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Abstract

In the present work, piecewise functions have been successfully built in the form
of polynomials to be utilised in the Ritz procedure to carry out the free vibration
analysis of thin rectangular plates. They were consistently constructed by
considering the plate as consisting of equal strips in its two perpendicular
directions, and could be generated for all the combinations of plate’s classical
edge supports. The procedure was performed for different combinations of
simple and/or clamped plate’s boundary supports, taking into account four
aspect ratios (1, 1.5, 2 and 2.5), and the first six frequency parameters were
retained. These frequency parameters were found to be in good concordance
with the available exact and approximate solutions. For example, for a square
plate with simple supports, the percentage differences, comparatively to the
exact Navier solutions, ranged from - 0.007% (for the fundamental mode) to -
1.534% (for the sixth mode). Similar trends were obtained for the other aspect
ratios and sets of boundary conditions considered. For all the boundary
conditions studied, it was observed an increase in value of the frequency
parameters with that of the plates’ side ratios. In addition, for each of the modes
considered, it was found out that the computed frequency parameters increased
consistently when the number of clamped edges increased in the set of the
plate’s boundary conditions. The practical consequence is that thin rectangular
plates with clamped edges may witness resonance when the forcing frequencies
are high, while they can resist the low and medium ones.

1.0 INTRODUCTION

Thin plates are common structures found in different
fields of engineering due to the fact that they are
economical beside their efficient load-carrying
capacity [1], [2], [3]. They are often subjected to
dynamic loads during their life span. Thus, their
design requires the knowledge of their behaviour
under dynamic excitation in order to avoid their failure
which may occur under resonance. Hence the dynamic
analysis of rectangular becomes interestingly
important.

Besides the exact methods which are applicable to
only few cases of rectangular plates [4], researchers
and practitioners resort to approximates solutions such
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as the Ritz method. Ritz method strongly relies on the
selection of the right trial functions making up the
shape function used in the procedure. In most cases
the trial functions are chosen intuitively by the analyst,
instead of being generated systematically. However,
researchers [5], [6], agree that the chosen functions
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must satisfy at least the geometric boundary
conditions (such functions are said to be admissible)
and must be independent linearly for accurate and
convergent eigenvalues to be obtained. When they are
selected such that, they satisfy all the boundary
conditions (in which case they are called comparison
functions), the accuracy of the solutions might be
significantly improved. Polynomial trial functions are
the most frequently used, even though it is not unusual
to encounter transcendental shape functions [5]. They
are known to allow straightforward algebraic
manipulation, and to deliver accurate practical results
in Ritz procedure.

The Ritz procedure was successfully utilised by Adah,
et al [7] to compute the resonating frequency of a
vibrating plate of various aspect ratios and boundary
conditions. The polynomial shape functions they used
contained only one term in the form of a product of
two four-degree polynomials in the two perpendicular
directions of the plate. Thus, the computer program
they developed gave only the fundamental natural
frequencies. Similar shape functions were used by
Asomugha, et al [8] in Ritz procedure to compute the
fundamental resonating frequency parameters for a
rectangular plate that has two opposite simple edge
supports whereas the other two are fixed (CSCS), and
one presenting three simply supported edges and one
edge clamped (CSSS), under various aspect ratios.

The present study applies the Ritz method to the free
vibration analysis of thin rectangular plates presenting
different side ratios and combining simple and/or
fixed boundaries. Piecewise polynomial trial
functions are built by considering real deformation
patterns of the plate structures, for the purpose of
determining frequency parameters of various thin
rectangular plates using the Ritz procedure.
Mathematica software is used for the mathematical
manipulation involved, hence reducing the inherent
computation errors.

Yy

Figure 1:  Simply supported rectangular plate split
into two equal strips in the directions of x and y
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20 METHODOLOGY

2.1 Derivation of the Piecewise Polynomial Trial
Functions

Consider an all-round simply supported thin
rectangular plate. The plate is split into finite and
equal numbers of strips in its two perpendicular
directions represented by x and y. Simple supports are
introduced at the nodes determined by the axes of the
perpendicular strips. The supports at the edges are also
simple since the plate is considered to be simply
supported (See Figure 1).

The shape function is sought in the form:

W(x,y) = Ty Tt CXi()Y; () 1)
Where, C;; is the nodal displacement of node (i, ),
X;(x) and Y;(y) are elastic unit curves in x and y
directions respectively due to unit deflection induced
at node (i, j).

