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Abstract 

This paper investigates the influence of finite ground plane shape and size on 

the performance characteristics of a thin-wire antenna, whose shape is defined 

by the normal (Gaussian) probability distribution geometry, and which has been 

referred to in the literature as the “Gauss-shaped dipole antenna”. In the 

moment-method (MoM) formulation and solution utilized in the paper for a 1.5 

Gauss dipole antenna, the three candidate ground plane shapes considered, 

namely; square, rectangular, and circular, are modelled by wire-grids. Among 

a few other interesting properties, the computational results obtained indicate 

that both maximum achievable power gain and return loss depend on ground 

plane shape, emerging respectively, as (25.36dB, 47.28dB) for the circular 

shape; (15.81dB, 27.57dB), for the square shape, and (19.7dB, 34.32dB) for the 

rectangular shape. The results also reveal that ground plane sizes exhibit 

significant influence on the antenna’s performance metrics, and support the 

important conclusion in the literature that for the finite-ground-plane backed 

Gauss-shaped dipole antenna, one limitation is a characteristic gain / front-to-

back- ratio trade-off. 
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1.0  INTRODUCTION 

Research interest in the optimum-shaped wire dipole 

antenna may be said to have received impetus from the 

pioneering contributions of Landstorfer [1]. As 

remarked in [2], the analytical and experimental 

investigations of that pioneering contribution 

established that in terms of maximum achievable 

directivity, the 1.5 long ‘Gauss-shape’ represents the 

optimum shape for the thin-wire dipole antenna. 

Notable analytical support for the theoretical 

expositions in [1] was provided by Cheng and Liang, 

[3], who, by eliminating the assumption of a 

sinusoidally distributed current flow imposed in [1], 

and using piece-wise parabolic segments for initial 

shape approximation, optimized antenna shape for 

maximum directivity. That contribution rigorously 

demonstrated that the Gauss-shaped dipole (GSD) 

provides maximum achievable gain. Quite a few other 

wire antenna shape optimization problems have also 

been since addressed in the literature. These include 

the curved-surface dipole shape optimization problem 

described by [4], in which investigations focused on 

identifying the geometrical parameters of Gauss-

curved and V surface dipoles, that will yield 

maximum directivity. Kataja, [5] defined a shape 

optimization problem as that of determining the 
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dipole, whose size and optimum shape correspond to 

a prescribed input impedance, at the center frequency.  

One important outcome reported in [5] is that the 

optimally  directive  1.5 planar dipole has identical 

performance characteristics as the optimal directive 

1.5 non-planar dipole. A somewhat similar problem 

presented in [6], considered the simultaneous 

optimization of input impedance and directivity as the 

objective of the shape optimization problem. On the 

other hand, two different shape optimization problems 

addressed by the contributions in [7] and [8] limited 

considerations, in the case of [7], to the determination 

(for a wire antenna of finite thickness) of normalized 

antenna length and radius, for which antenna input 

impedance emerges as a pre-specified value; whereas, 

Wang, Jen and Jiang [8], addressed the problem of the 

antenna shape, optimized for maximum peak values of 

radiated pulse.  

 

In all the representative contributions mentioned in the 

foregoing discussions, reported maximum achievable 

directivity (or gain, in some cases) ranged from 7.0 dB 

[5] through 7.132dB [3], to 7.198 dB [6]. It is not 

surprising therefore, to find that majority of the 

curvilinear wire dipole array-based gain improvement 

schemes presented in the literature, utilized GSDs as 

array elements. The more prominent of such schemes 

include the log-periodic configuration described in 

[2], for which a remarkably high gain performance 

was reported. Following the analytical procedure 

developed in [3], Liang and Cheng [9], in another 

notable contribution, demonstrated that the 3-element 

Yagi-Uda array of 1.5 GSDs is able to provide a 

maximum gain of 11.8dB; but did not mention the 

associated FBR.  Chen, Jen, and Zhang, [10], 

considered the problem of optimizing the performance 

of Yagi-Uda arrays of GSDs, for low sidelobe levels 

of the radiation zone field patterns. Results presented 

in [10], for a 6-element array, suggest that low side 

lobe levels can only be achieved at the expense of 

directivity. For example, when the array’s Front- to-

Back Ratio (FBR) assumed a value of close to 41dB, 

the corresponding directivity was as low as 1.35dB. 

