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Abstract 

Mono-symmetric box girders are widely used in bridge construction for their 

strength, durability, and design flexibility. Traditional single-variable analysis 

methods, such as trigonometric series under simply supported (SS) conditions, 

often oversimplify and converge slowly. This study addresses these limitations 

using Vlasov theory combined with a multi-variable power series approach. 

Varbanov's modified generalized displacement functions were applied to derive 

the governing Vlasov differential equations, simplifying strain fields through the 

unit displacement method at the pole and shear center. Enhanced product 

integrals computed critical section properties, and power, trigonometric, and 

Taylor-Maclaurin series shape functions solved the reduced equations, enabling 

detailed analysis of flexural and distortional behaviors. The results revealed 

significant deformation patterns and rapid convergence. In the power series, 

maximum deflections occurred at 5 m and 45 m, attributed to localized bending 

moments caused by eccentric loading. Minimum distortion points were observed 

away from load concentrations, with reduced cross-sectional warping. Taylor-

Maclaurin series deflections peaked at mid-span, consistent with beam theory 

predictions, while distortional curves showed linear trends with deformation 

neutralization at mid-span due to opposing end constraints. Trigonometric 

series displayed cyclic deformation patterns, reflecting the effects of fluctuating 

loads, and distortional curves stabilized at mid-span. These findings emphasize 

the ability of mono-symmetric box girders to mitigate torsional moments and 

improve structural efficiency. The proposed multi-variable power series 

approach provides precise deformation analysis and insights into localized 

bending, shear forces, and distortional effects. This study validates the 

methodology and demonstrates its potential to enhance bridge design practices 

through accurate and efficient structural analysis, addressing critical 

performance factors and advancing the understanding of mono-symmetric 

girder behavior under various loading conditions. 
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1.0  INTRODUCTION 

The behavior of mono-symmetric channel sections 

differs from double-symmetric ones due to the 

misalignment of the shear center (S) and center of 

gravity (C). While loading through the shear center 

causes pure bending, eccentric loading introduces 

torsion and rotation, resulting in complex 

deformations, as noted by [1] and [2]. Thin-walled 

mono-symmetric sections experience additional 

stresses when restrained from warping, [4] and [5]. 

These structures, valued for their high strength-to-

weight ratio, are widely used in engineering, 

particularly in bridges and industrial buildings, [6]. 
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Mono-symmetric box girders are crucial for resisting 

torsional moments in bridge construction, as described 

by [6] and [7]. Theoretical models, such as those 

developed by [8] and [9], provide tools for analyzing 

these structures, early methods based on trigonometric 

series (Fourier series) as in [6] have limitations for 

complex geometries, alternative approaches, such as 

Taylor-Maclaurin series, as explored by [10] and [11], 

offer greater accuracy in analyzing plate stability. This 

study derives differential equations for mono-

symmetric box girders, focusing on flexural-

distortional behavior under simple support conditions 

using Vlasov’s theory and power series. 

 

2.0  METHODOLOGY 

The displacements in longitudinal (𝑈(𝑥, 𝑠)) and 

transverse (𝑉(𝑥, 𝑠)) directions for thin-walled closed 

structures under external torque are expressed as : 

𝑈(𝑥, 𝑠) = ∑ 𝑈𝑖
𝑚
𝑖=1 (𝑥)𝜑𝑖(𝑠);   𝑉(𝑥, 𝑠) =  ∑ 𝑉𝐾

𝑛
𝑘=1 (𝑥)𝜓𝐾(𝑠)               (1) 

 

The elastic direct and shear strain on and between the 

two planes, x and s are obtained as: 

Direct Strain along the longitudinal direction: 𝜀𝑥(𝑥, 𝑠):  

𝜀𝑥(𝑥, 𝑠) =
𝜕𝑈(𝑥,𝑠)

𝜕𝑥
= ∑ 𝑈𝑖

′(𝑥)𝜑𝑖(𝑠)
𝑚
𝑖=1             (2) 

 

Direct Strain along the transverse direction, 𝜀𝑠(𝑥, 𝑠): 

𝜀𝑠(𝑥, 𝑠) =
𝜕𝑉(𝑥,𝑠)

𝜕𝑠
= ∑ 𝑉𝐾

𝑛
𝑘=1 (𝑥)𝜓𝐾

′(𝑠)                                        (3) 

 

Shear Strain between the transverse and longitudinal 

directions, 𝛾(𝑥, 𝑠): 

𝛾(𝑥, 𝑠) =
𝜕𝑈(𝑥,𝑠)

𝜕𝑠
 +

𝜕𝑉(𝑥,𝑠)

𝜕𝑥
  = ∑ 𝑈𝑖(𝑥)𝜑𝑖

′(𝑠)𝑚
𝑖=1  + ∑ 𝑉𝑘

′(𝑥)𝛹𝑘
𝑛
𝑘=1 (𝑠)  (4)                                 

 

In similar approach, the direct elastic longitudinal and 

shear stresses associated with these strains are 

obtained as follows, 𝜎(𝑥, 𝑠): 

𝜎(𝑥, 𝑠) = 𝐸𝜀𝑥(𝑥, 𝑠) = 𝐸
𝜕𝑈(𝑥,𝑠)

𝜕𝑥
= 𝐸 ∑ 𝑈𝑖

′(𝑥)𝜑𝑖(𝑠)
𝑚
𝑖=1                        (5) 

𝜏(𝑥, 𝑠) = 𝐺𝛾(𝑥, 𝑠) = 𝐺(∑ 𝑈𝑖(𝑥)𝜑𝑖
′(𝑠)𝑚

𝑖=1  + ∑ 𝑉𝑘
′(𝑥)𝛹𝑘

𝑛
𝑘=1 (𝑠)  )      (6) 

 

The strain energy 𝑈 is derived using  

U =
1

2
 [∫ ∫ ((

𝜎(𝑋,𝑆)
2

𝐸
+ 

𝜏(𝑋,𝑆)
2

𝐺
) 𝑡(𝑠) + 

𝑀2(𝑥,𝑠)

𝐸𝐼𝑠

 

𝑠

 

𝐿
 ) 𝑑𝑥𝑑𝑠]            (7) 

 

Expanding and simplifying 𝜎2(𝑥, 𝑠) and 𝜏(𝑥,𝑠)
2  using 

summation properties: 

𝜎2(𝑥, 𝑠) =  𝐸2 ∑ 𝑈(𝑋)
′ 𝑈𝑗

′(𝑥)𝑚
𝑖=1 ∙ ∑ 𝜑𝑖(𝑠)𝜑𝑗(𝑠)

𝑛
𝑗=1        (8)                                                                             

𝜏(𝑥,𝑠)
2 = G2(∑ 𝑈𝑖(𝑥)𝑚

𝑖=1 𝑈𝑗(𝑥) ∙ ∑ 𝜑𝑖
′(𝑠)𝜑𝑗

′(𝑠)𝑚
𝑖=1 + ∑ 𝑈𝑖(𝑥)𝑉ℎ

′(𝑥)𝑚
𝑖=1 ∙

∑ 𝜑𝑖
′(𝑠)𝛹ℎ

𝑛
𝑘=1 (𝑠) +∑ Uj(x)

