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Abstract 

In the present work, piecewise functions have been successfully built in the form 

of polynomials to be utilised in the Ritz procedure to carry out the free vibration 

analysis of thin rectangular plates. They were consistently constructed by 

considering the plate as consisting of equal strips in its two perpendicular 

directions, and could be generated for all the combinations of plate’s classical 

edge supports. The procedure was performed for different combinations of 

simple and/or clamped plate’s boundary supports, taking into account four 

aspect ratios (1, 1.5, 2 and 2.5), and the first six frequency parameters were 

retained. These frequency parameters were found to be in good concordance 

with the available exact and approximate solutions. For example, for a square 

plate with simple supports, the percentage differences, comparatively to the 

exact Navier solutions, ranged from - 0.007% (for the fundamental mode) to - 

1.534% (for the sixth mode). Similar trends were obtained for the other aspect 

ratios and sets of boundary conditions considered. For all the boundary 

conditions studied, it was observed an increase in value of the frequency 

parameters with that of the plates’ side ratios. In addition, for each of the modes 

considered, it was found out that  the computed frequency parameters increased 

consistently when the number of  clamped edges increased in the set of the 

plate’s boundary conditions. The practical consequence is that thin rectangular 

plates with clamped edges may witness resonance when the forcing frequencies 

are high, while they can resist the low and medium ones. 
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1.0  INTRODUCTION 

Thin plates are common structures found in different 

fields of engineering due to the fact that they are 

economical beside their efficient load-carrying 

capacity [1], [2], [3]. They are often subjected to 

dynamic loads during their life span. Thus, their 

design requires the knowledge of their behaviour 

under dynamic excitation in order to avoid their failure 

which may occur under resonance. Hence the dynamic 

analysis of rectangular becomes interestingly 

important. 

 

Besides the exact methods which are applicable to 

only few cases of rectangular plates [4], researchers 

and practitioners resort to approximates solutions such 

as the Ritz method. Ritz method strongly relies on the 

selection of the right trial functions making up the 

shape function used in the procedure. In most cases 

the trial functions are chosen intuitively by the analyst, 

instead of being generated systematically. However, 

researchers [5], [6], agree that the chosen functions 
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must satisfy at least the geometric boundary 

conditions (such functions are said to be admissible) 

and must be independent linearly for accurate and 

convergent eigenvalues to be obtained. When they are 

selected such that, they satisfy all the boundary 

conditions (in which case they are called comparison 

functions), the accuracy of the solutions might be 

significantly improved. Polynomial trial functions are 

the most frequently used, even though it is not unusual 

to encounter transcendental shape functions [5]. They 

are known to allow straightforward algebraic 

manipulation, and to deliver accurate practical results 

in Ritz procedure. 

 

The Ritz procedure was successfully utilised by Adah, 

et al [7] to compute the resonating frequency of a 

vibrating plate of various aspect ratios and boundary 

conditions. The polynomial shape functions they used 

contained only one term in the form of a product of 

two four-degree polynomials in the two perpendicular 

directions of the plate. Thus, the computer program 

they developed gave only the fundamental natural 

frequencies. Similar shape functions were used by 

Asomugha, et al [8] in Ritz procedure to compute the 

fundamental resonating frequency parameters for a 

rectangular plate that has two opposite simple edge 

supports whereas the other two are fixed (CSCS), and 

one presenting three simply supported edges and one 

edge clamped (CSSS), under various aspect ratios.   

 

The present study applies the Ritz method to the free 

vibration analysis of thin rectangular plates presenting 

different side ratios and combining simple and/or 

fixed boundaries. Piecewise polynomial trial 

functions are built by considering real deformation 

patterns of the plate structures, for the purpose of 

determining frequency parameters of various thin 

rectangular plates using the Ritz procedure. 

Mathematica software is used for the mathematical 

manipulation involved, hence reducing the inherent 

computation errors.  

 

 
Figure 1:  Simply supported rectangular plate split 

into two equal strips in the directions of x and y 

 

2.0  METHODOLOGY 

2.1  Derivation of the Piecewise Polynomial Trial 

Functions 

Consider an all-round simply supported thin 

rectangular plate. The plate is split into finite and 

equal numbers of strips in its two perpendicular 

directions represented by x and y. Simple supports are 

introduced at the nodes determined by the axes of the 

perpendicular strips. The supports at the edges are also 

simple since the plate is considered to be simply 

supported (See Figure 1). 

 

The shape function is sought in the form: 

𝑊(𝑥, 𝑦) = ∑ ∑ 𝐶𝑖𝑗𝑋𝑖(𝑥)𝑌𝑗(𝑦)
𝑚
𝑗=1

𝑛
𝑖=1                 (1) 

Where, 𝐶𝑖𝑗 is the nodal displacement of node (𝑖, 𝑗), 

𝑋𝑖(𝑥) and 𝑌𝑗(𝑦) are elastic unit curves in x and y 

directions respectively due to unit deflection induced 

at node (𝑖, 𝑗). 
 

In order to determine 𝑋𝑖(𝑥) and 𝑌𝑗(𝑦), a unit 

deflection is induced at node (𝑖, 𝑗)[𝑖𝑒: 𝐶𝑖𝑗 = 1]. On the 

assumption that the strips (in x and y directions) 

whose axes intersect at the node (i, j) behave as beams, 

the bending moments Mi and Mj in the directions of x 

and y respectively due to the unit deflection at the 

node (i, j) are first plotted using, for example, the 

displacement method (see Figure 2); then their 

expressions are derived from the plots. The 

expressions of Mi and Mj will be piecewise linear 

polynomials of x and y respectively. Furthermore, it is 

well documented from strength of materials that: 

𝑀𝑖(𝑥) = −
𝑑2𝑋𝑖(𝑥)

𝑑𝑥2
𝐸𝐼𝑖                   (2) 

and  

𝑀𝑗(𝑥) = −
𝑑2𝑌𝑗(𝑦)

𝑑𝑦2
𝐸𝐼𝑗                       (3) 

Where, E stands for the Young modulus of the 

material of the plate, and Ii and Ij are the moments of 

inertia of the strips in x and y directions respectively. 

 

Double integration of the Equation (2) and Equation 

(3) yields the expressions of 𝑋𝑖(𝑥) and 𝑋𝑗(𝑦) upon 

application of the corresponding boundary conditions. 

 

 
Figure 2:  Strip bending moment diagram in x 

direction induced by a unit deflection applied at node 

(1, 1) when the simply supported plate is divided into 

two equal strips 
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As an illustration, if we divide the plate into two strips 

in x and y directions, only one intermediary support 

will be introduced while the other supports will be on 

the plate edges (see Figure 1). Thus, we will have only 

one node (1, 1). The expressions of associated bending 

moments will be (see Figure 2):  

𝑀1(𝑥) = {

24𝐸𝐼1

𝑎3
𝑥                             𝑖𝑓  0 ≤ 𝑥 ≤

𝑎

2

−
24 𝐸𝐼1

𝑎3
𝑥 + 

24 𝐸𝐼1

𝑎2
     𝑖𝑓

𝑎

2
≤ 𝑥 ≤ 𝑎

                   (4) 

and  

𝑀1(𝑦) = {

24𝐸𝐼1

𝑏3
𝑦                             𝑖𝑓  0 ≤ 𝑦 ≤

𝑏

2

−
24 𝐸𝐼1

𝑏3
𝑦 + 

24 𝐸𝐼1

𝑏2
     𝑖𝑓

𝑏

2
≤ 𝑦 ≤ 𝑏

         (5) 

Where, a and b are the dimensions of the plate 

corresponding to the directions of x and y 

respectively. 