The configuration of an array of GSDs described in 

[11] utilized an analytical procedure involving 

“smooth controlled step functions”, to prescribe 

optimum dimensions for the array’s director and 

reflector elements. Simulation results reported therein, 

for antenna performance parameters, include a 

maximum directivity of 11.3dBi, minimum side lobe 

level of -10.6dB, and a maximum front to back ratio 

of 18.7dB: for an antenna, whose ‘overall length’ was 

given as 0.75 at the operating frequency of 904MHz. 

 

As implicitly noted in [12], the 3-element Yagi-Uda 

array of GSDs (also referred to as the “Landstorfer 

antenna”, [13], [14]), and its variants, offer an 

inexpensive alternative to the classical approach of 

increasing the gain of Yagi-Uda arrays of straight 

dipoles. However, the results reported in [10], for 

example, suggest these arrays provide maximum gain 

by trading-off FBR.  In some applications, such as 

military manpack radio [13], antennas with good 

directivity and FBR performances are required; and 

one way of enabling a good FBR performance is to 

locate a conducting (ground) plane behind the 

antenna, [15]. In the “Quasi-Landstorfer antenna” 

presented in [16], the reflector element of the 

Landstorfer antenna was replaced by a ground plane, 

so shaped as to mimic the contribution of the reflector 

of the original antenna, but with the main objective of 

significantly reducing the size of a base planar 

Landstorfer antenna. At the quasi-Landstorfer 

antenna’s resonant frequency, a modest measured gain 

of 6.6dBi was reported, along with the impressive 

return loss of -42.7dBi. 

 

As far as can be ascertained, the first (and probably 

only) analytical investigation of the performance 

features of GSDs (and their arrays) backed by finite 

ground plane structures, is that reported in [15].  

Through the use of the image theory and Unified 

Theory of Diffraction (UTD) in a method of moments 

formulation and solution of the problem, the paper 

examined the effects of square ground plane size and 

parameters of the Gaussian distribution geometry 

(defined by 𝑦 = ±𝐴(1 − 𝑒
−𝐵2

𝑧2
⁄

) on maximum gain and 

sidelobe level (SLL). A number of interesting 

conclusions arising from the computational results 

were reported by the paper. For the single, 1.5 Gauss-

shaped dipole, and in the case of the ‘backfire’ mode 

considered, it was reported that the effects of the 

Gaussian parameter ‘A’ on gain and FBR is more 

pronounced  than those of the parameter ‘B’. The 

results also suggested that the influence of square-

shaped ground plane size on gain is marginal, as 

maximum gain ranged between 13.224dB for a 

ground plane of side 1.5 and 12.805dB for a ground 

plane of side 8.0. A particularly notable finding of 

the investigation was that “high gain and low side lobe 

level are contradictory”: which, put in other words, 

implies that for the Gauss-shaped dipole backed by a 

square ground plane of finite size, a large value of 

maximum gain can only be achieved at the expense of 

low side lobe level, or vice-versa. 

 

Towards a more extensive investigation of the 

influence of finite ground plane size and shape on the 
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performance features of the GSD, this paper 