𝑛
𝑘=1 𝑉𝑘

′(𝑥) ∙ ∑ 𝜑𝑗
′(𝑠)𝑚

𝑖=1 𝛹𝑘(s)  +

∑ 𝑉ℎ
′(𝑥)𝑛

𝑘=1 𝑉𝑘
′(x)  ∙ ∑ 𝛹ℎ

𝑛
𝑘=1 (𝑠)𝛹𝑘(s))                                   (9) 

 

By applying the same technique to the moment 

expression: 

𝑀2(𝑥, 𝑠) = ∑ 𝑀𝑘
𝑛
𝑘=1 (𝑠)𝑀ℎ(𝑠) ∙ ∑ 𝑉𝑘(𝑥)𝑛

ℎ=1 𝑉ℎ(𝑥)           (10)                                                                     

 

Using the total work done by external loads, WE  =

−𝑞 ∫ ∫ 𝑉(𝑥, 𝑠)𝑑𝑥𝑑𝑠
 

𝑆

 

𝐿
, the total potential energy becomes:     

Π =  U + WE =
1

2
 [∫ ∫ ((

𝜎(𝑋,𝑆)
2

𝐸
+ 

𝜏(𝑋,𝑆)
2

𝐺
) + 

𝑀2(𝑥,𝑠)

𝐸𝐼𝑠

 

𝑠

 

𝐿
 ) 𝑡(𝑠)𝑑𝑥𝑑𝑠] −

𝑞 ∫ ∫ 𝑉(𝑥, 𝑠)𝑑𝑥𝑑𝑠
 

𝑆

 

𝐿
                       (11)               

 

In simplifying form, substituting expansions 

for 𝜎2, 𝜏2, 𝑀2, and strain energy contributions, Π 

becomes:                                                  
Π =

1

2
[(𝐸 ∑ 𝑈(𝑋)

′ 𝑈𝑗
′(𝑥)𝑚

𝑖=1 ∙

∑ 𝜑𝑖(𝑠)𝜑𝑗(𝑠)
𝑛
𝑗=1 )𝑡(𝑠)𝑑𝑠 +(G(∑ 𝑈𝑖(𝑥)𝑚

𝑖=1 𝑈𝑗(𝑥) ∙ ∑ 𝜑𝑖
′(𝑠)𝜑𝑗

′(𝑠)𝑚
𝑖=1 +

∑ 𝑈𝑖(𝑥)𝑉ℎ
′(𝑥)𝑚

𝑖=1 ∙ ∑ 𝜑𝑖
′(𝑠)𝛹ℎ

𝑛
𝑘=1 (𝑠) +∑ Uj(x)

𝑛
𝑘=1 𝑉𝑘

′(𝑥) ∙

∑ 𝜑𝑗
′(𝑠)𝑚

𝑖=1 𝛹𝑘(s) + ∑ 𝑉ℎ
′(𝑥)𝑛

𝑘=1 𝑉𝑘
′(x) ∙ ∑ 𝛹ℎ

𝑛
𝑘=1 (𝑠)𝛹𝑘(s))) 𝑡(𝑠)𝑑𝑠 +  

1

𝐸𝐼𝑠
∑ 𝑀𝑘

𝑚
𝑘=1 (𝑠)𝑀ℎ(𝑠) ∙ ∑ 𝑉𝑘(𝑥)𝑛

ℎ=1 𝑉ℎ(𝑥)𝑑𝑠 − ∑𝑞ℎ𝑉ℎ(𝑥, 𝑠)] 𝑑𝑥  (12)            

Where, 𝑡(𝑠)𝑑𝑠 = 𝑑𝐴 

 

Taking the limits, i, j, k and h as an integers 1,2,3,4 

representing the modes of interaction, we have: 
∑ 𝜑𝑖(𝑠)𝜑𝑗(𝑠)

𝑛
𝑗=1 𝑑𝐴 = ∫𝜑𝑖(𝑠)𝜑𝑗(𝑠)𝑑𝐴 = 𝑎𝑖𝑗 ; ∑ 𝜑𝑖

′(𝑠)𝜑𝑗
′(𝑠)𝑚

𝑖=1 𝑑𝐴 =

∫𝜑𝑖
′(𝑠)𝜑𝑗

′(𝑠)𝑑𝐴 = 𝑏𝑖𝑗 ;  ∑ 𝜑𝑖
′(𝑠)𝛹ℎ

𝑛
𝑘=1 (𝑠)𝑑𝐴 = ∫ 𝜑𝑖

′(𝑠)ψℎ(𝑠)𝑑𝐴 𝑗 = 𝑐ℎ𝑖;  

∑ 𝜑𝑗
′(𝑠)𝑚

𝑖=1 𝛹𝑘(s)𝑑𝐴 = ∫𝜑𝑗
′(𝑠)ψ𝑘(𝑠)𝑑𝐴  = 𝑐𝑗𝑘; ∑ 𝛹ℎ

𝑛
𝑘=1 (𝑠)𝛹𝑘(s)𝑑𝐴 =

∫ψℎ(𝑠)ψ𝑘(𝑠) = 𝑟ℎ𝑘; ∑
𝑀𝑘(𝑠)𝑀ℎ(𝑠)

𝐸𝐼(𝑠)

𝑛
ℎ=1 𝑑𝐴 =

1

𝐸
∫

𝑀𝑘(𝑠)𝑀ℎ(𝑠)

𝐸𝐼(𝑠)
 = 𝑠ℎ𝑘;   

∑𝑞ℎ𝑉ℎ(𝑥, 𝑠) = ∫𝑞𝜓ℎ𝑑𝑠 =𝑞ℎ                      (13)  

 

Thus, equation (12) becomes: 

Π =  
𝐸

2
∑𝑎𝑖𝑗𝑈𝑖

′(𝑥)𝑈
′
𝑗
(𝑥)𝑑𝑥 +

𝐺

2
[∑𝑏𝑖𝑗𝑈𝑖(𝑥)𝑈𝑗(𝑥) +

∑𝑐𝑖ℎ𝑈𝑖(𝑥)𝑉 ′
ℎ

(𝑥)]𝑑𝑥 + 
𝐺

2
[∑ 𝑐𝑗𝑘𝑈𝑗(𝑥)𝑉 ′

𝑘
(𝑥) + ∑ 𝑟ℎ𝑘𝑉

′
𝑘
(𝑥)𝑉 ′

ℎ
(𝑥)]𝑑𝑥 +

𝐸

2
∑𝑉𝑘 (𝑥)𝑉ℎ(𝑥)𝑑𝑥 − ∑𝑞ℎ 𝑉ℎdx                     (14) 

 

Therefore, equation (14) shows that the total potential 

energy Π is a functional of the form: 

Π = 𝐹(𝑈𝑖𝑈𝑗𝑉𝑘𝑉ℎ𝑈𝑖
′𝑈𝑗

′𝑉𝑘
′𝑉ℎ

′)                                             (15) 

 

Here, in equation (14), 𝜑 𝑎𝑛𝑑 𝜓 represent generalized 

warping and distortional strain modes; M is bending 

moment while associated terms describe displacement 

functions, bending moments, and distortion effects 

influenced by material properties, E (modulus of 

elasticity), G (shear modulus), and external load, 𝑞ℎ.  