 

Making use of Equation (4) and Equation (5) in 

Equation (2) and Equation (3) respectively, carrying 

out successive integration and considering the 

boundary conditions, the expressions  𝑋1(𝑥) and 𝑌𝑗(𝑦) 

are obtained as follows: 

𝑋1(𝑥) = {
−

4

𝑎3
𝑥3 +

3

𝑎
𝑥        𝑖𝑓 0 ≤ 𝑥 ≤ 𝑎/2

4

𝑎3
𝑥3 −

12

𝑎2
𝑥2 +

9

𝑎
𝑥 − 1   𝑖𝑓 𝑎/2 ≤ 𝑥 ≤ 𝑎  

     (6) 

and  

𝑌1(𝑦) = {
−

4

𝑏3
𝑦3 +

3

𝑏
𝑦                         𝑖𝑓 0 ≤ 𝑦 ≤ 𝑏/2

4

𝑏3
𝑦3 −

12

𝑏2
𝑦2 +

9

𝑏
𝑦 − 1   𝑖𝑓 𝑏/2 ≤ 𝑦 ≤ 𝑏  

           (7) 

 

For convenience, the expressions  𝑋1(𝑥) and 𝑌𝑗(𝑦) are 

made dimensionless by letting  𝜉 = 𝑥/𝑎 and 𝜂 = 𝑦/𝑏 : 

𝑋1(𝜉) = {
−4𝜉3 + 3𝜉                      𝑖𝑓 0 ≤ 𝜉 ≤

1

2

4𝜉3 − 12𝜉2 + 9𝜉 − 1   𝑖𝑓
1

2
≤ 𝜉 ≤ 1  

      (8) 

and 

𝑌1(𝜂) = {
−4𝜂3 + 3𝜂                       𝑖𝑓 0 ≤ 𝜂 ≤

1

2

4𝜂3 − 12𝜂2 + 9𝜂 − 1   𝑖𝑓
1

2
≤ 𝜂 ≤ 1  

      (9) 

 

It is important to note that the expressions 𝑋1(𝑥) and 

𝑌𝑗(𝑦) as expressed in Equation (8) and Equation (9) 

should then be substituted into Equation (1) for 

implementation of the Ritz method. In that case the 

Ritz method reduces to that of Raleigh whereby the 

shape function is made of only one term. 

 

Using a similar procedure, the following trial 

functions will be derived for the cases below: 

 Consideration of three strips in the directions of x 

and y respectively: 

In the direction of x 

𝑋1(𝜉) =

{
 
 

 
 −

81

5
𝜉3 +

24

5
𝜉                                   𝑖𝑓 0 ≤ 𝜉 ≤

1

3
 

27𝜉3 −
216

5
𝜉2 +

96

5
𝜉 −

8

5
               𝑖𝑓

1

3
≤ 𝜉 ≤

2

3

−
54

5
𝜉3 +

162

5
𝜉2 −

156

5
𝜉 +

48

5
    𝑖𝑓

2

3
≤ 𝜉 ≤ 1 

    (10) 

𝑋2(𝜉) =

{
 
 

 
 

−

54

5
𝜉3 −

6

5
𝜉                                      𝑖𝑓 0 ≤ 𝜉 ≤

1

3
 

27𝜉3 +
189

5
𝜉2 −

69

5
𝜉 +

7

5
          𝑖𝑓

1

3
≤ 𝜉 ≤

2

3
81

5
𝜉3 −

243

5
𝜉2 +

219

5
𝜉 −

57

5
    𝑖𝑓

2

3
≤ 𝜉 ≤ 1 

    (11) 

 

In the direction of y 

𝑌1(𝜂) =

{
 
 

 
 −

81

5
𝜂3 +

24

5
𝜂                                   𝑖𝑓 0 ≤ 𝜂 ≤

1

3
 

27𝜂3 −
216

5
𝜂2 +

96

5
𝜂 −

8

5
               𝑖𝑓

1

3
≤ 𝜂 ≤

2

3

−
54

5
𝜂3 +

162

5
𝜂2 −

156

5
𝜂 +

48

5
    𝑖𝑓

2

3
≤ 𝜂 ≤ 1 

     (12) 

𝑌2(𝜂) =

{
 
 

 
 

−

54

5
𝜂3 −

6

5
𝜂                                      𝑖𝑓 0 ≤ 𝜂 ≤

1

3
 

27𝜂3 +
189

5
𝜂2 −

69

5
𝜂 +

7

5
          𝑖𝑓

1

3
≤ 𝜂 ≤

2

3
81

5
𝜂3 −

243

5
𝜂2 +

219

5
𝜂 −

57

5
    𝑖𝑓

2

3
≤ 𝜂 ≤ 1 

     (13) 

 

 Consideration of four strips in the directions of x 

and y respectively: 

In the direction of x 

𝑋1(𝜉) =

{
 
 

 
 −

272

7
𝜉3 +

45

7
𝜉                               𝑖𝑓  0 ≤ 𝜉 ≤

1

4
464

7
𝜉3 −

552

7
𝜉2 +

183

7
𝜉 −

23

14
      𝑖𝑓 

1

4
≤ 𝜉 ≤

1

2

−
240

7
𝜉3 + 72𝜉2 −

345

7
𝜉 +

153

14
   𝑖𝑓 

1

2
≤ 𝜉 ≤

3

4
48

7
𝜉3 −

144

7
𝜉2 +

141

7
𝜉 −

45

7
         𝑖𝑓 

3

4
≤ 𝜉 ≤ 1

       (14) 

𝑋2(𝜉) =

{
 
 

 
 
192

7
𝜉3 −

12

7
𝜉                                       𝑖𝑓  0 ≤ 𝜉 ≤

1

4

−
512

7
𝜉3 +

528

7
𝜉2 −

144

7
𝜉 +

11

7
      𝑖𝑓 

1

4
≤ 𝜉 ≤

1

2
512

7
𝜉3 − 144𝜉2 +

624

7
𝜉 −

117

7
         𝑖𝑓 

1

2
≤ 𝜉 ≤

3

4

−
192

7
𝜉3 +

576

7
𝜉2 −

564

7
𝜉 +

180

7
     𝑖𝑓 

3

4
≤ 𝜉 ≤ 1

   (15) 

𝑋3(𝜉) =

{
 
 

 
 −

48

7
𝜉3 +

3

7
𝜉                                      𝑖𝑓  0 ≤ 𝜉 ≤

1

4
240

7
𝜉3 −

216

7
𝜉2 +

57

7
𝜉 −

9

14
             𝑖𝑓 

1

4
≤ 𝜉 ≤

1

2

−
464

7
𝜉3 + 120𝜉2 −

471

7
𝜉 +

167

14
    𝑖𝑓 

1

2
≤ 𝜉 ≤

3

4
272

7
𝜉3 −

816

7
𝜉2 +

771

7
𝜉 −

227

7
         𝑖𝑓 

3

4
≤ 𝜉 ≤ 1

   (16) 

