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Abstract 

This study presents analytical solutions using the finite sine transformation 

methodology (FSTM) for the natural dynamic solutions of thick beams. The 

Euler-Bernoulli beam theory (EBBT) disregards the contributions of transverse 

shear strains due to the Euler-Bernoulli-Navier orthogonality hypothesis used 

in its formulation and is unsuitable for thick beams. It derived a variational 

formulation of flexural vibration equations of sinusoidal shear deformable 

beams using first principles approach. The governing equation is formulated for 

transverse dynamic loading and in-plane compressive force as a non-

homogeneous partial differential equation (PDE). The PDE did not need shear 

correction factors. The formulation yielded a cosine function shaped transverse 

shear strain and stress distribution which was maximum at the neutral axis and 

vanished at the beam surfaces. The PDE was solved for free flexural vibration 

where it became homogeneous due to the absence of forcing excitation forces. 

The FSTM was used for solving simply supported beams since sinusoidal kernel 

complies with end conditions. The problem simplifies for harmonic excitation to 

an algebraic eigenvalue problem solvable using algebraic methods. The roots 

are utilized to compute modal vibrations and the resonant vibration frequency 

at the first mode, (n = 1). The resonant frequencies obtained are identical with 

past results that used theory of elasticity technique. The results for the first five 

vibration modes are also close to previous results obtained thick beam models 

for all modes and aspect ratios considered. The effectiveness of the FSTM and 

its accuracy has been demonstrated for simply supported thick beam vibration 

problems. 
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1.0  INTRODUCTION 

Beams are structural members commonly found in 

buildings, structures, machinery, naval and 

aeronautical structures. They have longitudinal 

dimensions which are usually much greater than the 

cross-sectional dimensions; and can be supported in a 

variety of ways either at the ends or at points on their 

spans [1 – 2]. Their behaviour depends upon the ratio 

of the depth h to the span l and they are called slender 

beams when and hl-1<0.05, moderately or thick beams 

when hl-1>0.05. 

 

EBBT, is a developed using the Euler-Bernoulli-

Navier (EBN) hypothesis. The EBN hypothesis 

requires the cross-sectional lines normal to 

longitudinal axis of the beam’s middle surface prior to 

deformation continue to be plane and normal to the 

beam’s mid surface thereafter, and the middle surface 
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remains a neutral surface [1 – 2]. The implication is 

that the transverse shear stresses yielding non-planar 

deformations are neglected. However, flexural 

deformations are always accompanied by shear 

deformations. Despite this, EBBT gives satisfactory 

solutions for slender beams where transverse shear 

deformations are negligible. In thick beams, shear 

deformations are significant and should be considered 

[3 – 6]. 

 

The search for improvements on the EBBT led 

Timoshenko [7] to pioneer research on refined effects. 

The resulting Timoshenko beam theory (TBT) 

accommodates transverse shear strains by relaxing the 

EBN hypothesis to permit a violation of the 

orthogonality rule. The TBT is a first order shear 

deformable beam theory (FSDBT) that yields uniform 

shear strain profile across the depth and violates shear 

stress-free boundary conditions. This violation is a 

significant limitation of the TBT. The TBT needs 

problem-dependent shear correction parameters for 

accurate strain energy of deformation [8]. Cowper [9] 

presented shear modification factors for differing 

beam cross-sectional geometrics for TBT. The 

accuracy of the TBT was verified by Cowper [9] by 

comparison of TBT solutions with plane stress 

elasticity. Ike [10] derived solutions for bending of 

transversely loaded beams modelled using TBT, but 

did not study their free vibration analysis. 

 

Efforts to improve EBBT and TBT have resulted to 

the development of other FSDBTs, shear deformable 

beam theories (SDBTs), higher order shear 

deformable beam theories (HSDBTs) and refined 

beam theories (RBTs) [11], [12], [13]. Shear 

deformation beam theories that rely on third degree 

polynomial shear shape functions have been 

developed [14]. Their equations resulted in transverse 

shear stress profiles across the thicknesses which were 

quadratic functions that vanished at the beam surfaces, 

but were maxima at the neutral axis. A closed-form 

solution to stability of beams based on a third-degree 

polynomial shear deformable beam theory formulated 

using variational calculus methods was derived by Ike 

[15]. The formulation used energy functional,  , and 

the Euler-Lagrange differential equations.  