reformulates the problem in terms of integro-

differential equations for the radiation-zone electric 

field distributions. Candidate finite ground plane 

shapes considered in the paper are the square, circular, 

and rectangular shapes; and the optimum (in terms of 

maximum gain) 1.5 Gauss dipole antenna is selected 

as candidate antenna.  In the moment-method solution 

of the formulated problem, these ground planes were 

modeled by wire grids according to specifications 

given in [17], [18]. This approach, unlike the image 

theory (which strictly applies only for infinite ground 

planes), is more appropriate to ground planes of finite 

extent. Although the computational results obtained in 

this paper support the conclusion reported in [15] that 

high power gain is not compatible with low SLL (or 

high FBR), they very clearly indicate that maximum 

achievable gain vary significantly with finite ground 

plane size and shape. For example, for the square 

ground plane of side ranging between 1.22 and 

12.2, maximum gain (G) emerged as  

0.76 15.81G dB  , whereas, for the ground plane of 

circular shape for which radius ranged between 0.61 

and 6.10, maximum gain values obtained emerged as 

2.88 15.81G dB  . The analytical basis for the 

problem’s formulation are presented in Section 2, and 

in Section 3, computational results obtained are 

presented and discussed, after the formulation’s 

validation through comparisons with some published 

results.  Key conclusions arising from these results are 

discussed in Section 4, which is the paper’s 

concluding section. 

 

                         
Figure 1:  (a) The Gauss-shaped dipole    (b) Effects 

of variations in Gaussian parameters 

 

2.0  ANALYSIS 

The illustration of Figure 1a describes the problem 

geometry for a thin-wire Gauss-shaped dipole antenna 

(GSDA) located on the Y – Z plane, and excited at the 

central point of the antenna, which corresponds to the 

origin of the Cartesian coordinate system. This 

geometry admits the analytical description given as, 

[15],  

 

2 2'  1 yz e    
 

  (1) 

in which the parameter κ determines the trough or 

depth of the Gaussian distribution and the parameter 

α, the degree of curvature of the arms as well as the 

extent of the horizontal segment of the profile. An 

illustration of the effects of the variations of these two 

parameters is provided by Figure 1b.   

 

Clearly, therefore, this geometry can be described in 

terms of a position vector r '̅ given as: 
2 2' '    1       ,                   ˆ    ˆ     'y

y z m mr y a e a y y y      
 

   (2) 

provided that 𝑦𝑚 denotes the projection of the span of 

the curved arm on the y-axis, and (𝑎̂𝑦, 𝑎̂𝑧) are unit 

vectors in the y- and z- directions, respectively. Thus, 

the unit vector denoted by 𝑎̂𝑢, along the dipole’s axis 

is obtained as 
2 2

2 2

2 '

4 2 2 2 '

ˆ ˆ
,ˆ

2 '

1 4 '

y

y z

u
y

a y e a
a

y e





 

 










 (3) 

and the differential element, 𝑑ℓ′, along the axis is 

readily determined as 
2 24 2 2 2 '1 4 '    'yd y e dy     (4) 

 

It is easy to verified that the half arm-length of the 

GSDA, here denoted by L, is given by 
2 24 2 2 2 '

0
1 4 '    '

my
yL y e dy     (5) 

 

Accordingly, for any given numerical value of L, the 

GSDA parameter  ym can be determined through a 

solution of Equation (5). In this paper, an iterative use 

of the Simpson rule is adopted for the solution’s 

associated numerical integration. In particular, 

following the specification of L = 0.75λ by [1], [3], as 

optimum  half arm length for the GSDA, this special 

case of interest corresponds to the numerical solution 

of 
2 24 2 2 2 '

0
1 4 '    ' 0.75

my
yy e dy     (6) 

With the foregoing specification of GSDA 

characterizing geometrical properties, a moment-

method formulation commences with the following 

generic expression for the vector magnetic potential 

for a perfectly conducting thin wire, carrying the axial 

current  I l ; 

 
'

'
'

ˆ '
4

ojk r r

o
l

l

e
A a I d

r r





 


   (7) 

 

All parameters in Equiation (7) are as defined, for 

example, in [17]. As is usual in antenna work, a ‘phase 
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approximation’, for the GSDA geometry is easily 

obtained as  
2 2

| | [1 ] .yr r r y sin sin e cos   
       (8) 

so that since 

ˆ ˆ ˆ ˆsin cos sin sin cosr x y za a a a        (9) 

 

Equation (7) passes over to  

   
2 2

2 2 1
2ˆ 2 '

4
ˆ

yo
om

m

jk r jk y sin sin e cosy
yo

y z
y

e
A a y e a I y e dy

r
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

 


        




   

 (10) 

 