 

In the direction of y 

𝑌1(𝜂) =

{
 
 

 
 −

272

7
𝜂3 +

45

7
𝜂                              𝑖𝑓  0 ≤ 𝜂 ≤

1

4
464

7
𝜂3 −

552

7
𝜂2 +

183

7
𝜂 −

23

14
      𝑖𝑓 

1

4
≤ 𝜂 ≤

1

2

−
240

7
𝜂3 + 72𝜂2 −

345

7
𝜂 +

153

14
   𝑖𝑓 

1

2
≤ 𝜂 ≤

3

4
48

7
𝜂3 −

144

7
𝜂2 +

141

7
𝜂 −

45

7
         𝑖𝑓 

3

4
≤ 𝜂 ≤ 1

      (17) 

𝑌2(𝜂) =

{
 
 

 
 
192

7
𝜂3 −

12

7
𝜂                                    𝑖𝑓  0 ≤ 𝜂 ≤

1

4

−
512

7
𝜂3 +

528

7
𝜂2 −

144

7
𝜂 +

11

7
      𝑖𝑓 

1

4
≤ 𝜂 ≤

1

2
512

7
𝜂3 − 144𝜂2 +

624

7
𝜂 −

117

7
         𝑖𝑓 

1

2
≤ 𝜂 ≤

3

4

−
192

7
𝜂3 +

576

7
𝜂2 −

564

7
𝜂 +

180

7
     𝑖𝑓 

3

4
≤ 𝜂 ≤ 1

   (18) 

𝑌3(𝜂) =

{
 
 

 
 −

48

7
𝜂3 +

3

7
𝜂                                       𝑖𝑓  0 ≤ 𝜂 ≤

1

4
240

7
𝜂3 −

216

7
𝜂2 +

57

7
𝜂 −

9

14
             𝑖𝑓 

1

4
≤ 𝜂 ≤

1

2

−
464

7
𝜂3 + 120𝜂2 −

471

7
𝜂 +

167

14
    𝑖𝑓 

1

2
≤ 𝜂 ≤

3

4
272

7
𝜂3 −

816

7
𝜂2 +

771

7
𝜂 −

227

7
         𝑖𝑓 

3

4
≤ 𝜂 ≤ 1

  (19) 

 

 Consideration of five strips in the directions of x 

and y respectively: 

In the direction of x 
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𝑋1(𝜉) =

{
 
 
 

 
 
 

−

−
15875

209
𝜉3 +

1680

209
𝜉                                𝑖𝑓 0 ≤ 𝜉 ≤

1

5
27125

209
𝜉3 −

25800

209
𝜉2 +

360

11
𝜉 −

344

209
      𝑖𝑓 

1

5
≤ 𝜉 ≤

2

5
750

11
𝜉3 +

23850

209
𝜉2 −

13020

209
𝜉 +

2304

209
    𝑖𝑓 

2

5
≤ 𝜉 ≤

3

5
3750

209
𝜉3 −

450

11
𝜉2 +

6420

209
𝜉 −

144

19
          𝑖𝑓 

3

5
≤ 𝜉 ≤

4

5

−
750

209
𝜉3 +

2250

209
𝜉2 −

2220

209
𝜉 +

720

209
      𝑖𝑓 

4

5
≤ 𝜉 ≤ 1

         (20) 

𝑋2(𝜉) =

{
 
 
 

 
 
 
11250

209
𝜉3 −

450

209
𝜉                                             𝑖𝑓 0 ≤ 𝜉 ≤

1

5

−
30125

209
𝜉3 +

24825

209
𝜉2 −

285

11
𝜉 +

331

209
           𝑖𝑓 

1

5
≤ 𝜉 ≤

2

5
1625

11
𝜉3 −

48375

209
𝜉2 +

23865

209
𝜉 −

3573

209
           𝑖𝑓 

2

5
≤ 𝜉 ≤

3

5

−
15000

209
𝜉3 +

1800

11
𝜉2 −

25680

209
𝜉 +

576

19
         𝑖𝑓 

3

5
≤ 𝜉 ≤

4

5
3000

209
𝜉3 −

9000

209
𝜉2 +

8880

209
𝜉 −

2880

209
               𝑖𝑓 

4

5
≤ 𝜉 ≤ 1

     (21) 

𝑋3(𝜉) =

{
 
 
 

 
 
 −

3000

209
𝜉3 +

120

209
𝜉                                         𝑖𝑓 0 ≤ 𝜉 ≤

1

5
1500

209
𝜉3 −

10800

209
𝜉2 +

120

11
𝜉 −

144

209
                  𝑖𝑓 

1

5
≤ 𝜉 ≤

2

5

−
1625

11
𝜉3 +

44250

209
𝜉2 −

19740

209
𝜉 +

2792

209
         𝑖𝑓 

2

5
≤ 𝜉 ≤

3

5
30125

209
𝜉3 −

3450

11
𝜉2 +

46140

209
𝜉 −

944

19
                𝑖𝑓 

3

5
≤ 𝜉 ≤

4

5

−
11250

209
𝜉3 +

33750

209
𝜉2 −

33300

209
𝜉 +

10800

209
      𝑖𝑓 

4

5
≤ 𝜉 ≤ 1

   (22) 

𝑋4(𝜉) =

{
 
 
 

 
 
 
750

209
𝜉3 −

30

209
𝜉                                                   𝑖𝑓 0 ≤ 𝜉 ≤

1

5

−
3750

209
𝜉3 +

2700

209
𝜉2 −

30

11
𝜉 +

36

209
                   𝑖𝑓 

1

5
≤ 𝜉 ≤

2

5
750

11
𝜉3 −

18900

209
𝜉2 +

8070

209
𝜉 −

1116

209
                 𝑖𝑓 

2

5
≤ 𝜉 ≤

3

5

−
27125

209
𝜉3 +

2925

11
𝜉2 −

36615

209
𝜉 +

711

19
           𝑖𝑓 

3

5
≤ 𝜉 ≤

4

5
15875

209
𝜉3 −

47625

209
𝜉2 +

45945

209
𝜉 −

14195

209
         𝑖𝑓 

4

5
≤ 𝜉 ≤ 1

   (23) 

 

In the direction of y 

𝑌1(𝜂) =

{
 
 
 

 
 
 

−

−
15875

209
𝜂3 +

1680

209
𝜂                                      𝑖𝑓 0 ≤ 𝜂 ≤

1

5
27125

209
𝜂3 −

25800

209
𝜂2 +

360

11
𝜂 −

344

209
        𝑖𝑓 

1

5
≤ 𝜂 ≤

2

5
750

11
𝜂3 +

23850

209
𝜂2 −

13020

209
𝜂 +

2304

209
      𝑖𝑓 

2

5
≤ 𝜂 ≤

3

5
3750

209
𝜂3 −

450

11
𝜂2 +

6420

209
𝜂 −

144

19
             𝑖𝑓 

3

5
≤ 𝜂 ≤

4

5

−
750

209
𝜂3 +

2250

209
𝜂2 −

2220

209
𝜂 +

720

209
         𝑖𝑓 

4

5
≤ 𝜂 ≤ 1

     (24) 