In order to determine X;(x) and Y;(y), a unit
deflection is induced at node (i, j)[ie: C;; = 1]. Onthe
assumption that the strips (in x and y directions)
whose axes intersect at the node (i, j) behave as beams,
the bending moments M; and M; in the directions of x
and y respectively due to the unit deflection at the
node (i, j) are first plotted using, for example, the
displacement method (see Figure 2); then their
expressions are derived from the plots. The
expressions of M; and M; will be piecewise linear
polynomials of x and y respectively. Furthermore, it is
well documented from strength of materials that:

d?x;
M(x) = - XD ©)
and

azy;(y)
M;(x) = == 2= El} 3)

Where, E stands for the Young modulus of the
material of the plate, and I; and I are the moments of
inertia of the strips in x and y directions respectively.

Double integration of the Equation (2) and Equation
(3) yields the expressions of X;(x) and X;(y) upon
application of the corresponding boundary conditions.

a/2 a/2
-~ T

12El/a2
Figure2:  Strip bending moment diagram in x
direction induced by a unit deflection applied at node
(1, 1) when the simply supported plate is divided into
two equal strips
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As an illustration, if we divide the plate into two strips
in X and y directions, only one intermediary support
will be introduced while the other supports will be on
the plate edges (see Figure 1). Thus, we will have only
one node (1, 1). The expressions of associated bending
moments will be (see Figure 2):

2y if 0sx<2 @
My(x) =
! —24}53‘11x+2[“§[1 iff<x<a

a a 2

and
My () e rosy=s ®)
1) =9 21k 24El, . ,b

——Q v+t if;sysb

Where, a and b are the dimensions of the plate
corresponding to the directions of x and vy
respectively.

Making use of Equation (4) and Equation (5) in
Equation (2) and Equation (3) respectively, carrying
out successive integration and considering the
boundary conditions, the expressions X; (x) and Y; ()
are obtained as follows:

_E x3+3 ~x if0<x<a/2
Xl(x)_ 3 12 2 9 3 (6)
;x - =X +;x—1 ifa/2<x<a
and
V() = b3y y if0<y<b/2 @
! 2y - 12y2+ 2y—1 ifbj2<y<b

For convenience, the expressions X;(x) and Y;(y) are
made dimensionless by letting ¢ = x/aandn = y/b :

p —483 + 3¢ ifo<§<s ®
16 = 463 - 1262 +9¢ -1 ifi<E<1

and

—4n3 + 37 ifo<n<?
Yi(n) = 3 2 o1 ’ (9)
4n° —-12n“+9n -1 lf; n<1

It is important to note that the expressions X; (x) and
Y;(y) as expressed in Equation (8) and Equation (9)
should then be substituted into Equation (1) for
implementation of the Ritz method. In that case the
Ritz method reduces to that of Raleigh whereby the
shape function is made of only one term.

Using a similar procedure, the following trial
functions will be derived for the cases below:
+«¢+ Consideration of three strips in the directions of x
and y respectively:
In the direction of x
(-8 +2¢ ifo<¢s

X1(E)=!27€3 21662+ E - <<

L 3
162 156
__53

52——§+— Lfgsfs 1
Q
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N
wleI»—\

(10)

((Ze3-2¢ if0<§<s
Xp(§) = {278 + 2282~ 28+
| Se-Fe+6-3 ifi<¢s<1

In the direction of y

-+ ifo<n<;
216 96 8 o1 2
i) ={27n° ——n*+on—; if;<n<3; (12)
—5?4173+162172 %n%—? if%SnSl
4,38 1
/| LfOSnS3
189 69 7 1 2
Y, ={-27* + —n*—_n+; if;<n<; (13)
813 23,2 219, 57 ;¢2
5 5 5 s Uz=ns=1