 

Ike [16] formulated a hyperbolic shear deformation 

beam bending equation, and utilized Fourier series 

methodology to find accurate deflections and stresses 

for simply supported thick beams under transverse 

loads. The equations satisfied transverse shear stress-

vanishing boundary conditions, thus did not use shear 

correction factors. Mama et al [17] applied finite 

Fourier sine transform methodology (FFSTM) for 

eigenfrequency solutions of free transverse vibrations 

for simply supported relatively thick beams. The 

FFSTM which is an integral transform method based 

on Fourier theory ideally suited for simple end 

supports converted the boundary value problem 

(BVP) to a more amenable algebraic problem. Sayyad 

and Ghugal [18] derived hyperbolic shear deformable 

beam theories in vibration analysis. Their equations 

were variationally consistent, shear correction factors 

were not need. Sayyad and Arhad [19] used a 

trigonometric shear deformable beam theory 

(TSDBT) in transverse dynamic analysis for beams. 

They utilized virtual work methodology and obtained 

differential equations over the domain that satisfy 

boundary condition at the beam surfaces. 

 

Geetha et al [20] and Shimpi [21] studied various 

problems of RBTs in bending, stability and vibration. 

They obtained variationally consistent domain 

equations that satisfied boundary conditions. Heyliger 

and Reddy [22] used HSDBTs to obtain thick beam 

solutions. Nguyen et al [13] and Onah et al [23] 

obtained analytical expression buckling relatively 

thick beam for different end supports but did not 

consider their vibration analysis. Shimpi et al [21] 

developed a two-variable RBT for vibrating thick 

rectangular beams. Their study which was 

displacement-based, assumed linear elastic, 

homogeneous, isotropic and prismatic beam. The 

Governing Differential Equations GDEs for their 

theory are two equations which are inertially coupled 

for vibrations and decoupled for static flexure. They 

validated their equations using eigenfrequency 

expression for simply supported beams solved with 

Navier’s method. Ibearughulem et al [24] used energy 

techniques of a vibrating thick beam to obtain 

satisfactory solutions to least vibrating frequencies for 

deep prismatic beams having simple end supports. 

 

Karamanli [25] studied the stability of functionally 

graded material (FGM) beam utilizing a third order 

shear deformable beam theory, but did not natural 

dynamics consider of the problem. Ghumare and 

Sayyad [26] presented a fifth order shear and normal 

deformable theory of FGM beams for flexure and 

stability, but did not consider their free vibration 

studies. Sayyad and Ghugal [27] presented a critical 

review of previous studies on the flexure, and natural 

dynamics of laminated, composite and sandwich 

beams and revealed the need for further research on 

the topic of RBTs and SDBTs due to lack of extensive 

work on the subject. 

 

This study presents a variational formulation of 

flexural vibration equations of motion of sinusoidal 
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shear deformable beams (SSDB) using first principles 

approach. The governing equation is formulated for 

transverse dynamic loading and in-plane compressive 

force. Solutions are obtained for simply supported 

thick beams using FSTM which has not been 

previously used for the obtained equations. 

 

2.0  THEORETICAL FRAMEWORK AND 

DERIVATION 

2.1  Simply Supported (SS) Thick beam flexural 

problem studied 

The simply supported thick beam flexural problem 

studied is prismatic, homogeneous and rectangular in 

cross-section as illustrated in Figure 1. 
 

 
Figure 1:  Simply supported thick beam flexural 

problem 

 

Cartesian coordinates with origin at the left support as 

shown in Figure 1 is used to define the beam geometry 

as: 

0 ≤ 𝑥 ≤ 𝑙, −0.5𝑏 ≤ 𝑦 ≤ 0.5𝑏, −0.5ℎ ≤ 𝑧 ≤ 0.5ℎ  
where in l is length of the beam, b is width and h is 

thickness. The beam is loaded with a distributed 

loading with intensity p(x) in. 