Using the well-known relationship between vector 

magnetic potential and far-zone fields, it is a 

straightforward matter to verify that the spherical 

coordinates components of the radiation-zone fields, 

in this case, are given by   

 
2 2

2 2 1
2cos sin 2 ,

4

ymo
o

m

yjk r jk y sin sin e cos
yo

y

j e
E sin y e I y e dy

r
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




    



        


 


 





 (11)

 
2 2

1

4
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m

jk r jk y sin sin e cosy
o

y

j e
E cos I y e dy

r
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





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




    (12) 

 

According to Equation (11) and (12), in the 
090 

(YZ) E-plane  

0E    (13)   

 
2 2

2 2 1
22

4

yo
om

m

jk r jk y sin e cosy
yo

y

j e
E cos sin y e I y e dy

r
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




   



          







  



 (14) 

And in the orthogonal  00   H-plane, 

 
2 2

2 2 1
22

4

yo
om

m

jk r
jk e cosy

yo

y

j e
E sin y e I y e dy

r
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




  


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

 
   
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 

 
 (15) 

 
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1

4
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m

jk r
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o

y

j e
E I y e dy

r

 







   
  





   (16) 

 

The MoM formulation of the problem becomes 

complete, when an account is provided for the finite 

ground plane included in the antenna structure. This 

account is available from the use of the wire grid 

model described elsewhere, [17], [18], such that the 

generalized MoM Ohm’s law expression applicable 

here, admits description according to 

,

a aa ag a

m mn mj n

g ga gg g

i in ij j

V Z Z I

V Z Z I

                        
                        

 (17) 

provided that the entries into the generalized 

impedance matrix are prescribed by 

, ,
,

, ,

a a a gaa ag
m n m jmn mj

ga gg g a g g
in ij i n i j

W T W TZ Z

Z Z W T W T

                    
                  

L L

L L

 (18) 

 

The superscripts ‘a’ and ‘g’ in Equation (18) identify 

contributions to the generalized impedance matrix by 

the GSDA and the conducting (ground) plane 

elements, respectively. Wm and Wi  represent 

weighting functions defined on the GDSA and 

elements of the ground plane’s wire-grid, 

respectively, and  the corresponding expansion 

functions denoted respectively, by Tn  and Tj are, like 

the weighting functions, piecewise linear functions, as 

described in [17] and [19]. The integro-differential 

linear operator symbolized by ℒ as well as inner 

product denoted   ,  , are also defined in both 

publications. Particulars of the wire-grid models that 

are of importance to the computational results, are 

described by Figure 2(a) and 2(b). 

 

 
Figure 2:  Illustration of the wire-grid model: (a) 

Rectangular ground plane   (b) Circular ground plane  

 

For Figure 2(a), nine (9) wires in either direction are 

utilized to form a wire grid that meets the spacing 

specifications of [18]. The position vector from the 

origin of the coordinate system to any point on an x-

directed wire emerges as 

 '

05                                          ,ˆ
2

ˆ ˆ
8 2

y x x
u x y z

L L L
r x a n a d a x        (19) 

and for a y-directed grid element, as 

 '

05                                        '
8 2 2

ˆ ˆ ˆ
y yx

v x y z

L LL
r n a y a d a y       (20) 

 

In the case of Figure 2b, the wire-grid is formed by 

four (4) circular elements and twelve (12) radial 

elements consistent with the modelling requirements 

prescribed in [18].  Thus, a position vector from the 

origin of coordinates to a point on a typical linear grid 

element is given by 
'

0                     0 2 ; 1,2ˆ ˆ ˆ
c n x n y zr a cos a a sin a a n Nd         (21) 

with  
'

0' '                      ˆ ˆ 0 ; 2ˆ 1,e m x m y zr cos a sin a d a b m M         (22) 

being the corresponding expression for the circular 

grid elements.  

 

In the foregoing expressions, aN denotes the radius of 

the outermost circular element, M, the number of 

radial elements : φm the angle subtended by the mth 

radial element on the x-axis; it is given by  

 
2

1                                              1,2 ,m m m M
M


      (23) 
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For the purposes of specifying finite ground plane size 

relative to that of the GSDA, an ‘aspect ratio’ 

symbolized by γ is introduced and defined in Table 1. 

