 7.37, and the standard deviation is 

0.45, suggesting a slightly higher variability compared 

to SANGO.  

 

The range between the minimum (6.83) and maximum 

(8.02) projected values is wider, indicating a broader 

spectrum of potential peak loads. Quartiles provide a 

detailed breakdown of the load distribution, with the 

median (Q2) aligning with the mean. For the SUMO 

feeder, the mean projected load is around 2.60, with a 

standard deviation of 0.39. The minimum and 

maximum values are 2.23 and 3.21, respectively. The 

quartiles again showcase the distribution 

characteristics, highlighting the variability in the 

projected peak loads. The AMJE feeder exhibits a 

mean load of approximately 22.29 with a remarkably 

low standard deviation of 0.01. The narrow range 

between the minimum (22.27) and maximum (22.29) 

indicates a high level of precision in the forecasts. 

Quartiles, especially the median, align closely with the 

mean, emphasizing the stability in the projections. 

 

For the ESTATE feeder, the mean load is 

approximately 14.92, and the standard deviation is 

0.13. The distribution, as indicated by quartiles, is 

well-balanced, with a small range between the 

minimum (14.76) and maximum (15.12) values. The 

IDIROKO feeder presents a mean load of 

approximately 16.17, with a standard deviation of 

0.06. The quartiles provide insight into the 

distribution, and the narrow range between the 

minimum (16.09) and maximum (16.25) values 

reinforces the consistency in the forecasts. 

 

 

Table 5: Statistical summary of the projected peak loads 
FEEDER MEAN STD MIN MAX Q1 Q2 Q3 

SANGO 19.214456 0.178052 18.910288 19.336296 19.202604 19.296473 19.326617 

FSM 7.371712 0.451220 6.825302 8.022318 7.114446 7.362674 7.533819 
SUMO 2.598230 0.393429 2.231972 3.208780 2.323061 2.479438 2.747898 

AMJE 22.288196 0.009994 22.270412 22.294397 22.291892 22.292126 22.292153 

ESTATE 14.923826 0.132805 14.764480 15.118645 14.851160 14.917611 14.967235 
IDIROKO 16.166416 0.062517 16.089283 16.251863 16.126486 16.170216 16.194230 
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Table 6 presents the percentage improvement based 

on the average of the present ( the observed peak load 

between the years 2018 to 2022) and predicted  (the 

predicted peak load between the years 2023 to 2027 ) 

state of the network. It was observed that  Sango, 

FSM,  SUMO, AMJE, ESTATE,  and Iddiroko feeders 

will have 1.46, 14.28, 52.75, 0.05, 8.44, and -8.49 % 

by 2027 respectively based on the developed model. 

Table 7 shows the Paired Samples Correlations table 

ran on SPSS to test the validity of the obtained results. 

This table provides information on the relationship 

between the observed and predicted values. This 

analysis is crucial for assessing how well the predicted 

values align with the observed ones. The correlation 

coefficient of  0.989 indicates an extremely strong 

positive linear relationship between the observed and 

predicted values. A correlation that is close to 1 

suggests that the predicted values are very closely 

aligned with the observed values. The high correlation 

coefficient of 0.989  and its statistical significance (p 

= .000) provide strong evidence that the predicted 

values are highly valid when compared to the 

observed values. The minimal bias, low standard 

error, and the narrow confidence interval that lies near 

1.000 all support the conclusion that the predicted 

values accurately reflect the observed values. This 

high level of agreement validates the predictive model 

or method used. 

 

Table 6: Percentage improvement based on the 

present and future state of the network 

FEEDERS 

AVERAGE 

OBSERVED PEAK 

LOAD (MW) 

AVERAGE 

PREDICTED PEAK 

LOAD (MW) 

% 

IMPROVEMENT 

SANGO 19.5 19.214456 1.464328205 

FSM 8.6 7.371712 14.2824186 

SUMO 5.5 2.59823 52.75945455 

AMJE 22.3 22.288196 0.052932735 

ESTATE 16.3 14.923826 8.442785276 

IDIROKORD 14.9 16.166416 -8.499436242 

 

 

Table 7: Paired Samples Correlations 

 N Correlation Sig. 

Bootstrap for Correlationa 

Bias Std. Error 

95% Confidence Interval 

Lower Upper 

Pair 1 Observed & 
Predicted 

6 .989 .000 
-.012 .113 

.897 1.000 

 

Table 8: Result of the performance evaluation of the developed ARIMA model 
FEEDER MAE MAPE RMSE R2 