 

2.1  Governing Equation of Distortional 

Equilibrium of Box – Girder 

The governing equations of distortional equilibrium 

for a box-girder are derived by minimizing the 

functional equation using the Euler-Lagrange 

technique in both the longitudinal and transverse 

directions. In the longitudinal direction, the 

equilibrium equation is 
 𝜕𝐹

𝜕𝑢
−

𝑑

𝑑𝑥
(

𝜕𝐹

𝜕𝑢′
) = 0             (16) 

 

In the transverse direction, it is 
𝜕𝐹

𝜕𝑉ℎ
−

𝑑

𝑑𝑥
(

𝜕𝜋

𝜕𝑉ℎ
′) = 0             (17) 

 

Here,  Fx is the first moment of area about, y̅ − 𝑎𝑥𝑖𝑠. F is 

the area of section material, 

https://doi.org/10.4314/njt.v43i4.1
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Carrying out the partial differential of equation (16) 

with respect to 𝑈𝑗, and equation (17) with respect to𝑉ℎ, 

using Euler-Lagrange,  we have: 

∑𝑏𝑖𝑗𝑈𝑖(𝑥) + ∑𝑐𝑘𝑗𝑉𝑘
′(𝑥) −

E

𝐺

𝑑

𝑑𝑥
∑𝑎𝑖𝑗𝑈𝑖

′(𝑥) = 0                        (18) 

 

Where, k =  
𝐸

𝐺
 = 2(1 + 𝛾), we have: 

  

𝑘𝑎𝑖𝑗
𝑑

𝑑𝑥
∑𝑈𝑖

′(𝑥) − 𝑏𝑖𝑗 ∑𝑈𝑖(𝑥) − 𝑐𝑘𝑗 ∑𝑉𝑘
′(𝑥) = 0                     (19) 

𝑐𝑖ℎ ∑ 𝑈𝑖
′(𝑥) + 𝑟𝑘ℎ ∑ 𝑉𝑘

′′(𝑥)𝑛
𝑘=1 −  𝑘𝑠ℎ𝑘 ∑ 𝑉𝑘(𝑥) + 

1

𝐺
∑𝑞ℎ = 0 𝑛

ℎ=1
𝑚
𝑖=1                

                 (20) 

 

Taking the bounds of the variables i, j and k for i and 

j = 1,2,3 and k = 1,2,3,4 and the limits of the variables 

i, h and k for i = 1,2,3 and h, k = 1,2,3,4, and extending, 

[6], determined certain coefficients with zero values 

for mono-symmetrical cross-sections, emphasized the 

interaction of torsional- distortional, flexural- 

tortional, and flexural- distortional deformations, and 

highlighted the importance of non-trivial coefficients 

associated with deformation modes 2, 3 and 4. 

 

[
 
 
 
 
𝑎11 = 0; 𝑎12 = 𝑎21 = 0; 𝑎13 = 𝑎31 = 0                                              
𝑏11 = 0; 𝑏12 = 𝑏21 = 0; 𝑏13 = 𝑏31 = 0                                               
𝑐11 = 0; 𝑐12 = 𝑐21 = 0; 𝑐13 = 𝑐31 = 0                                                
𝑟11 = 0; 𝑟12 = 𝑟21 = 0; 𝑟13 = 𝑟31 = 0                                                 
𝑠11 = 0; 𝑠12 = 𝑠21 = 0; 𝑠22 = 0; 𝑠13 = 𝑠31 = 0; 𝑠23 = 𝑠32 = 0 ]

 
 
 
 

(21)           

 

According to [6], the relative coefficients for bending-

deformation equilibrium are the coefficients for 

deformation modes 2 and 4. By replacing the 

irrelevant non-coefficients in the matrix equations 

obtained after the expansion of equations (19) and 

(20), while retaining the relative coefficient in 

equation (21), the governing differential equations 

(22a) and (22b) were obtained as follows: 

𝑉4
11  = 𝐾1                                   (22a) 

𝜖1𝑉2
𝐼𝑉  + 𝜖2𝑉4

𝐼𝑉 − 𝛽1𝑉4
11 = 𝐾2             (22b) 

Where, 𝜖1 =  𝐾𝑎22𝑐42; 𝜖2 = 𝐾𝑎22𝑟44; 𝛽1 = (𝑏22𝑟44 − 𝑐24𝑐42);   

𝐾1 = (
𝑐22

𝑟24𝑐42− 𝑐22𝑟44
)

𝑞4

𝐺
 − (

𝑐42

𝑟24𝑐42− 𝑐22𝑟44
)

𝑞2

𝐺
 ;  𝐾2 = 𝑏22

𝑞4

𝐺
     (23) 

 

2.2  Non-dimensional Differential Equilibrium 

Equations 

They are derived for deformation system (flexural- 

distortional),by expressing the longitudinal coordinate 

as a non-dimensional parameter within the structure’s 

limits, 

𝑋 = 𝐿𝑅 ∶ 0 ≤ 𝑅 ≤ 1,           (24) 

Where, 𝑋 is the directional coordinate of the thin- 

walled structure along the span, 𝐿; 𝑅 is the 

corresponding non-dimensional surface or longitu-

dinal dimension of the structure in the limits 0 to 1, 

[12]. 

 

Recall: 𝑉2
𝑖𝑣(𝑥) =

𝑑4𝑉2(𝑥)

𝑑𝑥4
;  𝑉2

′′(𝑥) =
𝑑2𝑉2(𝑥)

𝑑𝑥2
; 𝑉4

′′(𝑥) =

𝑑2𝑉4(𝑥)

𝑑𝑥2
;  𝑉4

𝑖𝑣(𝑥) =
𝑑4𝑉4(𝑥)

𝑑𝑥3
                  (25) 

From Equation (24),  
𝑋 = LR;  dx = LdR; dx2 = (LdR)2 = L2dR2; dx4 = (LdR)4 = L4dR4   

                          (26) 

 

Substituting equation (26) into equations (22a) and 

(22b), we have:                                   
𝑑2𝑉4(𝑅)

L2dR4
 =  𝐾1                        (27) 

𝜖1
𝑑4𝑉2(𝑅)

L4dR4  + 𝜖2
𝑑4𝑉4(𝑅)

L4dR4 − 𝛽1
𝑑2𝑉4(𝑅)

L2dR2  =  𝐾2   (28) 

 

The solution to Vlasov's flexural-distortional 

equilibrium equations for a mono-symmetric box 

girder involves power series displacement functions. 