 

Table 1: Ground plane size in terms of aspect ratio  

Rectangular Circular Square 

/ 2

2

y y

r

m m

L L

y y
    N

c

m

a

y
   

/ 2
  ,  

2

y y

s x y

m m

L L
L L

y y
     

 

Computational results obtained for the antenna’s 

performance parameters (using well-known formulas 

available in the literature, [3], [17], [19]) including 

return loss, power gain, front-to-back ratio, and 

directivity, are presented and discussed in Section 3. 

 

3.0  COMPUTATIONAL RESULTS AND 

DISCUSSION 

The computational results presented in this section 

refer to the 3
2

 optimum-GSDA, [1]-[4],. Here, the 

antenna is backed by finite ground planes of different 

shapes and varying sizes. First, the validity of this 

paper’s formulation is checked through a comparison 

of results obtained from the formulation’s application 

with a number of corresponding results available in 

the literature. Thereafter, the antenna’s electromag-

netic response to variations in ground plane shape and 

size, is examined and comprehensively discussed. 
 

3.1  Model Validation 

As a check of the validity of the model developed in 

this paper,  computational results due to the paper’s 

formulation are compared with corresponding results 

published in [3] and [15]. 

 

The current distribution profiles of Figure 3 display a 

comparison of normalized current for the optimum-

shaped wire dipole antenna treated in [3] with the 

distribution for the same antenna, as provided by this 

paper’s formulation, in the absence of the ground 

plane. In addition to the current distribution, published 

gain and input admittance data available from [3] are 

compared in Table 2, with corresponding gain and 

input admittance results obtained with this paper’s 

model.  The slight differences in the two sets of results 

may be attributed to the fact that the geometry of the 

shaped-dipole in [3], unlike the exact geometry of this 

paper, derived from a piecewise parabolic approx.-

imation, as well as the round-offs introduced by 

computation and data extraction with the use of the 

commercial software, ‘GETDATA’ (https://getdata-

graph-digitizer.software.informer.com). 

                

 
Figure 3:  Comparison of the current distribution of 

[3, Figure 2] with corresponding results due to this 

paper 

 

Table 2: Maximum gain and input admittance comparison 
Normalized Radius (a\) Maximum Gain (dB) [3] Maximum Gain (dB) [Paper] Yin [3] Yin [Paper] 

0.0075 6.9740 6.8173 - 0.009411- j0.00018 

0.0100 7.0740 6.8855 0.00962 – j0.00008 0.009461+j0.0000267 

0.0150 7.1320 7.0151 - 0.00956 + j0.00709 

 

 
Figure 4:  Comparison of variation of gain with 

‘B/’ from [15, Figure 3] with paper’s corresponding 

computational results 

As a further model validity check, the ‘backfire mode’ 

of the GSDA backed by a finite-sized square-shaped 

ground plane treated in [15], was selected as 

candidate. In this case, variations of gain with the 

Gaussian parameter ‘B’ of [15] (or ‘ ’ in this paper) 

for fixed values of ‘A’- [15] (or ‘’ -this paper) as 

displayed in [15, Figure 3] are compared with 

corresponding gain values due to this paper’s 

formulation. Two cases of ‘A’ ( 0.35 and 0.4) are 

considered; with wire radius and square ground plane 

size fixed at 0.0175 and 2 x 2, respectively. For 

each combination of ‘A’ and ‘B’ ,  the parameter ‘ym’ 

is determined with the use of Equation (6). 

 

The results of the comparison are displayed in Figure 

https://doi.org/10.4314/njt.v43i4.10
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4, where the close agreement between the gain profiles 

lend additional support to the validity of the 

formulation presented in Section 2. 