+» Consideration of four strips in the directions of x
and y respectively:
In the direction of x

e if 0<§<y
ey Re-2 yfo<is 14)
X)) =
- 2283 47287 - 345§+% if s<e<?
144 141 .. 3
R R s R F R
13253 1725 if 0<§<y
512 528 144 11 o1 1
@ ={me . 7t TaEEE s
2 ) 512 624 117 1 3
e+ 22 - if osEss
234 ﬂfZ—ﬂf = ifisés<i
-2+l if 0<é<
240 216 57 9 o1 1
R S e e if ;<§<3
X3(§) = 464 ! " 167 ‘: ; (16)
53+12052 —f VS ifESfSZ
?53 e -2 i<t
In the direction of y
-2+ 2y if 0<n<:
46403 5520 183 28 el 1
Yl(n)z 7 7 + 7 14 Lf4SnS2 (17)
240 345 153 ., 1 3
7] + 72n?2 ——n+t5; ifssn<;
48 144 45 .. 3
73—724'7 - lfzST)Sl
192 12 . 1
7773—717 if 0sns<;
i ={o T T TS g
201 = 512 624 117 o1 3
77]3—1441’] +—T]—T leSnSZ
—ZpP 2 - 42 if 2<n<1
-2 42 if 0<n<;

240 3 216 5 , 57 9 o1 1
—n-—ntton—4 if ;sn<3
rm=1" ’ 1 ; (19
— 2203 + 12092 ——n+£ if s<n<>

272 3 _816.5 , 771 227 T
7 7 + 7 7 lf4s77£1

+«+ Consideration of five strips in the directions of x
and y respectively:
In the direction of x
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15875 .3 , 1680 . 1
- — ifo<é<-
209 & 209 ¢ fo=és< 5
27125 ;3 25800 .5 , 360 344 .1 2
_ 22900 De 2 ifl<E<t
2095 2095-’-11f 209 fs—f—s
750 23850 13020 2304 .. 2 3
Xy) = s B Bu o ei_e o3 (20)
19 11 &+ 209 § 209 § 209 f 5 § 5 0
3750 ;3 450 ;5 , 6420 144 .3 4
g3 e B flgEgt
209 § 11 ¢ 209 § 19 f 5 § 5
750 ;3 |, 2250 ;5 2220 720 .. 4
R SR L L P F
11253095 1_50209 § 209 §+ 209 f 5 § L
3 .
11250 ¢35 _ 250 ifo<g<?
209 2095 f0=¢= 5
30125 3 , 24825 ;5 285 331 o1 2
R T if-<&<?
209 &+ 209 § 11 §+209 f 5 § 5
1625 48375 23865 3573 o2 3
Xy() = {18 1S mmves, 3 ea_ e 3 (0])
2() 11 § 209 &t 209 § 209 f 5 § 5
15000 ;3 , 1800 ;. 25680 576 .3 4
- e & ricest
209 § 11 § 209 § 19 f 5 § 5
3000 .3 9000 ,, , 8880 2880 L4
T3 T hg2 P 2 ifr<é<t
2053050 201325 * 20 § 209 f 5 § .
3 .
_ 3003 4 120 ifo<é<?
200 T 200% fos¢=g
1500 ;.3 10800 ;5 , 120 144 o1 2
e T Ly if-<&<?
209§ 209 &t 11 § 209 f 5 § 5
1625 ;5 , 44250 .5 19740 2792 o2 3
e g, e e piop o (22)
X3(9) 11 &t 209 § 209 § 209 f 5 § 5 22
30125 ;3 3450 ;5 , 46140 944 .3 4
—&7 —— —& —— if -<é<-
209Sz 115 2095 19 fs_f_s
11250 ;3 , 33750 ;5 33300 10800 ., 4
_ 120 33750 g2 33300, | 10800 o<
Szo9§+zo9f 2095+ 209 lfs—f—
750 13 30 ) 1
273 2 ifo<é<-
2095 2095 f0=¢s< 5
3750 ;3 , 2700 ;5 30 36 1 2
2 g2 22 =2 if-<é&<=
209€+209§ 11E+209 fs_f_s
750 .3 18900 ., , 8070 1116 o2 3
= [ 30g3 _ 18900 8070, _ 1116 iff<e<? (23)
X4(9) 11 ¢ 209 & 209 ¢ 209 f 5= §= 5 23
27125 ;3 | 2925 . 36615 711 ;3 4
- —_— _— —_— if-<é&E<-
2095-'_11E zo9f+19 fs—f—s
15875 ;3 47625 5 | 45945 14195 o4
— 02 - if -<é¢<1
209 209 & 209 ¢ 209 f 5= §=
In the direction of y
15875 3 , 1680 . 1
— 20°0 <n<-=
209 200 1 lf0_17_5
27125 25800 360 344 o1 2
e R e if =<n<-
209 209 11 209 5 5
750 23850 13020 2304 L. 2 3
Vi) = {0 4 B0 100, Bor o2 5 (o)
1(n) PER LT 200 17 200 f s=T=3
3750 450 6420 144 .3 4
gt —— if —-<n<-
209 11 209 19 5 5
750 3 | 2250 , 2220 720 L4
- —_—nt-= — if-<n<1
112530977 D 200 1 7 209 f s=1= L
3 .
_ <n<-z
20977 20977 lf0_r]_5
30125 24825 285 331 1 2
— ==+ =2 -+ = if-<n<=
209 209 11 209 5 5
1625 48375 23865 3573 o2 3
Yo (m) = {8% 3 _ 2 BBy lap< (25)
2(n) 1 209 200 17 209 f s=T=53 S
15000 3 | 1800 , 25680 576 .. 3 4
— 2 n2 22 jfl<p<=
209 11 200 17 1o f s=N=35
3000 9000 8880 2880 L4
—np-—ntt—n-=—= if -<n<1
209 209 209 209 5 .
3 )
- — ifos<n<-
200 1 T 2007 f0sn< 5
1500 10800 120 144 L1 2
el L B if t<p<?
209 209 11 209 5 5
1625 5 | 44250 5, 19740 2792 2 3 ( )
={-=2= 22— == f<p<
Y3(r]) 11 n 209 n 209 n 209 lf 5 = 5 26
30125 3450 46140 944 3 4
D23 - B8z 4 200, 22 if <p<s
209 11 209 19 5 5
11250 3 | 33750 , 33300 10800 ., 4
_ - if-<n<1
15022 ngo 200 1 200 17 209 f s=1 o
3 )
—nd-= ifos<n<-
200 " 2097 fosn< 5
3750 2700 30 36 o1 2
— i -+ if -<n<-=
209 209 11 209 5 5
750 3 18900 5 , 8070 1116 2 3 ( )
=2y == g = t<p<:
Y, (n) R 209 209 209 if s=1=3 27
27125 2925 36615 711 ;3 4
- 4 P82 +22 0 riap<t
209 11 209 19 5 5
15875 47625 45945 14195 ., 4
n— z - if -<n<1
209 209 209 209 5