It emphasizes transverse deformation and its energy 

contribution through general solutions and boundary 

conditions. 

 

2.3  Power Series General Solution for 

Displacement Functions:  
The power series is a mathematical technique for 

solving differential equations by representing a 

function as an infinite sum of terms involving powers 

of a variable, [13]. It is particularly useful for linear 

ordinary differential equations, ODEs, allowing 

solutions to be expressed as power series expansions 

like;   
𝑤 = 𝑤(𝑥) = ∑ 𝛿𝑚(𝑥 − 𝑥0)

𝑚 =∞
𝑚=0 𝛿0 + 𝛿1(𝑥 − 𝑥0) + 𝛿2(𝑥 − 𝑥0)

2 +
𝛿3(𝑥 − 𝑥0)

3 + 𝛿4(𝑥 − 𝑥0)
4 +  𝛿5(𝑥 − 𝑥0)

5 + 𝛿6(𝑥 − 𝑥0)
6 + 𝛿7(𝑥 −

𝑥0)
7 + 𝛿8(𝑥 − 𝑥0)

8 + …                 (29) 

 

The function w(x) is expressed as a power series 

centered at x0 , with coefficients 𝛿𝑚 representing real or 

complex constants. If 𝑥0 = 0, the series simplifies to a 

power series in powers of x, equation (30)  and 

differentiation of this series up to the seventh and 

eighth times is discussed.  
𝑤 = 𝑤(𝑥) = ∑ 𝛿𝑚𝑥𝑚 =8

𝑚=0 (𝛿0 + 𝛿1𝑥 + 𝛿2𝑥
2 + 𝛿3𝑥

3 + 𝛿4𝑥
4 + 𝛿5𝑥

5 +

𝛿6𝑥
6 + 𝛿7𝑥

7 + 𝛿8𝑥
8)           (30) 

𝑤𝑉11  =  5040𝛿7 + 40320 𝛿8𝑥 + …∑ 𝑚 (𝑚 − 6)∞
𝑚=7 𝛿𝑚𝑥𝑚−7       (31)                       

𝑤𝑉111 =  40320𝛿8 + … ∑ 𝑚  ∞
𝑚=8 (m − 7)𝛿𝑚𝑥𝑚−8      (32) 

 

Into the ordinary equation 
(𝛿1 + 2𝛿2𝑥 + 3𝛿3𝑥

2 + ∙∙∙ + 8𝛿8𝑥
7) − (𝛿0 + 𝛿1𝑥 + 𝛿2𝑥

2 +∙∙∙ + 𝛿7𝑥
7) =

0                            (33) 

 

Then we collect like powers of x, finding:  
(𝛿1 − 𝛿0) + (2𝛿2 − 𝛿1)𝑥 + (3𝛿3 − 𝛿2)𝑥

2 + … .+(8𝛿8 − 𝛿7)𝑥
7 = 0 

                    (34) 

 

Equating the coefficient of each power of x to zero, 

we have:  

𝛿1 − 𝛿0 = 0, 2𝛿2 − 𝛿1 = 0 , 3𝛿3 − 𝛿2 = 0,…8𝛿8 − 𝛿7 = 0   (35) 

 

Solving these equations, we may express 𝛿1, 𝛿2, 𝛿3, 𝛿4 …, 

𝛿8 in terms of 𝛿0, which remains arbitrary: 

𝛿1 = 𝛿0, 𝛿2 =
𝛿1

2
=

𝛿0

2!
, 𝛿3 =

𝛿2

3
=

𝛿0

3!
, 𝛿4 =

𝛿3

4
=

𝛿0

4!
, … , 𝛿8 =

𝛿7

8
=

𝛿0

8!
 (36) 

40320𝛿8 −  5040𝛿7  =  0  ,   𝛿8 =
𝛿7

8
              (37) 
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With these values of the coefficients, the series 

solution becomes the known general solution, viz. 

general solution, That is, 

𝑤(𝑥) = 𝛿0 + 𝛿0𝑥 +
𝛿0

2!
𝑥2 + ⋯

𝛿0

8!
𝑥8 = 𝛿𝑜 (1 + 𝑥 +

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+

𝑥5

5!
+

𝑥6

6!
+

𝑥7

7!
+

𝑥8

8!
) = 𝛿0𝑒

𝑥             (38) 

 

2.4  Extension of a Single-Variable Power Series 

to a Multi-Variable Finite Polynomial Displacem-

ent Function Incorporating Step Functions:  

The potential energy of a thin-walled box girder under 

flexural-distortional load is represented by the beam's 

transverse deformation "w," which can be expressed 

as a power series displacement function for simply 

supported (SS) conditions.  

 

STEP 1: Homogeneous Solution. From equation (38),  

𝑤(𝑥) = 𝛿0𝑒
𝑥                                                 (39) 

 

Based on the binomial coefficients and theorem at a 

point where m = 8, we have:  
(𝛿 + 1)𝑚 = 1. 𝛿0 +  8. 𝛿0 + 28. 𝛿0 + 56. 𝛿0 +  70. 𝛿0 + 56 𝛿0 +  28𝛿0 +

 8𝛿0 + 𝛿0. 1 = 0              (40) 

 

Then general solution of the homogenous ODE is 

represented as a finite polynomial in x with 

coefficients, 𝛿1, 𝛿2, 𝛿3, … , 𝛿8 , multiplied by the series 

expansion of 𝑒𝑥 as follow: 
𝑤ℎ = (𝛿1  + 𝛿2𝑥 +  𝛿3𝑥

2 + 𝛿4𝑥
3 + 𝛿5𝑥

4  + 𝛿6𝑥
5 + 𝛿7𝑥

6  + 𝛿8𝑥
7)𝑒𝑥        

                 (41) 

 

Therefore, in general, the logarithmic base (e), log. 

𝑒𝑥is equal to 𝐼𝑛𝑒𝑥,where x > 0. From the key properties 

of the natural logarithm, it follows that, 𝐼𝑛𝑒𝑥=𝑥, hence, 

equation (41) becomes: 
𝑤ℎ = 𝛿1𝑥 + 𝛿2𝑥

2 + 𝛿3𝑥
3 + 𝛿4𝑥

4  + 𝛿5𝑥
5 + 𝛿6𝑥

6  + 𝛿7𝑥
7  + 𝛿8𝑥

8       
                 (42) 

 

Applying the properties of binomial expansion, we 

obtain; 
(𝛿 + 1)8 = 𝛿1𝑥 + 𝛿2𝑥

2 + 𝛿3𝑥
3 + 𝛿4𝑥

4 + 𝛿5𝑥
5 + 𝛿6𝑥

6  + 𝛿7𝑥
7  +

 𝛿8𝑥
8                  (43)       

 

The binomial expansion of (δ+1)8 becomes binomial 

expansion coefficients similar to the sum of 

consecutive positive integers as follows: 

1.
𝛿1

𝛿0
+ 2.