 

3.2  Effects of Finite Ground Plane Shape and 

Size 

In order to put the influence of the finite ground in 

proper perspective, variations of the “optimum-

shaped” [3], [4], antenna’s performance metrics  with 

the Gaussian parameters  and  of Equation (6)  are 

first examined using the computational results 

graphically displayed in Figure 5. These results are for 

2.0 10      and 0.3 0.6     , for which ym ranges 

between 0.312 ) 10.0 ,(  0.6k     and 0.6990 

) 2.0 ,(  0.3k    . Key highlights of these results, as 

evident, for example,  from Figure 5(a) and 5(d), 

include the facts that input resistance assumes its 

maximum value of 117 when )  ,   3.0 ,( ( 6)  0.a k   , 

for which ym is 0.501; and that the input reactance 

curves indicate that whereas there are two resonances, 

each for the curves for  0.5k   and 0.6 , all other 

reactance curves exhibit one resonance only.  

 

 
Figure 5:  Variations of GSDA performance metrics with antenna parameters in the absence of a ground 

plane 

 

 
Figure 6:  Variations of performance parameters of GSDA backed by a rectangular ground plane 

The return loss (for a feed transmission line 

characteristic impedance Z0 = 50) profiles of Fig. 

5(c) reveal that as long as  5.0a  , return loss is less 

than 20dB, for all values of  .  Its maximum value of 

about 51dB is recorded, when ),   5.( 5 ,  0( 6) .a k    that 

is ym = 0.394. From Figure 5(e), it is seen that FBR, 

in general, records its maximum value when  2.0 a   

for all the values of  considered, and thereafter, falls 

in magnitude  as  increases. The maximum value of 

FBR recorded is about 4.05dB, for the GSDA with 

geometry specified by  2.0a   and 0.3   The 

curves of Figure 5(d) indicate that power gain 

variations with the Gaussian parameters fall into two 

broad categories; for the first, defined by  

 0.3 ,  0.3 55,  0.4 ,k k k     ; gain (comparable in 

profile and magnitude) increases with  to a 

maximum value, before decreasing slightly to a more 

or less steady value. And for the set consisting of the 

curves for  0.5k   and 0.6 , gain, whose values are 

generally significantly lower than those for the other 

set, is maximum at 2.0  , and thereafter, decreases 

monotonically. Because the maximum value of gain 

(7.232dB) is recorded by this GSDA when  4.45a   

0.335  , and therefore ym = 0.61 . This geometry, 

which, by definition, [1], [3], [4] is optimum, is 

selected as candidate with which the influences of 

finite ground plane shape and size are investigated, in 

the ensuing discussions. 
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The profiles displayed in Figure 6 are for GSDA 

backed by a rectangular plane, for three different 

values of aspect ratio. It is seen from Figure 6(a) that 

the input resistance profiles for the cases of  = 2.0 and 

 = 5.0 are somewhat similar, although the swing for 

the latter is more pronounced than for the former. The 

resistance profile for the case  = 8.5 differs sharply 

from those for the other two values of aspect ratio; and 

indeed, whereas  minimum resistance value was 

recorded at about d0 = 0.25 when  = 8.5, resistance 

attained maximum values in this neighborhood, for 

the two other values of  . More or less similar 

comments apply to the curves for return loss 

(computed for a 50  transmission line at the input) 

displayed in Figure 6(c), where maximum values of 

the profiles for  = 2.0 and  = 8.5 occurred close to  d0 

= 0.25. A notable feature of the input reactance 

profiles of Figure 6(b) is that whereas two resonances 

were recorded for  = 2.0 and  = 5.0 cases, only one 

occurred for  = 8.5 case. Maximum gain and 

maximum directivity (usually of particular interest) 

occur in the descending order of  = 8.5  =2.0 and  = 

5.0, though unlike the case of maximum gain, whose 

values are of the same order of magnitude as can be 

seen from Figure 5(d), maximum directivity for the 

aspect ratio of 8.5 is significantly larger than for the 

other two values of aspect ratio. Finally, from the FBR 

curves of Figure 6(f),  it is found that the best FBR 

performance is that due to  = 2.0, and the poorest, that 

for  = 8.5, with FBR for the  = 5.0 case only slightly 

better. 