Similar trial functions were derived for the following

sets of plate’s classical boundary conditions:

v" Simple supports at three sides and one edge fixed
(SSSC)

)
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v" Simple supports at two adjacent sides and the other
two edges fixed (SSCC)

v A simple support at one side and the other three
edges fixed (SCCCQC)

v' all-round fixed (CCCC)

2.2 Ritz Procedure
Adopting E=§ and n ==, the maximum strain

energy of an isotropic thin rectangular plate is given
as [9]:

4
b

1Db (1 (1
Umax = 5 g3 Jo Jo [Wes + @' Wity + 2ua®Wee Wy, + 2(1 —

Wa?W |dédn (28)
Where, a and b are the dimension of the plate, W its
transverse displacement function, D its flexural
rigidity, p the Poisson’s ratio of its material, a its
aspect ratio, the subscripts & and n stand for first
differentiation with respect to & and m respectively,
and the subscripts & and mn stand for second
differentiation with respect to & and ) respectively.

The maximum kinetic energy is given by:

Tax = 3w2phab [ ;' W2(,m)dédn (29)
Where, p refers to the mass density of the material of
the plate.

Considering the plate to be under free vibration, its
energy functional will obtained as:
= Umax - Tmax (30)

We assume the shape function to be in the following
form:

W& = Z S X (Y (n) (31)
Where, Cj are undetermined  coefficients
corresponding to the nodal displacements in Equation
(1) and, X; (&) and Y;(n) are the piecewise polynomial
functions as derived in Section 2.1, and n and m are
the numbers of trial functions (or of strips) considered
the directions of x and y respectively. Substituting for
the expression of X; (&) and Y;(») into Equation (28)
and Equation (29), and taking into account Equation
(30), we will obtain a system of algebraic equations in
the undetermined coefficients Cj;, after minimisation
of the energy functional IT:

M _o (32)

aci;

Adopting matrix formats, the plate’s energy functional
itself can be written as [9]:
M=222C[A; + a4, + 2ua®A; +2(1 — a4, — 22B1cT  (33)
Where,
4= fol fol MfoMs‘fdfdn; A = fol fol My, My, dédn; Ay =
Sy Jy b Meedédn; Ay = [ [, ME,Me,dédn; B = [ [ MTMdédn
and 2z = 22’