𝛿2

𝛿1
+ 3.

𝛿3

𝛿2
+  4.

𝛿4

𝛿3
+  5.

𝛿5

𝛿4
 +  6.

𝛿6

𝛿5
  +  7.

𝛿7

𝛿6
  +  8.

𝛿8

𝛿7
         (44) 

 

The hypothesis of equation (44) corresponds to the 

following expression: 
∑ 𝑅.

𝛿𝑅

𝛿𝑅−1

8
𝑅=1 = 1.

𝛿1

𝛿0
+ 2.

𝛿2

𝛿1
+ 3.

𝛿3

𝛿2
+  4.

𝛿4

𝛿3
+ 5.

𝛿5

𝛿4
 +  6.

𝛿6

𝛿5
  +  7.

𝛿7

𝛿6
  +

 8.
𝛿8

𝛿7
                    (45) 

Where, R = 1 

Then, from the arithmetic series formula for the sum 

of consecutive integers, we obtained the following 

sum of the first 8 positive integers as follow: 

[8(8+1)]

2
 = 36                    (46)          

 

STEP 2: Particular Solution: From equation (38), let, 

 𝑤𝑝 = 𝛿0𝑥
8𝑒𝑥                          (47) 

 

[
 
 
 
 
 
 
 
 
 
 wp1=δo(8x7 + x8)ex

wp11=δo(56x6+16x7+x8)ex

wp111  =δo(336x5+169x6+ 24x7 + x8)ex

wp1v  =δo(1680x4+1350x5+337x6 + 32x7+x8)ex

wpv=δo(6720x3+8430x4+3372x5+561x6+40x7+x8)ex

wpv1=δo(20160x2+40440x3+25290x4+6738x5+841x6+48x7+x8)ex

wpv11=δ
o
(40320x+141480x2+141600x3+58980x4+11784x5+1177x6+56x7+x8)ex

wpv111=δo(40320+323280x+566280x2+377520x3+117900x4+18846x5+1569x6+64x7+x8)ex
]
 
 
 
 
 
 
 
 
 
 

        

                    (48)    

 

Here, equation (40), becomes; 
1. 𝛿0 +  8. 𝛿0 + 28. 𝛿0 + 56. 𝛿0 +  70. 𝛿0 + 56 𝛿0 +  28𝛿0 +  8𝛿0 +

𝛿0. 1 =  36              (49) 

 

Substituting equation (48) into equation (49), gave: 
(𝛿𝑜(40320 + 323280𝑥 + 566280𝑥2 + 377520𝑥3 + 117900𝑥4 +
18846𝑥5 + 1569𝑥6 +  𝛿 + 64𝑥7 + 𝑥8)+8𝑜(40320𝑥 + 141480𝑥2 +
141600𝑥3 + 58980𝑥4 + 11784𝑥5 + 6738𝑥5 + 841𝑥6 +
48𝑥7+70𝛿𝑜(1680𝑥4 + 1350𝑥5 + 337𝑥6 + 32𝑥7 + 𝑥8) +
56𝛿𝑜(336𝑥5 + 169𝑥6+ 24𝑥7 + 𝑥8 + 1177𝑥6  + 𝑥8)+56𝛿𝑜(6720𝑥3 +
8430𝑥4 + 3372𝑥5 + 561𝑥6 + 40𝑥7 + 𝑥8) + 56𝑥7 + 𝑥8) +
28𝛿𝑜(20160𝑥2 + 40440𝑥3 +  25290 + 28𝛿𝑜(56𝑥6 + 16𝑥7 +

𝑥8)𝑥4+8𝛿𝑜(8𝑥7 + 𝑥8) + 𝛿𝑜(𝑥
8))𝑒𝑥 =  36           (50)  

 

Omitting the linear squares, the third, fourth, fiftieth, 

sixtieth, seventieth, and eightieth terms, and omitting 

the common factor, 𝑒𝑥, we obtain; 

40320𝛿𝑜 =  36          (51) 

𝛿𝑜 = 8.9286 × 10−4                     (52)       

𝑤𝑝  = 8.9286 × 10−4𝑥8𝑒𝑥           (53) 

 

STEP 3: Now, w(x)  = 𝑤ℎ + 𝑤𝑝 
𝑤(𝑥) = (𝛿1  + 𝛿2𝑥 + 𝛿3𝑥

2  + 𝛿4𝑥
3 + 𝛿5𝑥

4  + 𝛿6𝑥
5 + 𝛿7𝑥

6  +

𝛿8𝑥
7)𝑒𝑥  + 8.9286 × 10−4𝑥8𝑒𝑥        (54)

   

Equation (55) represents the generalized polynomial 

displacement function that accurately models the 

deformed shape of a thin-walled box girder under 

combined loads using Bentham’s boundary 

conditions. 

 

2.5  Power Series, Taylor-Maclaurin Series, and 

Trigonometric Series Displacement Functions for 

a SS Beam:  

 

 
Figure 1:  Simply Supported (SS) beam along 𝑅 –

Axis subjected to different loading Superimposed the  
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power series, Taylor Maclaurin series and 

trigonometric series Boundary Conditions along 𝜂 – 

direction 

 

Figure 1 shows a beam of simply supported (SS) end 

conditions subjected to flexural – distortional loads. 

The Benthem’s boundary conditions of the beam are 

given beneath the figure [8].  

 

2.5.1 Power series displacement function for SS 

beam 

From equation (54): 

𝑤(𝑅 = 0); 𝑤11𝑅(𝑅 = 0) = 0;𝑤(𝑅 = 1); 𝑤11𝑅(𝑅 = 1) = 0        (55) 

 

From equation (54) 

𝑤(𝑅) = 𝛿𝑅(R–1.1198𝑅3 + 0.1198𝑅8)          (56)

   
Here,  𝛿𝑅 = 0.5Ω, by invoking scaled version of the 

original function, where each term has been multiplied 

by a scaling factor of 0.5., hence , equation (56), 

becomes; 

𝑤(𝑅) = Ω(0.5R–0.6𝑅3 + 0.1𝑅8)              (57) 

 

Here, Ω = constant proportionality, V2(R) and V4(R) are 

flexural and distortional deformations. Hence, the 

corresponding equation of deformations, second and 

fourth order derivatives, becomes:  
𝑉2(𝑅) = Ω2(0.5𝑅 − 0.6𝑅2 + 0.1𝑅8); 𝑉3(𝑅); 𝑉4(𝑅) = Ω4(0.5𝑅 − 0.63 +

0.1𝑅8)                                                                              (58) 

𝑉2
𝑖𝑖(𝑅) =

𝑑2𝑉2

𝑑𝑅2
(𝑅) = Ω2(−3.6𝑅 + 5.6𝑅6); 𝑉2

𝑖𝑣(𝑅) =
𝑑4𝑉2

𝑑𝑅4
(𝑅) = 168Ω2     

𝑉4
𝑖𝑖(𝑅) =

𝑑2𝑉4

𝑑𝑅2
(𝑅) = Ω4(−3.6𝑅 + 5.6𝑅6); 𝑉4

𝑖𝑣(𝑅) =
𝑑4𝑉4

𝑑𝑅4
(𝑅) = 168Ω4   

          (59) 

 

2.5.2 Taylor maclaurin’s displacement function 

for SS beam 
By equating the moment and elasticity equations of 

beam and integrating twice with respect to an arbitrary 

direction  𝜂, the displacement function is obtained as.  