 

The response of the GSDA backed by a square ground 

plane of varying size and for different antenna-ground 

plane separations is characterized by the curves 

displayed in Figure 7. The profiles of Figure 7(a) and 

7(b) reveal that magnitudes of resistance and 

reactance vary approximately inversely with d0 when 

aspect ratio is 8.5, with resistance values being 

distinctly larger than corresponding values for the 

other two aspect ratios, up to d0 of about 0.4. 

  
 

 
Figure 7:  Profiles of performance parameters of the GSDA for the square-shaped finite ground plane case 

 

  
Figure 8:  Influence of circular ground plane size and antenna-ground plane separation on GSDA 

performance parameters 

It is readily observed from the reactance profile that 

only one resonance is featured for the three aspect 

ratios considered, with the occurrence of resonance 

being coincident at the same value of d0 for  = 2.0 

and 5.0. On the average, and according to the curves 

of Figure 7(c), the best return loss performance is that 

recorded for the aspect ratio of 5.0; and by far the 

worst, that for  = 8.5.  Gain and directivity profiles 

https://doi.org/10.4314/njt.v43i4.10
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(Figure 7(d) and 7(e)) share the interesting feature that 

values recorded for the case of aspect ratio of 8.5 are, 

in both cases, greater than those for the two other 

aspect ratios, for all values of antenna-ground plane 

separation considered. And although gain values for   

= 2.0 and  = 5.0 are comparable, on the average, 

directivity values for  = 2.0 are generally better than 

those for   = 5.0. 

 

For the GSDA backed by a circularly-shaped ground 

plane of finite extent, variations of the performance 

parameters with antenna-ground plane separation and 

aspect ratio are described by the curves of Figure 8.  

Here, input resistance for a ground plane size defined 

by   = 8.5, falls sharply to a minimum, before 

gradually increasing in value to a smaller second 

maximum. The input resistance profile for  = 2.0 

follows a somewhat similar pattern, though the dip 

from the maximum is gentler; whilst that for  = 5.0 

varies relatively insignificantly about its maximum.  

The input reactance profiles of Figure 8(b) reveal that 

unlike the reactances for ground plane size defined by 

 = 2.0 and  = 8.5, which exhibit two resonances, that 

for  = 5.0 has no resonance, remaining inductive for 

the entire range of d0 considered.  From Figure 8(c), 

it is readily observed that the highest value of 

maximum return loss (close to 60dB) is associated 

with the  = 2.0 curve, whilst those associated with  

= 8.5 and  = 5.0, followed, in that order. It is also of 

interest to observe that the locus of return loss for the 

 = 5.0 case does not follow the ‘notch’ response 

character exhibited by the profiles for the other two 

sizes of circular ground plane. The power gain and 

directivity curves of Figure 8(d) and 8(e) share the 

observable feature that values recorded for the  = 8.5 

case are significantly greater than those for the  = 2.0 

and  = 5.0 cases, over the entire range of d0 

considered in the paper.  Maximum power gain 

emerged as about 25dB, 13dB, and 10dB for the  = 

8.5,  = 2.0, and  = 5.0, cases, respectively: with all 

of them recorded when d0 has a value close to 0.25. 

  

Maximum directivity values also followed the same 

order, emerging as approximately 13dB, 11dB, and 

10dB, for the aspect ratios of 7.5, 2.0, and 5.0, 

respectively: and again, with all of them recorded 

when d0 has a value close to 0.25. The conclusion 

arrived at in [15], and presented therein as “ . . .   high 

gain and low sidelobe are contradictory”,  is 

supported by the FBR profiles of Figure 8(f). The 

largest value of maximum FBR, as can be seen from 

Figure 7(e), is that associated with the ground plane 

size defined by  = 5.0, which as earlier mentioned, 

recorded the smallest values of maximum gain and 

maximum directivity. In addition, FBR for the  = 8.5 

case (for which the largest values of maximum gain 

and maximum directivity were recorded) emerged as 

the smallest among the three sets, over the span of d0 

of interest. It is worth remarking that in the 

neighborhood of d0 = 0.25, the value of FBR recorded 

for the  = 2.0 case (which happens to be the maximum 

for that ground plane size) is larger than that obtained 

for the   = 8.5 case. 