𝑌2(𝜂) =

{
 
 
 

 
 
 
11250

209
𝜂3 −

450

209
𝜂                                               𝑖𝑓 0 ≤ 𝜂 ≤

1

5

−
30125

209
𝜂3 +

24825

209
𝜂2 −

285

11
𝜂 +

331

209
     𝑖𝑓 

1

5
≤ 𝜂 ≤

2

5
1625

11
𝜂3 −

48375

209
𝜂2 +

23865

209
𝜂 −

3573

209
       𝑖𝑓 

2

5
≤ 𝜂 ≤

3

5

−
15000

209
𝜂3 +

1800

11
𝜂2 −

25680

209
𝜂 +

576

19
     𝑖𝑓 

3

5
≤ 𝜂 ≤

4

5
3000

209
𝜂3 −

9000

209
𝜂2 +

8880

209
𝜂 −

2880

209
           𝑖𝑓 

4

5
≤ 𝜂 ≤ 1

  (25)  

𝑌3(𝜂) =

{
 
 
 

 
 
 −

3000

209
𝜂3 +

120

209
𝜂                                         𝑖𝑓 0 ≤ 𝜂 ≤

1

5
1500

209
𝜂3 −

10800

209
𝜂2 +

120

11
𝜂 −

144

209
                𝑖𝑓 

1

5
≤ 𝜂 ≤

2

5

−
1625

11
𝜂3 +

44250

209
𝜂2 −

19740

209
𝜂 +

2792

209
      𝑖𝑓 

2

5
≤ 𝜂 ≤

3

5
30125

209
𝜂3 −

3450

11
𝜂2 +

46140

209
𝜂 −

944

19
              𝑖𝑓 

3

5
≤ 𝜂 ≤

4

5

−
11250

209
𝜂3 +

33750

209
𝜂2 −

33300

209
𝜂 +

10800

209
   𝑖𝑓 

4

5
≤ 𝜂 ≤ 1

  (26) 

𝑌4(𝜂) =

{
 
 
 

 
 
 
750

209
𝜂3 −

30

209
𝜂                                               𝑖𝑓 0 ≤ 𝜂 ≤

1

5

−
3750

209
𝜂3 +

2700

209
𝜂2 −

30

11
𝜂 +

36

209
                𝑖𝑓 

1

5
≤ 𝜂 ≤

2

5
750

11
𝜂3 −

18900

209
𝜂2 +

8070

209
𝜂 −

1116

209
             𝑖𝑓 

2

5
≤ 𝜂 ≤

3

5

−
27125

209
𝜂3 +

2925

11
𝜂2 −

36615

209
𝜂 +

711

19
        𝑖𝑓 

3

5
≤ 𝜂 ≤

4

5
15875

209
𝜂3 −

47625

209
𝜂2 +

45945

209
𝜂 −

14195

209
    𝑖𝑓 

4

5
≤ 𝜂 ≤ 1

    (27) 

  

Similar trial functions were derived for the following 

sets of plate’s classical boundary conditions: 

 Simple supports at three sides and one edge fixed 

(SSSC) 

 Simple supports at two adjacent sides and the other 

two edges fixed (SSCC) 

 A simple support at one side and the other three 

edges fixed (SCCC) 

 all-round fixed (CCCC) 

 

2.2  Ritz Procedure 

Adopting 𝜉 =
𝑥

𝑎
 and 𝜂 =

𝑦

𝑏
 , the maximum strain 

energy of an isotropic thin rectangular plate is given 

as [9]: 

 
𝑈𝑚𝑎𝑥 =

1

2

𝐷𝑏

𝑎3
∫ ∫ [𝑊𝜉𝜉

2 + 𝛼4𝑊𝜂𝜂
2 + 2𝜇𝛼2𝑊𝜉𝜉𝑊𝜂𝜂 + 2(1 −

1

0

1

0

𝜇)𝛼2𝑊𝜉𝜂
2 ]𝑑𝜉𝑑𝜂               (28) 

Where, a and b are the dimension of the plate, W its 

transverse displacement function, D its flexural 

rigidity, µ the Poisson’s ratio of its material, α its 

aspect ratio, the subscripts ξ and η stand for first 

differentiation with respect to ξ and η respectively, 

and the subscripts ξξ and ηη stand for second 

differentiation with respect to ξ and η respectively. 

 

The maximum kinetic energy is given by: 

𝑇𝑚𝑎𝑥 =
1

2
𝜔2𝜌ℎ𝑎𝑏 ∫ ∫ 𝑊2(𝜉, 𝜂)𝑑𝜉𝑑𝜂

1

0

1

0
          (29) 

Where, ρ refers to the mass density of the material of 

the plate. 

 

Considering the plate to be under free vibration, its 

energy functional will obtained as: 

Π = 𝑈𝑚𝑎𝑥 − 𝑇𝑚𝑎𝑥                  (30) 

 

We assume the shape function to be in the following 

form: 

𝑊(𝜉, 𝜂) = ∑ ∑ 𝐶𝑖𝑗𝑋𝑖(𝜉)𝑌𝑗(𝜂)
𝑛
𝑗

𝑚
𝑖           (31) 

Where, Cij are undetermined coefficients 

corresponding to the nodal displacements in Equation 

(1) and, 𝑋𝑖(𝜉) and 𝑌𝑗(𝜂) are the piecewise polynomial 

functions as derived in Section 2.1, and n and m are 

the numbers of trial functions (or of strips) considered 

the directions of x and y respectively. Substituting for 

the expression of 𝑋𝑖(𝜉) and 𝑌𝑗(𝜂)  into Equation (28) 

and Equation (29), and taking into account Equation 

(30), we will obtain a system of algebraic equations in 

the undetermined coefficients Cij, after minimisation 

of the energy functional Π: 
𝜕Π

𝜕𝐶𝑖𝑗
= 0                   (32) 

 

Adopting matrix formats, the plate’s energy functional 

itself can be written as [9]: 

Π =
1

2

𝐷𝑏

𝑎3
𝐶[𝐴1 + 𝛼

4𝐴2 + 2𝜇𝛼
2𝐴3 + 2(1 − 𝜇)𝛼

2𝐴4 − 𝜆
2𝐵]𝐶𝑇         (33) 

Where, 
𝐴1 = ∫ ∫ 𝑀𝜉𝜉

𝑇 𝑀𝜉𝜉𝑑𝜉𝑑𝜂
1

0

1

0
; 𝐴2 = ∫ ∫ 𝑀𝜂𝜂

𝑇 𝑀𝜂𝜂𝑑𝜉𝑑𝜂
1

0

1

0
; 𝐴3 =

∫ ∫ 𝑀𝜂𝜂
𝑇 𝑀𝜉𝜉𝑑𝜉𝑑𝜂

1

0

1

0
; 𝐴4 = ∫ ∫ 𝑀𝜉𝜂

𝑇 𝑀𝜉𝜂𝑑𝜉𝑑𝜂
1

0

1

0
; 𝐵 = ∫ ∫ 𝑀𝑇𝑀𝑑𝜉𝑑𝜂

1

0

1

0
 

and 𝜆2 = 𝜌ℎ𝜔2𝑎4

𝐷
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Carrying out the minimisation suggested by Equation 

(32), we have:  

𝐻𝐶𝑇 = 0                         (34) 

Where, 𝐻 = [𝐴1 + 𝛼
4𝐴2 + 2𝜇𝛼

2𝐴3 + 2(1 − 𝜇)𝛼
2𝐴4 − 𝜆

2𝐵]   

 

A1, A2, A3, A4 and B are computed as: 
𝐴1 = ∫ ∫ 𝑀𝜉𝜉

𝑇 𝑀𝜉𝜉𝑑𝜉𝑑𝜂
1

0

1

0
=

∫ ∫

[
 
 
 
 
 
𝑤1𝜉𝜉𝑤1𝜉𝜉     𝑤1𝜉𝜉𝑤2𝜉𝜉    …    𝑤1𝜉𝜉𝑤𝑝𝜉𝜉
𝑤2𝜉𝜉𝑤1𝜉𝜉     𝑤2𝜉𝜉𝑤2𝜉𝜉    …    𝑤2𝜉𝜉𝑤𝑝𝜉𝜉

.                   .              …              .