D
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Carrying out the minimisation suggested by Equation
(32), we have:

HCT =0 (34)
Where, H = [4, + a*4, + 2ua?A; + 2(1 — W)a?A, — 12B]

A1, Az, Az, As and B are computed as:
Ay = [ fy MEMggdgdn =
WigeWige WiggWage WigeWpeg
[W2§€W1§€ WaggWase W2§€Wpf€]

f;f;‘: L :‘ (35)

[M;pffwlff WpeeWage Wpfprffj
Ay = fo fo M‘;‘anndSzdn =
WimmWinn  WimWany Wlnnwpnn]
WommWinn  WannWann WannWpmm
1,1
L1 | | (36)
l‘iqunwlnn WonmWamm WPUTIWWITIJ
_ T _
43 = J‘0 fo My, Meed§dn =
[WimWigs WipmWage WimWpge]
WomWige WammWagg - WanpWpeg
101 . . .
LIl . . . (37)
»W¥n171W1§€ WpmWags - WpnpWpes
_ T _
Ay = [, Jy Mgy Meydédn =
[WignWien WiggWagn - WienWpen
WagnWien WagnWagn - WagnWpgy
1,1 . . .
Ll . . . (38)
WpenWien  WpenWaen WpenWpen |
WiW; WiWy .. Wi,
WoW; WoW, .. wzwp]
o lp ] Ce
B= J‘0 fo M*Mdgdn = J‘0 fo . . . (39)
WoWy WoW, .. W,

An eigenvalue problem is obtained upon application
of Equation (34). The condition of non-trivial solution

requires that the determinant of H should be null. This
leads to a polynomial equation whose solution gives A
called frequency parameter.

3.0 RESULTS AND DISCUSSION

3.1 The Trial Functions

Polynomial piecewise comparison functions were
constructed from consistent deflection patterns
conveniently imposed to the plate structures for
boundary conditions comprising simple and/or fixed
supports. In fact, they can be constructed for any
combination of classical plate’s edge conditions. The
derived trial functions are all three-degree
polynomials. The wuse of these low-degree
polynomials will help to avoid the numerical
instability and wiggling associated with the use of
high degree polynomials during the implementation of
the Ritz procedure [6], [10].

The Ritz method was implemented using
Mathematica software for SSSS, SSSC, SSCC, SCCC
and CCCC thin rectangular plates considering
successively two, three and four equal strips in the
directions of x and y, and varying the plates’ side
ratios (1, 1.5, 2 and 2.5). The Poisson’s ratio p of the
plates’ material was taken equal to 0.3. The numerical
results for the six first frequency parameters A were
retained and compared to existing results as shown in
Tables 1, 2, 3, 4 and 5. The percentage differences
presented in the tables are computed using the
formula:

value fromreference—value from present study

Percentage dif ference =
value fromreference

Table 1: Frequency parameters for SSSS rectangular isotropic plates of different side ratios compared with

existing results

Side ratio A for the modes of vibration
1 2 3 4 5 6
19.7404 49.4283 49.4283 79.0644 100.21 100.21
Present study (-0.066)" (-0.211)" (-0.211)" (-0.228)" (-1.671)" (-1.671)
1 (-0.007)" (-0.163)" (-0.163)" (-0.136)" (-1.539)™ (-1.53)™
[11] 19.7273 49.3242 49.3242 78.8848 98.5628 98.5628
Exact value (Navier’s solution) 19.739 49.348 49.348 78.957 98.696 98.696
32.0784 61.7521 98.896 112.432 128.501 178.824
Present study (-0.749) (-0.655)" (-1.328)" (-1.721) (-1.097) -
1.5 (-0.007)" (-0.109)" (-0.203)" (-1.260)" (-0.153)" (-0.659)"™
[12] 31.8400 61.3500 97.60 110.5300 127.1070 -
Exact value (Navier’s solution) 32.0762 61.685 98.696 111.033 128.305 177.653
49.352 79.013 129.58 168.153 197.74 208.953
Present study (-0.008)" (-0.071)" 0.077)" (0.159)" (0.448)" -
2 (-0.008)" (-0.071)" (-0.994)"™ (-0.221)" (-0.176)" (-5.857)"
[13] 49.348 78.957 129.68 168.42 198.63 -
Exact value (Navier’s solution) 49.348 78.9568 128.305 167.783 197.392 197.392
71.5611 101.212 151.67 230.773 257.198 286.775
Present study (-0.226)" (-0.289)" (-1,081) (-5.520)" (-0.692)" -
2.5 (-0.009)" (-0.048)™ (-0.770)" (-5.088)" (-0.229)" (-0.194)™
[12] 71.4000 100.92 150.048 218.70 255.4300 -
Exact value (Navier’s solution) 71.5546 101.163 150.511 219.599 256.61 286.219