𝑊𝜂 = 𝐶𝑜 + 𝐶1𝜂 ∙  +𝐶2𝜂
2 + 𝐶3 ∙ 𝜂3 + 𝐶4 ∙ 𝜂4       (60)

                

Where, 𝐶𝑜 and 𝐶1 are constants of integration, and 𝐶4 =
𝑞

24𝐷
;     𝐶3 =

−𝑅

6𝐷
;    𝐶2 =

𝑀1

2𝐷
  .  For a uniformly distributed load, 

the function is fourth-order, as the highest polynomial 

degree is 4. Thus, in the Taylor-Maclaurin series 

expansion for a beam strip along R, the maximum 

term is m = 4. The series constants along the R are 

denoted as Am, [10], thus,  

w(R) = ∑ 𝐴𝑚R𝑚∞
𝑚=1                  (61)                                                                                                                                

w(R) = ∑ 𝐴𝑚R𝑚4
𝑚=1 = (A0 + A1R + A2R

2 + A3R
3 + A4R

4)        (62)             

 

The coefficients Am of the series are determined from 

the boundary conditions at the edges of the beam. 

 Boundary Conditions along 𝜂 – direction  

 𝑤(𝑅 = 0); 𝑤11𝑅(𝑅 = 0) = 0;𝑤(𝑅 = 1); 𝑤11𝑅(𝑅 = 1) = 0          (63) 

  

Using Equation (63):   

𝑉(𝑅) = 𝐴4(𝑅 − 2𝑅3 + 𝑅4)          (64) 

 

Let the constant proportionality, 𝐴4 be taken as  Ω. 

Equation (64) becomes: 

𝑉(𝑅) = Ω(𝑅 − 2𝑅3 + 𝑅4)               (65) 

 

Equation (65) is the shape function for simply 

supported ends of a mono – symmetric box girder. 

Hence, the corresponding equation of deformations, 

second and fourth order derivatives becomes:  

 𝑉2(𝑅) = Ω2(𝑅 − 2𝑅3 + 𝑅4);𝑉4(𝑅) = Ω4(𝑅 − 2𝑅3 + 𝑅4)            (66) 

𝑉2
′′(𝑅) =

𝑑2𝑉2

𝑑𝑅2
(𝑅) = Ω2(−12𝑅 + 12𝑅2)  ;    𝑉2

𝑖𝑣(𝑅) =
𝑑4𝑉2

𝑑𝑅4
(𝑅) = 24Ω2    

 

𝑉4
′′(𝑅) =

𝑑2𝑉4

𝑑𝑅2
(𝑅) = Ω4(−12𝑅 + 12𝑅2);        𝑉4

𝑖𝑣(𝑅) =
𝑑4𝑉4

𝑑𝑅4
(𝑅) =

24Ω4                 (67) 

 

2.5.3 Trigonometric series displacement function 

for SS beam 

             Let the approximate displacement or shape function 

be,  

𝑤 = sin (
𝜋𝑅

𝑎
)                       (68) 

 

The corresponding second derivative of equation (68) 

becomes: 

𝑤11 =
−𝜋2

a2 sin (
𝜋𝑅

𝑎
)                     (69)  

 

Boundary Conditions along 𝜂 – direction becomes:  

𝑤(𝑅 = 0); 𝑤11𝑅(𝑅 = 0) = 0;𝑤(𝑅 = 1); 𝑤11𝑅(𝑅 = 1) = 0        (70)

  

Therefore, the assumed displacement functions 

satisfied the boundary conditions, hence 

𝑤(𝑅) = Ωsin (
𝜋𝑅

𝑎
)            (71) 

    

Thus, the corresponding equations of deformation, 

second and fourth order derivatives become: 

𝑉2(𝑅) =  Ω2 sin (
𝜋𝑅

𝑎
) ;  𝑉4(𝑅) = Ω4S sin (

𝜋𝑅

𝑎
)               (72) 

𝑉2
𝑖𝑖(𝑅) =

𝑑2𝑉2

𝑑𝑅2
(𝑅) = Ω2 (−

𝜋2

𝑎2
sin (

𝜋𝑅

𝑎
)) ; 𝑉2

𝑖𝑣(𝑅) =
𝑑4𝑉2

𝑑𝑅4
=

 Ω2 (
𝜋4

𝑎4
sin (

𝜋𝑅

𝑎
))   

 

 𝑉4
𝑖𝑖(𝑅) =

𝑑2𝑉4

𝑑𝑅2
(𝑅) = Ω4 (−

𝜋2

𝑎2
sin (

𝜋𝑅

𝑎
)) ; 𝑉4

𝑖𝑣(𝑅) =
𝑑4𝑉4

𝑑𝑅4
=

 Ω2 (
𝜋4

𝑎4
sin (

𝜋𝑅

𝑎
))              (73) 

 

2.6  Application of Power Series Shape Function 

to Vlasov Theory on Flexural-Distortional of 

Mono-Symmetric Box Girder for Simply 

Supported Ends 

Substituting, the flexural and distortional 

deformations and their second and fourth order 

derivatives in Equations (58) and (59) into the 

governing differential equilibrium equation for thin – 

walled systems under flexural - distortional loads in 
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Equations (27) and (28), and solving simultaneously 

we have: 
𝑑2⋁4(𝑅)

𝐿2𝑑𝑅4
= 𝑘1         

𝜖1
𝑑4⋁2(𝑅)

𝐿4𝑑𝑅4
+ 𝜖2

𝑑4⋁4(𝑅)

𝐿4𝑑𝑅4
− 𝛽1

𝑑2⋁4(𝑅)

𝐿2𝑑𝑅2
) = 𝑘2  

Ω4
(−3.6𝑅+5.6𝑅6)

𝐿2
= 𝑘1                 (74) 

Ω4
𝑘1

(−3.6𝑅+5.6𝑅6) 𝐿2⁄
                   (75) 

 

Substitute equation (75) into equation (28) to get Ω2:  

Ω2
168𝜖1

𝐿2
+ Ω4 (

168𝜖2

𝐿4
−

𝛽1

𝐿2
(−3.6𝑅 + 5.6𝑅6)) = 𝑘2                     (76)                   

Ω2 =
𝑘2−

𝑘1
(−3.6𝑅+5.6𝑅6) 𝐿2⁄

(
168𝜖2

𝐿4 −
𝛽1
𝐿2(−3.6𝑅+5.6𝑅6))

168𝜖1
𝐿4

                         (77)  