.                   .              …              .

.                   .              …              .
𝑤𝑝𝜉𝜉𝑤1𝜉𝜉     𝑤𝑝𝜉𝜉𝑤2𝜉𝜉    …    𝑤𝑝𝜉𝜉𝑤𝑝𝜉𝜉]

 
 
 
 
 

1

0

1

0
        (35) 

𝐴2 = ∫ ∫ 𝑀𝜂𝜂
𝑇 𝑀𝜂𝜂𝑑𝜉𝑑𝜂

1

0

1

0
=

 ∫ ∫

[
 
 
 
 
 
𝑤1𝜂𝜂𝑤1𝜂𝜂    𝑤1𝜂𝜂𝑤2𝜂𝜂    …    𝑤1𝜂𝜂𝑤𝑝𝜂𝜂
𝑤2𝜂𝜂𝑤1𝜂𝜂    𝑤2𝜂𝜂𝑤2𝜂𝜂    …    𝑤2𝜂𝜂𝑤𝑝𝜂𝜂

.                   .              …              .

.                   .              …              .

.                   .              …              .
𝑤𝑝𝜂𝜂𝑤1𝜂𝜂    𝑤𝑝𝜂𝜂𝑤2𝜂𝜂    …    𝑤𝑝𝜂𝜂𝑤𝑝𝜂𝜂]

 
 
 
 
 

1

0

1

0
       (36) 

𝐴3 = ∫ ∫ 𝑀𝜂𝜂
𝑇 𝑀𝜉𝜉𝑑𝜉𝑑𝜂

1

0

1

0
=

∫ ∫

[
 
 
 
 
 
𝑤1𝜂𝜂𝑤1𝜉𝜉    𝑤1𝜂𝜂𝑤2𝜉𝜉    …    𝑤1𝜂𝜂𝑤𝑝𝜉𝜉
𝑤2𝜂𝜂𝑤1𝜉𝜉     𝑤2𝜂𝜂𝑤2𝜉𝜉    …    𝑤2𝜂𝜂𝑤𝑝𝜉𝜉

.                   .              …              .

.                   .              …              .

.                   .              …              .
𝑤𝑝𝜂𝜂𝑤1𝜉𝜉     𝑤𝑝𝜂𝜂𝑤2𝜉𝜉    …    𝑤𝑝𝜂𝜂𝑤𝑝𝜉𝜉]

 
 
 
 
 

1

0

1

0
          (37) 

 𝐴4 = ∫ ∫ 𝑀𝜉𝜂
𝑇 𝑀𝜉𝜂𝑑𝜉𝑑𝜂

1

0

1

0
=

∫ ∫

[
 
 
 
 
 
𝑤1𝜉𝜂𝑤1𝜉𝜂    𝑤1𝜉𝜂𝑤2𝜉𝜂    …    𝑤1𝜉𝜂𝑤𝑝𝜉𝜂
𝑤2𝜉𝜂𝑤1𝜉𝜂    𝑤2𝜉𝜂𝑤2𝜉𝜂    …    𝑤2𝜉𝜂𝑤𝑝𝜉𝜂

.                   .              …              .

.                   .              …              .

.                   .              …              .
𝑤𝑝𝜉𝜂𝑤1𝜉𝜂    𝑤𝑝𝜉𝜂𝑤2𝜉𝜂    …    𝑤𝑝𝜉𝜂𝑤𝑝𝜉𝜂]

 
 
 
 
 

1

0

1

0
        (38) 

𝐵 = ∫ ∫ 𝑀𝑇𝑀𝑑𝜉𝑑𝜂
1

0

1

0
= ∫ ∫

[
 
 
 
 
 
𝑤1𝑤1    𝑤1𝑤2    …    𝑤1𝑤𝑝
𝑤2𝑤1    𝑤2𝑤2    …    𝑤2𝑤𝑝
.             .        …        .
.             .        …        .
.             .        …        .

𝑤𝑝𝑤1    𝑤𝑝𝑤2    …    𝑤𝑝𝑤𝑝]
 
 
 
 
 

1

0

1

0
            (39) 

 

An eigenvalue problem is obtained upon application 

of Equation (34). The condition of non-trivial solution 

requires that the determinant of H should be null. This 

leads to a polynomial equation whose solution gives λ 

called frequency parameter. 

 

3.0  RESULTS AND DISCUSSION 

3.1  The Trial Functions 

Polynomial piecewise comparison functions were 

constructed from consistent deflection patterns 

conveniently imposed to the plate structures for 

boundary conditions comprising simple and/or fixed 

supports. In fact, they can be constructed for any 

combination of classical plate’s edge conditions. The 

derived trial functions are all three-degree 

polynomials. The use of these low-degree 

polynomials will help to avoid the numerical 

instability and wiggling associated with the use of 

high degree polynomials during the implementation of 

the Ritz procedure [6], [10]. 

 

The Ritz method was implemented using 

Mathematica software for SSSS, SSSC, SSCC, SCCC 

and CCCC thin rectangular plates considering 

successively two, three and four equal strips in the 

directions of x and y, and varying the plates’ side 

ratios (1, 1.5, 2 and 2.5). The Poisson’s ratio µ of the 

plates’ material was taken equal to 0.3. The numerical 

results for the six first frequency parameters λ were 

retained and compared to existing results as shown in 

Tables 1, 2, 3, 4 and 5. The percentage differences 

presented in the tables are computed using the 

formula:  

 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒−𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑡𝑢𝑑𝑦

𝑣𝑎𝑙𝑢𝑒 𝑓𝑟𝑜𝑚 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
  

 