* Percentage difference comparatively to [11], [12] or [13]

Q
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“Percentage difference comparatively to Navier’s solution

Table 2: Frequency parameters for SSSC rectangular isotropic plates of different side ratios compared with

existing results

Side ratio A for the modes of vibration
1 2 3 4 5 6
23.6517 51.7697 58.8202 86.3402 101.811 115.68
Present study (-0.024)" (-0.185)" (-0.297)" (-0.244)" (-1.540)" (-2.165)"
1 (-0.024)" (-0.183)" (-0.295)" (-0.237)" (-1.535)" (-2.161)"
Exact value [14] 23.646 51.674 58.646 86.130 100.267 113.229
[6] 23.646 51.675 58.647 86.136 100.272 113.233
42.5372 69.0793 117.654 121.42 148.029 195.132
Present study (-0.022)" (-0.110)" (-1.193)" (-0.351)" (-0.267) (-5.992)"
1.5 (0.374)" (-1.620)" (-1.765)" (-2.269)" - -
[15] 42.5278 69.0031 116.2671 120.9956 147.6353 184.1006
[16] 42.697 67.978 115.613 118.726 - -
69.3436 94.6501 141.424 209.172 217.97 235.303
Present study (-0.021)" (-0.073)" (-0.871)" (-1.197)" (-4.589) (-0.304)"
2 (-0.024)™ (-0.060)” (-0.031)™ - (-4.572)" -
Exact value [14] 69.329 94.581 140.203 206.698 208.407 234.589
[13] 69.327 94.593 141.38 - 208.44 -
Present study 103.949‘ 128.4 . 173.45* 247.903* 322.033* 347.898*
2.5 (-0.025) (-0.048) (-0.620) (-4.490) (-0.387) (-0.334)
[15] 103.9227 128.3382 172.3804 237.2502 320.7921 346.7382

* Percentage difference comparatively to [14] or [15]
“Percentage difference comparatively to [6], [13] or [16]

Table 3: Frequency parameters for SSCC rectangular isotropic plates of different side ratios compared with

existing results

Side ratio A for the modes of vibration
1 2 3 4 5 6
27.065 60.7292 60.9737 93.1432 117.032 117.176
Present study (-0.037)" (-0.296)" (-0.700)" (-0.247)" (-1.732)" -
1 (-0.041)™ (-0.313)" (-0.307)" (-0.327)" (-2.156)" (-2.15D)™
[13] 27.055 60.550 60.550 92.914 115.04 -
[6] 27.054 60.540 60.787 92.840 114.562 114.709
44,9106 76.7128 122.787 131.651 153.095 205.711
Present study (-0.039)" (-0.207)" (-0.374)" (-1.732)" (-0.338)" (-1.505)"
1.5 (-2.095)" (-0.612)" (0.307)" (-4.404)™ - -
[15] 44.893 76.554 122.33 129.41 152.58 202.66
[16] 43.989 76.246 123.167 126.098 - -
Present study 71.113* 100'96{ 153.934* 210.23* 235.88* 239.358
2 (-0.049) (-0.162) (-1.126) (-0.368) (-0.911) -
[13] 71.078 100.80 152.22 209.46 233.75 -
Present study 105.356* 133.68 l‘ 184.525* 264.685* 322.921* 351 .332*
2.5 (-0.044) (-0.121) (-0.982) (-4.544) (-0.411) (-1.989)
[15] 105.31 133.52 182.73 253.18 321.60 344.48

* Percentage difference comparatively to [13] or [15]
“Percentage difference comparatively to [6], or [16]