 

Using the equation (58), the flexural deformation ⋁2(𝑅) 

and the distortional deformation, ⋁4(𝑅), for the mono-

symmetric box girder gave: 
⋁2(𝑅) = Ω2(0.5𝑅 − 0.6𝑅3 + 0.1𝑅8)       

⋁2(𝑅) =
𝑘2−

𝑘1
(−3.6𝑅+5.6𝑅6) 𝐿2⁄

(
168𝜖2

𝐿4 −
𝛽1
𝐿2(−3.6𝑅+5.6𝑅6))

168𝜖1
𝐿4

(0.5𝑅 − 0.6𝑅3 + 0.1𝑅8)  

               (78)

   

⋁4(𝑅) =
𝑘1

(−3.6𝑅+5.6𝑅6) 𝐿2⁄
(0.5𝑅 − 0.6𝑅3 + 0.1𝑅8)      (79) 

 

2.7  Application of Taylor Maclaurin Polynomial 

Shape Function to Vlasov Theory on Flexural- 

Distortional of Mono-Symmetric Box Girder for 

Simply Supported Ends 

Substituting, the flexural and distortional 

deformations and their second and fourth order 

derivatives in Equations (66) and (67) into the 

governing differential equilibrium equation for thin – 

walled systems under flexural - ditortional loads in 

Equations (27) and (28) and solving simultaneously 

we have: 

Ω4
(−12𝑅+12𝑅2)

𝐿2
= 𝑘1            (80) 

Ω2
24𝜖1

𝐿4
+ Ω4 (

24𝜖2

𝐿4
−

𝛽1

𝐿2
(−12𝑅 + 12𝑅2)) = 𝑘2       (81) 

 

Certainly! Let’s isolate Ω2 and Ω4 from equations (80) 

and (81). Equation (28) involves only Ω4, so the 

expression for Ω4 is: 

Ω4 =
𝑘1

(−12𝑅+12𝑅2) 𝐿2⁄
                  (82) 

 

Substitute equation (82) into equation (81) to get Ω2:  

Ω2
24𝜖1

𝐿4
+

𝑘1

(−12𝑅+12𝑅2) 𝐿2⁄
(

24𝜖2

𝐿4
−

𝛽1

𝐿2
(−12𝑅 + 12𝑅2)) = 𝑘2           (83) 

 Ω2 =
𝑘2−

𝑘1
(−12𝑅+12𝑅2) 𝐿2⁄

(
24𝜖2
𝐿4 −

𝛽1
𝐿2(−12𝑅+12𝑅2))

24𝜖1
𝐿4

                   (84) 

 

Using the equation (66), the flexural deformation, 

⋁2(𝑅) and the distortional deformation,⋁4(𝑅), for the 

mono-symmetric box girder gave: 
⋁2(𝑅) = Ω2(𝑅 − 2𝑅3 + 𝑅4)  

⋁2(𝑅) =
𝑘2−

𝑘1
(−12𝑅+12𝑅2) 𝐿2⁄

(
24𝜖2
𝐿4 −

𝛽1
𝐿2(−12𝑅+12𝑅2))

24𝜖1
𝐿4

(𝑅 − 2𝑅3 + 𝑅4)        (85)             

⋁4(𝑅) =
𝑘1

(−12𝑅+12𝑅2) 𝐿2⁄
(𝑅 − 2𝑅3 + 𝑅4)                 (86) 

2.8  Application of Trigonometric Series Shape 

Function to Vlasov Theory on Flexural- 

Distortional of Mono-Symmetric Box Girder for 

Simply Supported Ends 

Substituting, the flexural and distortional 

deformations and their second and fourth order 

derivatives in Equations (72) and (73) into the 

governing differential equilibrium equation for thin – 

walled systems under flexural - distortional loads in 

Equations (27) and (28), and solving simultaneously 

we have: 

Ω4
1

𝐿2
(−

𝜋2

𝑎2
sin (

𝜋𝑅

𝑎
)) = k1                (87) 

Ω4 =
k1

1

𝐿2(−
𝜋2

𝑎2 sin(
𝜋𝑅

𝑎
))
              (88) 

 

Equation (28): 
1

𝐿4
Ω2 (

𝜋4

𝑎4
sin (

𝜋𝑅

𝑎
)) 𝜖1 +

1

𝐿4
Ω4 (

𝜋4

𝑎4
sin (

𝜋𝑅

𝑎
))𝜖2 −

𝛽1

𝐿2
(−

𝜋2

𝑎2
sin (

𝜋𝑅

𝑎
)) =  𝑘2   

 

Substitute equation (88) into equation (28) to get Ω2: 

Ω2
1

𝐿4
(

𝜋4

𝑎4
sin (

𝜋𝑅

𝑎
)) 𝜖1 +

k1

1

𝐿2(−
𝜋2

𝑎2 sin(
𝜋𝑅

𝑎
))

(
1

𝐿4
(

𝜋4

𝑎4
sin (

𝜋𝑅

𝑎
)) 𝜖2) −

𝛽1

𝐿2
(−

𝜋2

𝑎2
sin (

𝜋𝑅

𝑎
)) = k2             (89) 

Ω2 =

k2−
k1

1

𝐿2(−
𝜋2

𝑎2 sin(
𝜋𝑅
𝑎 ))

(
1

𝐿4(
𝜋4

𝑎4 sin(
𝜋𝑅

𝑎
))𝜖2)−

𝛽1
𝐿2(−

𝜋2

𝑎2 sin(
𝜋𝑅

𝑎
))

1

𝐿4(
𝜋4

𝑎4 sin(
𝜋𝑅

𝑎
))𝜖1

        (90) 

 

Using the equation (72), the flexural deformation 

⋁2(𝑅), and the distortional deformation, ⋁4(𝑅), for the 

mono-symmetric box girder gave: 

⋁2(𝑅) = Ω2 sin (
𝜋𝑅

𝑎
)            (91) 

⋁2(𝑅) =

k2−
k1

1

𝐿2(−
𝜋2

𝑎2 sin(
𝜋𝑅
𝑎 ))

(
1

𝐿4(
𝜋4

𝑎4 sin(
𝜋𝑅

𝑎
))𝜖2)−

𝛽1
𝐿2(−

𝜋2

𝑎2 sin(
𝜋𝑅

𝑎
))

1

𝐿4(
𝜋4

𝑎4 sin(
𝜋𝑅

𝑎
))𝜖1

sin (
𝜋𝑅

𝑎
)    (92) 

⋁4(𝑅) =  
k1

1

𝐿2(−
𝜋2

𝑎2 sin(
𝜋𝑅

𝑎
))

sin (
𝜋𝑅

𝑎
)                (93) 

 

 
Figure 2:  Mono-symmetric box girder (the bridge is 

span 50m between piers) 
 

3.0  RESULTS AND DISCUSSION 

3.1  Numerical Mono–Symmetric Box Girder 

Bridge Problem 

Consider a mono – symmetric box Girder Bridge of 

two – ways – two – lanes carrying a live load of 

9.3N/mm (HL – 93 loading according to AASHTO), 

[14], in addition to tandem double axle loads of 

110KN each lane. The live load is uniformly 

distributed over the 7.32m transverse width of the 

https://doi.org/10.4314/njt.v43i4.1
http://creativecommons.org/licenses/by-nc-nd/4.0/


EVALUATION OF FLEXURAL AND DISTORTIONAL ELASTIC STABILITY OF M… 616 
 

 © 2024 by the author(s). Licensee NIJOTECH.                                                          Vol. 43, No. 4, December 2024 
This article is open access under the CC BY-NC-ND license.                                                                  https://doi.org/10.4314/njt.v43i4.1  
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

bridge of two lanes – two – way. The loads are 

positioned at the outermost possible location to 

generate the maximum bending and distortional effect 

as shown in Figure 2. 