Table 1: Frequency parameters for SSSS rectangular isotropic plates of different side ratios compared with 

existing results 

Side ratio  
𝝀 for the modes of  vibration 

1 2 3 4 5 6 

1 

Present study 
19.7404  
(-0.066)* 

(-0.007)** 

49.4283  
(-0.211)* 

(-0.163)** 

49.4283  
(-0.211)* 

(-0.163)** 

79.0644  
(-0.228)* 

(-0.136)** 

100.21  
(-1.671)* 

(-1.534)** 

100.21  
(-1.671)* 

(-1.534)** 

[11] 19.7273 49.3242 49.3242 78.8848 98.5628 98.5628 

Exact value (Navier’s solution) 19.739 49.348 49.348 78.957 98.696 98.696 

1.5 

Present study 

32.0784  

(-0.749)* 

(-0.007)** 

61.7521  

(-0.655)* 

(-0.109)** 

98.896  

(-1.328)* 

(-0.203)** 

112.432  

(-1.721)* 

(-1.260)** 

128.501   

(-1.097)* 

(-0.153)** 

178.824 

- 

(-0.659)** 

[12] 31.8400 61.3500 97.60 110.5300 127.1070 - 

Exact value (Navier’s solution) 32.0762 61.685 98.696 111.033 128.305 177.653 

2 

Present study 

49.352  

(-0.008)* 

(-0.008)** 

79.013  

(-0.071)* 

(-0.071)** 

129.58  

(0.077)* 

(-0.994)** 

168.153  

(0.159)* 

(-0.221)** 

197.74  

(0.448)* 

(-0.176)** 

208.953 

- 

(-5.857)** 

[13] 49.348 78.957 129.68 168.42 198.63 - 

Exact value (Navier’s solution) 49.348 78.9568 128.305 167.783 197.392 197.392 

2.5 

Present study 

71.5611  

(-0.226)* 

(-0.009)** 

101.212  

(-0.289)* 

(-0.048)** 

151.67  

(-1,081)* 

(-0.770)** 

230.773  

(-5.520)* 

(-5.088)** 

257.198  

(-0.692)* 

(-0.229)** 

286.775 
- 

(-0.194)** 

[12] 71.4000 100.92 150.048 218.70 255.4300 - 

Exact value (Navier’s solution) 71.5546 101.163 150.511 219.599 256.61 286.219 
* Percentage difference comparatively to [11], [12] or [13] 
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**Percentage difference comparatively to Navier’s solution 

 

Table 2: Frequency parameters for SSSC rectangular isotropic plates of different side ratios compared with 

existing results 

Side ratio  
𝝀 for the modes of vibration 

1 2 3 4 5 6 

1 

Present study 
23.6517  
(-0.024)* 

(-0.024)** 

51.7697  
(-0.185)* 

(-0.183)* 

58.8202  
(-0.297)* 

(-0.295)** 

86.3402  
(-0.244)* 

(-0.237)** 

101.811  
(-1.540)* 

(-1.535)** 

115.68  
(-2.165)* 

(-2.161)** 

Exact value [14] 23.646 51.674 58.646 86.130 100.267 113.229 

[6] 23.646 51.675 58.647 86.136 100.272 113.233 

1.5 

Present study 

42.5372  

(-0.022)* 

(0.374)** 

69.0793  

(-0.110)* 

(-1.620)** 

117.654  

(-1.193)* 

(-1.765)** 

121.42  

(-0.351)* 

(-2.269)** 

148.029  

(-0.267)* 

- 

195.132  

(-5.992)* 

- 

[15] 42.5278 69.0031 116.2671 120.9956 147.6353 184.1006 

[16] 42.697 67.978 115.613 118.726 - - 

2 

Present study 

69.3436  

(-0.021)* 
(-0.024)** 

94.6501  

(-0.073)* 
(-0.060)** 

141.424  

(-0.871)* 
(-0.031)** 

209.172  

(-1.197)* 
- 

217.97  

(-4.589)* 
(-4.572)** 

235.303  

(-0.304)* 
- 

Exact value [14] 69.329 94.581 140.203 206.698 208.407 234.589 

[13] 69.327 94.593 141.38 - 208.44 - 

2.5 
Present study 

103.949  

(-0.025)* 

128.4  

(-0.048)* 

173.45  

(-0.620)* 

247.903  

(-4.490)* 

322.033  

(-0.387)* 

347.898  

(-0.334)* 

[15] 103.9227 128.3382 172.3804 237.2502 320.7921 346.7382 
* Percentage difference comparatively to [14] or [15] 
**Percentage difference comparatively to [6], [13] or [16] 

 

Table 3: Frequency parameters for SSCC rectangular isotropic plates of different side ratios compared with 

existing results 

Side ratio  
𝝀 for the modes of  vibration 

1 2 3 4 5 6 

1 

Present study 

27.065  

(-0.037)* 
(-0.041)** 

60.7292  

(-0.296)* 
(-0.313)** 

60.9737  

(-0.700)* 
(-0.307)** 

93.1432  

(-0.247)* 
(-0.327)** 

117.032 

(-1.732)* 
(-2.156)** 

117.176 

- 
(-2.151)** 

[13] 27.055 60.550 60.550 92.914 115.04 - 

[6] 27.054 60.540 60.787 92.840 114.562 114.709 

1.5 

Present study 

44.9106  

(-0.039)* 

(-2.095)** 

76.7128  

(-0.207)* 

(-0.612)** 

122.787  

(-0.374)* 

(0.307)** 

131.651  

(-1.732)* 

(-4.404)** 

153.095  

(-0.338)* 

- 

205.711  

(-1.505)* 

- 

[15] 44.893 76.554 122.33 129.41 152.58 202.66 

[16] 43.989 76.246 123.167 126.098 - - 

2 
Present study 

71.113  
(-0.049)* 

100.963  
(-0.162)* 

153.934  
(-1.126)* 

210.23  
(-0.368)* 

235.88  
(-0.911)* 

239.358 
- 

[13] 71.078 100.80 152.22 209.46 233.75 - 

2.5 
Present study 

105.356  

(-0.044)* 

133.681  

(-0.121)* 

184.525  

(-0.982)* 

264.685  

(-4.544)* 

322.921  

(-0.411)* 

351.332  

(-1.989)* 

[15] 105.31 133.52 182.73 253.18 321.60 344.48 
* Percentage difference comparatively to [13] or [15] 
**Percentage difference comparatively to [6], or [16] 

 

Table 4: Frequency parameters for SCCC rectangular isotropic plates of different side ratios compared with 

existing results 

Side ratio  
𝝀 for the modes of  vibration 

1 2 3 4 5 6 

1 

Present study 

31.8479  
(-0.088)* 

(-0.059)** 

(-0.069)*** 

63.5474  
(-0.359)* 

(-0.316)** 

(-0.342)*** 

71.4298  
(-0.492)* 

(-0.486)** 

(-0.498)*** 

101.256  
(-0.452)* 

(-0.422)** 

(-0.460)*** 

118.871  
(-2.158)* 

(-2.123)** 

(-2.161)*** 

133.94  
(-2.715)* 

(-2.738)** 

(-2.753)*** 

[17] 31.82 63.32 71.08 100.8 116.36 130.4 

[15] 31.829 63.347 71.084 100.83 116.40 130.37 

[18] 31.826 63.331 71.076 100.792 116.357 130.351 

1.5 
Present study 

58.2235  

(-0.058)* 

85.9016  

(-0.224)* 

137.927  

(-1.641)* 

148.259  

(-0.583)* 

175.36  

(-0.550)* 

219.445 (-

5.859)* 

[17] 58.19 85.71 135.7 147.4 174.4 207.3 

2 
Present study 

96.6412  
(-0.032)* 

121.192  
(-0.159)* 

168.961  
(-1.174)* 

247.058  
(-4.952)* 

256.549  
(-0.607)* 

282.213 
(-0.575)* 

[17] 96.61 121.0 167.0 235.4 255.0 280.6 

2.5 Present study 
146.603  
(-0.070)* 

169.081  
(-0.107)* 

212.895  
(-0.803)* 

286.695  
(-3.988)* 

396.03  
(-0.643)* 

420.9  
(-0.622)* 
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[17] 146.5 168.9 211.2 275.7 393.5 418.3 
* Percentage difference comparatively to [17] 
**Percentage difference comparatively to [15] 
*** Percentage difference comparatively to [18] 