SANGO 5.317042848558577 0.2781886522308178 8.687632826629676 -30.4479017209723 

FSM 5.5014789943322295 0.7400799645707229 6.763646043342719 -0.4738050193178356 

SUMO 1.5754202003120663 0.2672249364063426 2.7265395294350214 -8.292522256964686 

AMJE 5.237530376272458 0.23374177757318731 10.1129635380905 -153.95762351931504 

ESTATE 5.220834836414644 0.2959693029520959 8.740384559601674 -19.317638896203018 

IDIROKO 3.2383749749015633 0.23985614384694826 5.966890803352399 -13.591715516037473 

3.4  Result of the Performance Evaluation of the 

Developed ARIMA Model 
The performance metrics of the ARIMA model are 

computed and presented in Table 8. The ARIMA 

model results for the six feeders reveal varying levels 

of accuracy and predictive performance. For SANGO, 

the model displays a Mean Absolute Error (MAE) of 

5.32 MW, indicating an average absolute difference 

between the observed and predicted values. However, 

the Mean Absolute Percentage Error (MAPE) of 

0.28% suggests a relatively low percentage of error in 

the predictions. The Root Mean Square Error (RMSE) 

of 8.69 MW indicates the square root of the average 

squared differences between observed and predicted 

values. Surprisingly, the R-squared (R2) value of -

30.45 indicates a poor fit of the model to the data, 

possibly suggesting the presence of unaccounted 

complexities or trends. 

 

Similarly, for FSM, the model shows an MAE of 5.50 

MW, a MAPE of 0.74%, and an RMSE of 6.76 MW. 

These metrics collectively indicate moderate 

predictive accuracy. The negative R-squared value of 

-0.47, though not ideal, might suggest that the model 

struggles to capture the variability in the data. In the 

case of SUMO, the model exhibits a lower MAE of 

1.58 MW, a MAPE of 0.27%, and a relatively lower 

RMSE of 2.73 MW, implying a better predictive 

performance with minimal errors. The negative R-

squared value of -8.29, however, indicates a less 

favorable fit. For AMJE, the model's MAE of 5.24 

MW and MAPE of 0.23% show a reasonable 

accuracy, but the higher RMSE of 10.11 MW suggests 

larger errors in predicting peak loads. The R-squared 

value of -153.96 indicates a significant deviation from 

the actual data, questioning the model's appropriate-

ness for capturing the underlying patterns. In the case 

of ESTATE, the model displays an MAE of 5.22 MW, 

a MAPE of 0.30%, and an RMSE of 8.74 MW, 

suggesting a moderate level of predictive accuracy. 

The negative R-squared value of -19.32 indicates a 

suboptimal fit, pointing towards the limitations of the 

model in capturing the nuances of the data. The model 

demonstrates an MAE of 3.24 MW, a MAPE of 
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0.24%, and an RMSE of 5.97 MW, indicating a 

relatively better performance compared to other 

feeders, with the IDIROKO RD forecast. The R-

squared value of -13.59 suggests a suboptimal fit, but 

the model still provides reasonably accurate 

predictions. 

 

Summarily, the lower the MAE the better the model 

predicts. However, the relationship between MAE 

values and how well a model performs depends on the 

data, MAE cannot be compared across different 

models and data sets. Hence, it can be developed 

further by calculating the MAPE to make it easier to 

compare the model performance and interpret  error 

value. Therefore, for MAPE analysis, a MAPE value 

of <10% indicates high accurate forecasting, that is: 

<10: Highly Accurate Forecasting; 10 – 20: Good 

Forecasting; 20 – 50: Reasonable Forecasting; >50: 

Inaccurate Forecasting. 

 

For Root Mean Square Error, the lower the RMSE, the 

better the model and its prediction. A higher RMSE 

value of 20 and above indicate that there is a large 

deviation from the residual to the ground truth. While 

in the case of R2, a higher R-Square value generally 

mean a better fit. 

 

4.0  CONCLUSION 

In conclusion, this study embarked on a 

comprehensive analysis of the 33 kV feeders at the 

OTA Transmission Substation, unraveling key 

insights into the annual peak load patterns from 2018 

to 2022. The meticulous process began with the 

acquisition of data reflecting the dynamic load 

behaviors of six critical feeders: SANGO, FSM, 

SUMO, AMJE, ESTATE, and IDIROKO RD. These 

historical load profiles formed the foundation for a 

robust pattern recognition and forecasting endeavor 

using the Auto Regressive Integrated Moving 

Average (ARIMA) model. The ARIMA algorithm, 

applied to each feeder, demonstrated varying degrees 

of success in predicting the annual peak loads for the 

subsequent five years (2023-2027).  

 

The detailed analysis encompassed a rich array of 

statistical performance metrics, including Mean 

Absolute Error (MAE), Mean Absolute Percentage 

Error (MAPE), Root Mean Square Error (RMSE), and 

R-squared (R2) values. The obtained results unveiled 

nuanced patterns, with certain feeders exhibiting 

notable accuracy in predictions while others faced 

challenges in capturing the complexities of the 

underlying data. The conclusion drawn from the 

comprehensive performance metrics evaluation 

emphasizes the need for careful consideration of 

model selection and parameter tuning to enhance 

predictive accuracy. Moving forward, this study lays 

the groundwork for continued research and refinement 

of forecasting methodologies, offering valuable 

insights for power system planning and resource 

allocation at the OTA Transmission Substation. 
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