 

2.2  Assumptions 
Basic assumptions of the derivation include: 

i. The x component of displacement is decomposed 

into two parts namely (a) displacement attributable 

to classical beam theory, (b) displacement attribu-

ted to transverse shear strain. 

ii. displacement in the z direction depends on time, t, 

and x. 

iii. The stress-strain behaviour is one-dimensional. 

 

2.3  Displacement Components 
The displacement components are [14] [21]: 

𝑢𝑥(𝑥, 𝑧, 𝑡) = −𝑧
𝑑𝑢𝑧(𝑥,𝑡)

𝑑𝑥
− 0.25(1 + 𝜇)ℎ2𝛽(𝑧)

𝑑3𝑢𝑧(𝑥,𝑡)

𝑑𝑥3
            (1) 

𝑢𝑦(𝑥, 𝑧, 𝑡) = 0                        (2) 

𝑢𝑧(𝑥, 𝑡) = �̅�𝑧(𝑥, 𝑡)                  (3) 

wherein ux and uz are x and z components of 

displacement, 𝜇 is Poisson’s ratio, �̅�𝑧 is the transverse 

displacement at 𝑧 = 0. 𝛽(𝑧) is the shearing stress 

distribution function along the beam thickness. For a 

sinusoidal distribution that satisfies transverse shear 

stress free boundary conditions at 𝑧 = ±ℎ 2⁄ , it is 

required that  

𝛽′(𝑧 = ±0.5ℎ) = 0                  (4) 

Hence,  

𝛽(𝑧) =
ℎ

𝜋
sin (

𝜋𝑧

ℎ
)               (5) 

 

2.4  Strains 
Using the strain-displacement relations of linear 

elasticity theory, the strains are determined thus: 

𝜀𝑥𝑥 =
𝑑𝑢𝑥

𝑑𝑥
= −𝑧

𝑑2𝑢𝑧

𝑑𝑥2
− 0.25(1 + 𝜇)ℎ2𝛽(𝑧)

𝑑4𝑢𝑧

𝑑𝑥4
         (6) 

𝜀𝑦𝑦 =
𝑑𝑢𝑦

𝑑𝑦
= 𝜀𝑦𝑦 =

𝑑𝑢𝑧

𝑑𝑧
= 0            (7) 

𝛾𝑥𝑦 =
𝑑𝑢𝑥

𝑑𝑦
+

𝑑𝑢𝑦

𝑑𝑥
= 0 = 𝛾𝑦𝑧 =

𝑑𝑢𝑦

𝑑𝑧
+

𝑑𝑢𝑧

𝑑𝑦
        (8) 

𝛾𝑥𝑦 =
𝑑𝑢𝑥

𝑑𝑧
+

𝑑𝑢𝑧

𝑑𝑦
=

𝑑𝑢𝑧

𝑑𝑥
−

𝑑𝑢𝑧

𝑑𝑥
− 0.25(1 + 𝜇)ℎ2𝛽′(𝑧)

𝑑3𝑢𝑧

𝑑𝑥3
=

−0.25(1 + 𝜇)ℎ2𝛽′(𝑧)
𝑑3𝑢𝑧

𝑑𝑥3
               (9) 

Wherein xx, yy, zz are normal strains; xy, yz, xz are 

shear strains and 𝛽′(𝑧) denotes derivative of (z) with 

respect to z. 

 

2.5  Stresses 
Stresses are found by utilizing one-dimensional stress-

strain laws as: 

𝜎𝑥𝑥 = 𝐸𝜀𝑥𝑥 = 𝐸 (−𝑧
𝑑2�̅�𝑧

𝑑𝑥2
− 0.25(1 + 𝜇)ℎ2𝛽(𝑧)

𝑑4𝑢𝑧

𝑑𝑥4
)        (10) 

𝜎𝑦𝑦 = 𝐸𝜀𝑦𝑦 = 0 = 𝜎𝑧𝑧 = 𝐸𝜀𝑧𝑧 = 0                     (11) 

𝜏𝑥𝑦 = 𝐺𝛾
𝑥𝑦

= 0 = 𝜏𝑦𝑧 = 𝐺𝛾
𝑦𝑧
= 0     (12) 

𝜏𝑥𝑧 = 𝐺𝛾𝑥𝑧 = −𝐺(0.25(1 + 𝜇))ℎ2𝛽′(𝑧)
𝑑3𝑢𝑧

𝑑𝑥3
         (13) 

wherein E is Young’s modulus and G is shear 

modulus. 