Table 4: Frequency parameters for SCCC rectangular isotropic plates of different side ratios compared with

existing results

A for the modes of vibration

Side ratio 1 B 3 n 5 6
31.8479 63.5474 71.4298 101.256 118.871 133.94
-0.088)" -0.359)" -0.492)° -0.452)" 2.158)° 2.715)"
Present study ((-0.059))*‘ ((-0.3 16))‘* ((-0.486))‘* ((-0.422))*‘ ((-2. 123))** ((-2.738))”
| (-0.069)™"* (-0.342)"" (-0.498)""" (-0.460)""* (2.161)" (:2.753)™
[17] 31.82 6332 71.08 100.8 116.36 130.4
[15] 31.829 63.347 71.084 100.83 116.40 130.37
[18] 31.826 63.331 71.076 100.792 116,357 130.351
Present study 582235 85.9016 137.927 148.259 175.36_ 219.445 (-
1.5 (-0.058) (-0.224) (-1.641) (-0.583) (-0.550) 5.859)
[17] 58.19 85.71 135.7 1474 174.4 207.3
Present study 96.6412 121.192 168.961 247.058 256.549 282213
2 (-0.032) (-0.159) (-1.174) (-4.952) (-0.607) (-0.575)
[17] 96.61 121.0 167.0 235.4 255.0 280.6
)5 Present study 146,603 169.081 212.895 286.695 396.03 4209
(-0.070) (-0.107) (-0.803) (-3.988) (-0.643) (-0.622)
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| [17] | 146.5 | 168.9 | 211.2 | 2757 | 393.5 | 4183

" Percentage difference comparatively to [17]
“Percentage difference comparatively to [15]
™ Percentage difference comparatively to [18]

Table 5: Frequency parameters for CCCC rectangular isotropic plates of different side ratios compared with
existing results

Side A for the modes of vibration
Ratio 1 2 3 4 5 6
36.0197 73.7727 73.7727 108.835 135.217 135.816
Present Study (-0.082)" (-0.508)" (-0.508)" (-0.587)" (-2.748)" (-2.735)"
1 (-0.093)" (-0.512)" (-0.512)" (-0.564)" (-2.755)" (-2.724)"
[19] 35.99 73.40 73.40 108.2 131.6 132.2
[6] 35.986 73.397 73.397 108.225 131.592 132.215
60.8214 94.1747 149.705 152.992 180.699 234.829
Present Study (-0.101)" (-0.357)" (-0.608)" (-2.199)" (-0.612)" (-3.540)"
1.5 (-0.081)" (-0.335)" (-0.595)" (-2.172)" (-0.578)" (-3.485)"
[19] 60.76 93.84 148.8 149.7 179.6 226.8
[20] 60.772 93.860 148.82 149.74 179.66 226.92
98.4116 127.655 182.066 257.617 261.645 286.299
Present Study (-0.103)" (-0.279) (-1.656)" (-1.704)" (-2.245)" (-0.703)"
2 (-0.096)" (-0.271)" (-1.560)" (-1.269)" (-2.197)"
[19] 98.31 127.3 179.1 253.3 255.9 284.3
[13] 98.317 127.31 179.27 254.39 256.02 -
147.927 174.203 224.085 300.293 396.907
Present Study (-0.086)" (-0.232)" (-1.213)" (-2.946) " (-0.661)" 424.278
2.5 (-0.086)" (-0.203)" (-1.149)" (-2.879)" (-0.643)™
[19] 147.8 173.8 221.4 291.7 394.3
[15] 147.80 173-85 221.54 291.89 394.37

" Percentage difference comparatively to [19]
“Percentage difference comparatively to [6], [13], [15] or [20]

3.2 Comparison with Existing Exact Solutions
Free vibration exact solutions for thin rectangular
plates exist for SSSS and SSSC boundary conditions.

So, they can be used as benchmarks for verifying the

real accuracy of the approach used in the present work.

(i) SSSS plates (Table 1): The first six frequency
parameters obtained using the constructed
polynomial comparison functions were 19.7404,
49.4283, 49.4283, 79.0644, 100.21 and 100.21
respectively for a simply supported square plate
(aspect ratio = 1). When compared to the exact
Navier’s solutions, they showed a very high
accuracy as the percentage differences ranged
from - 0.007% (for the fundamental mode) to -
1.534% (for the sixth mode). Similar trends were
observed for the other aspect ratios considered.
For all the plate’s side ratios considered, the
percentage differences remained less than 1% for
the first three modes comparatively to exact
solutions. The computed results were also in
accordance with other approximate solutions from
other references [11], [12], [13].

(if) SSSC plates (Table 2): The first six frequency
parameters computed for an SSSC square plate
were 23.6517, 51.7697, 58.8202, 86.3402,
101.811 and 115.68 respectively, exhibiting
percentage differences varying from - 0.024% for
the fundamental frequency parameter to - 2.165%
for the sixth frequency parameter, when compared
to exact solutions by Wang C. Y. and Wang C.