 

Table 5: Frequency parameters for CCCC rectangular isotropic plates of different side ratios compared with 

existing results 
Side 
Ratio 

 
𝝀 for the modes of  vibration 

1 2 3 4 5 6 

1 

Present Study 
36.0197  
(-0.082)* 

(-0.093)** 

73.7727  
(-0.508)* 

(-0.512)** 

73.7727  
(-0.508)* 

(-0.512)** 

108.835  
(-0.587)* 

(-0.564)** 

135.217  
(-2.748)* 

(-2.755)** 

135.816  
(-2.735)* 

(-2.724)** 

[19] 35.99 73.40 73.40 108.2 131.6 132.2 

[6] 35.986 73.397 73.397 108.225 131.592 132.215 

1.5 

Present Study 

60.8214  

(-0.101)* 

(-0.081)** 

94.1747  

(-0.357)* 

(-0.335)** 

149.705  

(-0.608)* 

(-0.595)** 

152.992  

(-2.199)* 

(-2.172)** 

180.699  

(-0.612)* 

(-0.578)** 

234.829  

(-3.540)* 

(-3.485)** 

[19] 60.76 93.84 148.8 149.7 179.6 226.8 

[20] 60.772 93.860 148.82 149.74 179.66 226.92 

2 

Present Study 

98.4116  

(-0.103)* 

(-0.096)** 

127.655  

(-0.279)* 

(-0.271)** 

182.066  

(-1.656)* 

(-1.560)** 

257.617  

(-1.704)* 

(-1.269)** 

261.645  

(-2.245)* 

(-2.197)** 

286.299  

(-0.703)* 

 

[19] 98.31 127.3 179.1 253.3 255.9 284.3 

[13] 98.317 127.31 179.27 254.39 256.02 - 

2.5 

Present Study 
147.927  
(-0.086)* 

(-0.086)** 

174.203  
(-0.232)* 

(-0.203)** 

224.085  
(-1.213)* 

(-1.149)** 

300.293  
(-2.946) * 

(-2.879)** 

396.907  
(-0.661)* 

(-0.643)** 

424.278 

[19] 147.8 173.8 221.4 291.7 394.3 - 

[15] 147.80 173·85 221.54 291.89 394.37 - 
* Percentage difference comparatively to [19] 
**Percentage difference comparatively to [6], [13], [15] or [20] 

 

3.2  Comparison with Existing Exact Solutions 

Free vibration exact solutions for thin rectangular 

plates exist for SSSS and SSSC boundary conditions. 

So, they can be used as benchmarks for verifying the 

real accuracy of the approach used in the present work.  

(i) SSSS plates (Table 1): The first six frequency 

parameters obtained using the constructed 

polynomial comparison functions were 19.7404, 

49.4283, 49.4283, 79.0644, 100.21 and 100.21 

respectively for a simply supported square plate 

(aspect ratio = 1). When compared to the exact 

Navier’s solutions, they showed a very high 

accuracy as the percentage differences ranged 

from - 0.007% (for the fundamental mode) to - 

1.534% (for the sixth mode). Similar trends were 

observed for the other aspect ratios considered. 

For all the plate’s side ratios considered, the 

percentage differences remained less than 1% for 

the first three modes comparatively to exact 

solutions. The computed results were also in 

accordance with other approximate solutions from 

other references [11], [12], [13]. 

(ii) SSSC plates (Table 2): The first six frequency 

parameters computed for an SSSC square plate 

were 23.6517, 51.7697, 58.8202, 86.3402, 

101.811 and 115.68 respectively, exhibiting 

percentage differences varying from - 0.024% for 

the fundamental frequency parameter to - 2.165% 

for the sixth frequency parameter, when compared 

to exact solutions by Wang C. Y.  and Wang C. 

M. [14]. Similarly, the computed frequency 

parameters for the plate’s aspect ratio of 2 were in 

good agreement with the corresponding exact 

solutions from the same authors. Similar 

consistent results were also observed throughout 

the plate side ratios considered comparatively to 

approximate numerical values of frequency 

parameters within the six first modes computed by 

other researchers [6], [13], [15], [16]. 

 

3.3  SSCC, SCCC and CCCC Rectangular Plates 

There exist no exact solutions for the dynamic study 

of thin rectangular under the SSCC, SCCC and CCCC 

boundary conditions. However considerable 

approximate solutions are available in the literature 

for assessing the results of the present work. 

(i) SSCC thin plates (Table 3): When the derived 

piecewise polynomial comparison functions were 

used, the first six frequency parameters obtained 

for an SSCC square plate were 27.065, 60.7292, 

60.9737, 93.1432, 117.032 and 117.176. They 

exhibited a very good accuracy comparatively to 

the results obtained by Chakraverty [13] and 

Monterrubio and Ilanko [6]: the percentage 

differences were confined between - 0.037% and 

- 2.156%. For the other aspect ratios studied, the 

results remained consistent with those available in 

the literature [13], [15], [16]. 

(ii) SCCC thin plates (Table 4): the frequency 

parameters obtained for an SCCC square thin 
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plate using the present polynomial comparison 

functions were 31.8479, 63.5474, 71.4298, 

101.256, 118.871 and 133.94 respectively, 

showing percentage differences between - 0.059% 

and - 2.763% comparatively to existing solutions 

[15], [17], [18]. Table 4 shows a good 

concordance between the results computed herein 

and those obtained by Gorman [17] throughout 

the six modes retained and the four aspect ratios 

considered for SCCC thin rectangular plates. 

(iii) CCCC thin plates (Table 5): When the 

polynomial shape functions were used, the 

obtained six frequency parameters for a clamped 

square thin plate were 36.0197, 73.7727, 73.7727, 

108.835, 135.217 and 135.816 respectively, 

which were found to be in concordance with those 

given by Li [19], and Monterrubio and Ilanko [6]: 

the percentage differences ranged from - 0.082% 

to - 2.755%. Similarly, it was observed a good 

agreement between the present results and 

available solutions for 1.5, 2 and 2.5 plate side 

ratios as the percentage differences obtained were 

as low as - 0.081% and did not go beyond - 3.54% 

across the six modes considered for each of the 

cases [13], [15], [19], [20].  

 

Finally, the following observations which cut across 

the five sets of rectangular plates boundary conditions 

considered in this work could be made: 

 There is a decreasing accuracy in the calculated 

frequency parameters as they move from the lower 

to the higher modes. 

 For each of the modes considered, there is a 

consistent increment in the computed frequency 

parameters with the number of fixed edges in the 

set of plate boundary conditions. As an illustration, 

the fundamental frequency parameter varied from 

19.7273 for a simply supported square plate to 

36.0197 for a clamped square plate. 