 

3.2  Computation of Vlasov Coefficients 

The Vlasov coefficients; aij, bij, cij and skh are obtained 

by multiplying, 𝜙𝑖 , 𝜓𝑖  and 𝑀𝑘 accordingly using the 

product integral for unit thickness (i.e; t = 1) as 

described by [6]. However, the modified product 

integral according to [12] is used, where the constant 

k value is unity, representing the thickness of the box 

girder,t.   

 

3.3  Evaluation of the Flexural  and Distortional 

Coefficients 

𝜖1 = 𝑘𝑎22𝑐42 = 2.5 × 123.5117 × 6.4170 = 1,981.446447   (94) 

𝜖2 = 𝑘𝑎22𝑟44 = 2.5 × 123.5117 × 72.0033 = 22,233.12497      (95) 
𝛽1 = (𝑏22𝑟44 − 𝑐22𝑐42) = (14.6931 × 72.0033 − 14.6931 × 6.4170) =

963.6661                   (96) 

k1 = (
c22

r24c42−c22r44
)

𝑞4

𝐺
− (

c42

r24c42−c22r44
)

𝑞4

𝐺
 ;  k1 =

(
14.6931

6.4170×6.4170−14.6931×72.0033
)

1.4738×106

9.6×109
 −  

(
6.4170

6.4170×6.4170−14.6931×72.0033
)

1.0820×106

9.6×109
 = 114.4427732        (97)                                                

k2 = 𝑏22
𝑞4

𝐺
= 14.6931 × (

1.4738×106

9.6×109
) =  2.2556969556 × 10−3   (98) 

 

3.4  Flexural and Distortional Deformations of 

Three Mathematical Tools or Series for Simply 

Supported Ends 
From Equation (78) and (79) and determination of the 

associated Vlasov variables, the coefficients of the 

flexural and distortional deformations for the Power 

series are obtained as follows: 
⋁2(𝑅) =

2.2556969556×10−3−
114.4427732

(−3.6𝑅+5.6𝑅6) 502⁄
(
168×22,233.12497

504 −
963.6661

502 (−3.6𝑅+5.6𝑅6))

168×1,981.446447

504

(0.5𝑅 −

0.6𝑅3  + 0.1𝑅8)              (99) 

⋁4(𝑅) = −
114.4427732

(−1.44×10−3𝑅+2.24×10−3𝑅6)
(0.5𝑅 − 0.6𝑅3 + 0.1𝑅8)      (100) 

 

From Equation (85) and (87) and determination of the 

associated Vlasov variables, the coefficients of the 

flexural and distortional deformations for the Taylor 

Maclaurin’s series are obtained as follows: 
  ⋁2(𝑅) =
2.2556969556×10−3 −

114.4427732

(−4.8×10−3𝑅+4.8×10−3𝑅2)
(0.085375199−0.38546644(−12𝑅+12𝑅2))

7.608754356×10−3
×

(𝑅 − 2𝑅3 + 𝑅4)                 (101) 

⋁4(𝑅) = −
114.4427732

(−4.8×10−3𝑅+4.8×10−3𝑅2)
(𝑅 − 2𝑅3 + 𝑅4)         (102) 

 

From Equation (92) and (93) and determination of the 

associated Vlasov variables, the coefficients of the 

flexural and distortional deformations for the 

Trigonometric series are obtained as follows: 
⋁2(𝑅) = 2.2556969556 ×

10−3  

−
114.4427732

1

502(−
𝜋2

𝑎2sin(
𝜋𝑅
𝑎 ))

(
1

504(
𝜋4

𝑎4 sin(
𝜋𝑅

𝑎
))×22,233.12497)−

963.6661

502 (−
𝜋2

𝑎2 sin(
𝜋𝑅

𝑎
))

1

504(
𝜋4

𝑎4 sin(
𝜋𝑅

𝑎
))×1,981.446447

sin (
𝜋𝑅

𝑎
)  

                     (103) 

 ⋁4(𝑅) =  −
114.4427732

1

502(−
𝜋2

𝑎2 sin(
𝜋𝑅

𝑎
))

sin (
𝜋𝑅

𝑎
)           (104) 

 

3.5  Discussion of Results 

The power series method for multiple variables 

effectively derives shape functions for mono-

symmetric box girder bridges, offering rapid 

convergence and accurate multi-dimensional represe-

ntation. It adapts well to complex structures with 

varied boundary and loading conditions, unlike single-

variable methods such as trigonometric and Taylor-

Maclaurin series. Hence, this study integrates Vlasov 

theory with Varbanov's modified displacement 

functions and a power series framework to overcome 

limitations of slow convergence and 

oversimplification. The results as shown  in Figure 3, 

revealed significant deformation patterns; Hence, in 

the power series, maximum deflections occurred at 5m 

and 45m, attributed to localized bending moments 

caused by eccentric loading. Minimum distortion 

points were observed away from load concentrations, 

with reduced cross-sectional warping. Taylor-

Maclaurin series deflections peaked at mid-span, 

consistent with beam theory predictions, while 

distortional curves showed linear trends with 

deformation neutralization at mid-span due to 

opposing end constraints. Trigonometric series 

displayed cyclic deformation patterns, reflecting the 

effects of fluctuating loads, and distortional curves 

stabilized at mid-span. These findings emphasize the 

ability of mono-symmetric box girders to mitigate 

torsional moments and improve structural efficiency. 

 

 
 

4.0  CONCLUSIONS 

Mono-symmetric box girder sections combine 

strength, durability, and design flexibility, making 

them ideal for modern bridge construction. The multi-

variable power series approach offers rapid 

convergence and accurately captures complex 

behaviors by accounting for both axial and transverse 

deformations under combined bending and torsional 
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loads. This method overcomes the oversimplifications 

and slow convergence of single-variable techniques, 

providing a precise representation of structural 

responses. Its ability to address intricate deformations 

and torsional moments establishes a robust framework 

for designing efficient and reliable bridge girders. 

Comparing multi-variable and single-variable 

methods highlights their fundamentally different 

capabilities in structural analysis. 
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