Q
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M. [14]. Similarly, the computed frequency
parameters for the plate’s aspect ratio of 2 were in
good agreement with the corresponding exact
solutions from the same authors. Similar
consistent results were also observed throughout
the plate side ratios considered comparatively to
approximate numerical values of frequency
parameters within the six first modes computed by
other researchers [6], [13], [15], [16].

3.3 SSCC, SCCC and CCCC Rectangular Plates

There exist no exact solutions for the dynamic study

of thin rectangular under the SSCC, SCCC and CCCC

boundary  conditions.  However  considerable
approximate solutions are available in the literature
for assessing the results of the present work.

(i) SSCC thin plates (Table 3): When the derived
piecewise polynomial comparison functions were
used, the first six frequency parameters obtained
for an SSCC square plate were 27.065, 60.7292,
60.9737, 93.1432, 117.032 and 117.176. They
exhibited a very good accuracy comparatively to
the results obtained by Chakraverty [13] and
Monterrubio and Ilanko [6]: the percentage
differences were confined between - 0.037% and
- 2.156%. For the other aspect ratios studied, the
results remained consistent with those available in
the literature [13], [15], [16].

(i) SCCC thin plates (Table 4): the frequency
parameters obtained for an SCCC square thin
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plate using the present polynomial comparison
functions were 31.8479, 63.5474, 71.4298,
101.256, 118.871 and 133.94 respectively,
showing percentage differences between - 0.059%
and - 2.763% comparatively to existing solutions
[15], [17], [18]. Table 4 shows a good
concordance between the results computed herein
and those obtained by Gorman [17] throughout
the six modes retained and the four aspect ratios
considered for SCCC thin rectangular plates.

(iii)CCCC thin plates (Table 5): When the
polynomial shape functions were used, the
obtained six frequency parameters for a clamped
square thin plate were 36.0197, 73.7727, 73.7727,
108.835, 135.217 and 135.816 respectively,
which were found to be in concordance with those
given by Li [19], and Monterrubio and llanko [6]:
the percentage differences ranged from - 0.082%
to - 2.755%. Similarly, it was observed a good
agreement between the present results and
available solutions for 1.5, 2 and 2.5 plate side
ratios as the percentage differences obtained were
as low as - 0.081% and did not go beyond - 3.54%
across the six modes considered for each of the
cases [13], [15], [19], [20].

Finally, the following observations which cut across
the five sets of rectangular plates boundary conditions
considered in this work could be made:

v There is a decreasing accuracy in the calculated
frequency parameters as they move from the lower
to the higher modes.

v" For each of the modes considered, there is a
consistent increment in the computed frequency
parameters with the number of fixed edges in the
set of plate boundary conditions. As an illustration,
the fundamental frequency parameter varied from
19.7273 for a simply supported square plate to
36.0197 for a clamped square plate.

v' The frequency parameter increased with the
rectangular plate’s side ratio for a given
combinations of edge supports.

40 CONCLUSION

In this study, piecewise polynomial trial functions to
be used for the dynamic analysis of thin rectangular
plates were constructed from imposed plate deflection
patterns adopting the Ritz procedure. In fact, they can
be derived for all the classical boundary conditions,
and have a degree low enough to avoid numerical
instability during the implementation of the Ritz
procedure. The method was applied considering 2, 3
and 4 strips in the two perpendicular directions of the
plate and the six first modes were retained, tabulated
and compared to existing results for SSSS, SSSC,

@ © 2024 by the author(s). Licensee NIJOTECH.

This article is open access under the CC BY-NC-ND license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

SSCC, SCCC and CCCC boundary conditions. Four
plate aspect ratios were taken into account namely 1,
1.5,2and 2.5.

To assess the reliability of the trial functions so
constructed, the results were first compared to existing
exact solutions for SSSS and SSSC plate boundary
conditions and they were found to be accurate. The
results for the other sets of boundary conditions
(SSCC, SCCC and CCCC) were also consistent with
those of other researchers.

For each of the modes considered, it was observed a
consistent increment in the computed frequency
parameters as the number of clamped edges increased
in the set of plate boundary conditions. The practical
consequence is that thin rectangular plates with
clamped edges may witness resonance when subjected
to high forcing frequencies, while they can resist the
low and medium ones.
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