 The frequency parameter increased with the 

rectangular plate’s side ratio for a given 

combinations of edge supports. 

 

4.0  CONCLUSION 

In this study, piecewise polynomial trial functions to 

be used for the dynamic analysis of thin rectangular 

plates were constructed from imposed plate deflection 

patterns adopting the Ritz procedure. In fact, they can 

be derived for all the classical boundary conditions, 

and have a degree low enough to avoid numerical 

instability during the implementation of the Ritz 

procedure.  The method was applied considering 2, 3 

and 4 strips in the two perpendicular directions of the 

plate and the six first modes were retained, tabulated 

and compared to existing results for SSSS, SSSC, 

SSCC, SCCC and CCCC boundary conditions. Four 

plate aspect ratios were taken into account namely 1, 

1.5, 2 and 2.5. 

  

To assess the reliability of the trial functions so 

constructed, the results were first compared to existing 

exact solutions for SSSS and SSSC plate boundary 

conditions and they were found to be accurate. The 

results for the other sets of boundary conditions 

(SSCC, SCCC and CCCC) were also consistent with 

those of other researchers.  

 

For each of the modes considered, it was observed a 

consistent increment in the computed frequency 

parameters as the number of clamped edges increased 

in the set of plate boundary conditions. The practical 

consequence is that thin rectangular plates with 

clamped edges may witness resonance when subjected 

to high forcing frequencies, while they can resist the 

low and medium ones. 

 

REFERENCES 

[1] Verma, Y., and Datta, N. “Comprehensive 

Study of Free Vibration of Rectangular 

Mindlin’s Plates with Rotationally Constrained 

Edges Using Dynamic Timoshenko Trial 

Functions”, Engng. Trans., vol. 66, no. 2, 2007, 

pp. 129-160, 2018. 

[2]  Wafa, A. S. and Riyam A. D. “Vibration 

Response of Free and Force Analysis of a 

Rectangular Plate”, Journal of University of 

Babylon for Engineering Sciences, vol. 26, no. 

8, pp. 298-308, 2018. 

[3] Wu, T., Chen, Z. B. and Qu, J. J. “A Modified 

Fourier-Ritz Method for Free Vibration of 

Rectangular Plates with Elastic Constrains”, 

Journal of Theoretical and Applied Mechanics, 

vol. 60, no. 1, pp. 77-89, 2022. 

[4] Ramu, I. and Mohanty, S. C. “Vibration of 

Rectangular Plates by Reduction of the Plate 

Partial Differential Equation into Simultaneous 

Ordinary Differential Equations”, Procedia 

Engineering, vol. 38, pp. 2758-2766, 2012. 

[5] Brown, R. E. and Stone, M. A. “On the Use of 

Polynomial Series with Rayleigh-Ritz 

Method”, Composite Structures, vol. 39, no. 3-

4, pp. 191-196, 1997. 

[6] Monterrubio, L. E. and Ilanko, S. “Sets of 

admissible functions for the Rayleigh-Ritz 

method”, in Proceeding of the Eleventh 

International Conference on Computational 

Structures Technology, 4-7 September, B. H. V. 

Topping, Ed. Dubrovnik: Civil-Comp. Press, 

2012, pp. 1511-1526. 

https://doi.org/10.4314/njt.v43i4.5
http://creativecommons.org/licenses/by-nc-nd/4.0/


FREE VIBRATION ANALYSIS OF THIN RECTANGULAR PLATES USING PIECE… 654 
 

 © 2024 by the author(s). Licensee NIJOTECH.                                                          Vol. 43, No. 4, December 2024 
This article is open access under the CC BY-NC-ND license.                                                                  https://doi.org/10.4314/njt.v43i4.5  
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

[7] Adah E. I., Ibearugbulem, O. M., Onwuka, D. 

O. and Okoroafor, S. U. “Determination of 

Resonating Frequency of Thin Rectangular Flat 

Plates”, International Journal of Civil and 

Structural Engineering Research, vol. 7, no. 1, 

pp. 16-22, 2019. 

[8] Asomugha, A. U., Onyeka, J. O. and Opara, H. 

E. “Free Vibration Analysis of CSCS & CSSS 

Rectangular Plate by Split-deflection Method”, 

International Journal of Engineering & 

Scientific Research, vol. 7, no. 5, pp. 21-42, 

2019. 

[9]  Aginam C. H., Adamou A. and Nwaiwu C. M. 

O. “Free Vibration Analysis of all round 

Clamped Thin Isotropic Rectangular Plate by 

Ritz Direct Variational Method”, Nigerian 

Journal of Technology (NIJOTECH), vol. 40, 

no. 6, pp.1030-1038, 2021. 

[10] Jaworski, J. W. and Dowell, E. H. “Free 

Vibration of a Cantilevered Beam with 

Multiple Steps: Comparison of Several 

Theoretical Methods with Experiment”, 

Journal of Sound and Vibration, vol. 312, 713-

725, 2008. 

[11] Dal, H., and Morgul O. K. “Vibration of 

Elastically Restrained Rectangular Plates”, 

Scientific Research and Essays, vol. 6, no. 34, 

pp. 6911-6816, 2011. 

[12] Abdul-Razzak, A. A. and Haido, J. H. “Free 

Vibration Analysis of Rectangular Plates Using 

Higher Order Finite Layer Method”, Al-

Rafidain Engineering, vol. 15, no. 3, 19-32, 

2007 

[13] Chakraverty, S. Vibration of Plates, CRC Press, 

Taylor & Francis Group, New York, 2009. 

[14] Wang C. Y. and Wang, C. M. Structural 

Vibration: Exact Solutions for Strings, 

Membranes, Beams and Plates, CRC Press, 

Taylor & Francis Group, New York, 2014. 

[15] Leissa A. W. “The Free Vibration of 

Rectangular Plates”, Journal of Sound and 

Vibration, vol. 31, no. 3, pp. 257-293, 1973. 

[16] Yousef S. A. and Osama A. “Free and forced 

vibration of rectangular plates using the finite 

difference method”, in Green Building, 

Materials and Civil Engineering, Jimmy C.M. 

Kao, Wen-Pei Sung and Ran Chen, Eds. 

London: CRC Press, Taylor & Francis Group, 

2015, pp. 627-633. 

[17] Gorman, D. J. Free Vibration Analysis of 

Rectangular Plates, Elsevier, Amsterdam, 

1982 

[18]  Eftekhari, S. A. and Jafari, A. A. “A Mixed 

Method for Free and Forced Vibration of 

Rectangular Plates”, Applied Mathematical 

Modelling, vol. 36, pp. 2814-2831, 2012. 

[19] Li, W. L. “Vibration Analysis of Rectangular 

Plates with General Elastic Boundary 

Supports”, Journal of Sound and Vibration, vol. 

273, no. 3, pp. 619-635, 2004. 

[20] Bhat, R. B. “Natural Frequencies of 

Rectangular Plates Using Characteristic 

Orthogonal Polynomials in Rayleigh-Ritz 

Method”, Journal of Sound and Vibration, vol. 

102, no. 4, pp. 493-499, 1985 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.4314/njt.v43i4.5
http://creativecommons.org/licenses/by-nc-nd/4.0/