 

Computational results presented in in the foregoing 

discussions, are rearranged in Figure 9, in order to 

examine the effects of ground plane shape on GSDA 

performance. 

 
Figure 9:  Representative comparisons of GSDA performance parameters for the different ground plane 

shapes and common values of d0 and aspect ratio  

    

The profiles of the first row of Figure 9(a) for return 

loss indicate that in terms of maximum. achievable 

value, the circularly-shaped ground plane provides the 

best performance; followed by the rectangularly- and 

square-shaped ground planes, in that order. Maximum 

achievable power gain (with profiles displayed in the 

second row of Figure 8 is also clearly available from 

the circular ground plane; however, the maximum 
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achievable gain from the square ground plane is larger 

than that from the rectangular ground plane.  On the 

other hand, the maximum achievable FBR is, 

indicated by the profiles of the third row of Figure 9, 

is clearly provided by the rectangular ground plane 

case. A further demonstration of the influence of 

ground plane shape is provided by Figure 10, showing 

  - and   -components of electric field intensity due 

to two sets of sizes of the three candidate ground plane 

shapes considered in this paper. 

 

Figure 10: Influence of finite ground plane shape on 

far-zone electric field intensity 

 

A comparison the metrics presented in Figure 9 with 

those recorded for the corresponding GSDA in the 

absence of a ground plane, clearly demonstrates that 

when the finite ground is at least 0.25 away from the 

antenna, both ground plane shape and size 

significantly improve GSDA performance features. 

For example, maximum gain, which, in the absence of 

the ground plane assumed a value of 7.232dB, 

improved to 25.36dB, 19.01dB, and 15.81dB, with the 

respective introduction of the circular, rectangular, 

and square shaped ground planes. Maximum 

achievable FBR also improved from 4.05dB to 

14.5dB, 25.61dB, and 15.62dB, respectively, 

following the introduction of finite ground planes with 

the circular, rectangular, and square shapes. It should 

be remarked, as suggested by the field patterns of 

Figure 10, that increase in relative size of ground plane 

beyond an aspect ratio of 4.5 attracts significant 

deformations in the far-zone radiation patterns. 

 

4.0  CONCLUSION  

This paper has comprehensively investigated the 

influence of ground plane shape and size on the 

performance features of the Gauss-Shaped Dipole 

Antenna (GSDA), which has been established in the 

literature as the optimum shaped wire antenna. 

Computational results describing the effects of finite-

sized, circular, rectangular, and square ground plane 

shapes on GSDA performance characteristics were 

presented. The results indicated that for any given 

shape, ground plane size, here specified in terms of an 

aspect ratio, significantly influenced all the GSDA 

performance metrics, including power gain, return 

loss, front-back-ratio (FBR), and directivity. As 

examples, for the circularly shaped ground plane, gain 

and FBR ranged between  2.88dB and 25.36dB and 

1.94dB and 14.5 dB, respectively, as aspect ratio 

varied between 1.0 and 10.0. Corresponding values 

recorded for the square-shaped ground plane emerged 

as 0.76dB and 16.81dB (for gain) and 0.146dB and 

15.62dB (for FBR), respectively. The influence of size 

is exemplified by the fact that maximum gain for the 

circular-, rectangular-, and square-shaped ground 

planes were recorded for the respective aspect ratios 

of  7.5, 8.0, and 10.0. Interestingly, minimum values 

of gain for these shapes of ground plane occurred for 

the comparable sizes specified by the respective 

aspect ratios of 6.0, 7.5, and 8.0. It is important to 

remark that the foregoing results were recorded for 

antenna-ground plane separations of 0.25. The 

computational results are consistent with the 

conclusion in the literature that for the GSDA backed 

by a finite-sized ground plane high values of 

maximum achievable gain can only be obtained at the 

expense of front-to-back ratio. 

 

Finally, one possible extension of this paper’s 

presentation may be offered by an exploration of the 

performance of a sparse randomly spaced  array of the 

GSDA, backed by a finite ground plane, when 

subjected to optimization as described in [20].    
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