 

2.6  Governing Differential Equation 
Applying the principle of virtual work, 

∫ ∫ ∫ (𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧)𝑑𝐴𝑑𝑥 +
ℎ 2⁄

−ℎ 2⁄

𝑏 2⁄

−𝑏 2⁄

𝑙

0

𝜌 ∫ ∫ ∫ (
𝑑2𝑢𝑥

𝑑𝑡2
𝛿𝑢𝑥 +

𝑑2�̅�𝑧

𝑑𝑡2
𝛿𝑢𝑧) 𝑑𝐴𝑑𝑥 − ∫ 𝑝(𝑥)𝛿�̅�𝑧𝑑𝑥

𝑙

0
−

ℎ 2⁄

−ℎ 2⁄

𝑏 2⁄

−𝑏 2⁄

𝑙

0

∫ 𝑁𝑥𝑥
𝑑𝑢𝑧

𝑑𝑥

𝑑𝛿𝑢𝑧

𝑑𝑥
𝑑𝑥 = 0

𝑙

0
                                     (14) 

where  is a variational operator. A is cross-sectional 

area;  is beam material density; Nxx is the axially 

applied compressive load. 

𝛿𝜀𝑥𝑥 = 𝛿 (−𝑧
𝑑2�̅�𝑧

𝑑𝑥2
− 0.25(1 + 𝜇)ℎ2𝛽(𝑧)

𝑑4𝑢𝑧

𝑑𝑥4
) = −𝑧

𝑑2𝛿𝑢𝑧

𝑑𝑥2
−

0.25(1 + 𝜇)ℎ2𝛽(𝑧)
𝑑4𝛿𝑢𝑧

𝑑𝑥4
                (15) 

𝛿𝛾𝑥𝑧 = 𝛿 (−𝐺(0.25(1 + 𝜇))ℎ2𝛽′(𝑧)
𝑑3�̅�𝑧

𝑑𝑥3
) = −𝐺(0.25(1 +

𝜇))ℎ2𝛽′(𝑧)
𝑑3𝛿𝑢𝑧

𝑑𝑥3
                   (16) 

 

Hence the virtual work equation becomes: 

∫ ∫ ∫𝐸 ((−𝑧
𝑑2𝑢𝑧

𝑑𝑥
− 0.25(1 + 𝜇)ℎ2𝛽(𝑧)

𝑑4𝑢𝑧

𝑑𝑥4
) (−𝑧

𝑑2𝛿𝑢𝑧

𝑑𝑥2
− 0.25(1 +

𝐴

𝑙

0

𝜇)ℎ2𝛽(𝑧)
𝑑4𝛿𝑢𝑧

𝑑𝑥4
)) + (−𝐺(0.25(1 + 𝜇))ℎ2𝛽′(𝑧)

𝑑3𝑢𝑧

𝑑𝑥3
) (−0.25(1 +

𝜇)ℎ2𝛽′(𝑧)
𝑑3𝛿𝑢𝑧

𝑑𝑥3
)𝑑𝐴𝑑𝑥 + 𝜌∫ ∫ ∫

𝑑2

𝑑𝑡2𝐴

𝑙

0
(−𝑧

𝑑𝑢𝑧

𝑑𝑥
− 0.25(1 +

𝜇)ℎ2𝛽(𝑧)
𝑑3𝑢𝑧

𝑑𝑥3
) (−𝑧

𝑑𝛿𝑢𝑧

𝑑𝑥
− 0.25(1 + 𝜇)ℎ2𝛽(𝑧)

𝑑3𝛿𝑢𝑧

𝑑𝑥3
)𝑑𝐴𝑑𝑥 +

𝜌 ∫ ∫ ∫
𝑑2𝑢𝑧

𝑑𝑡2
𝛿𝑢𝑧𝑑𝐴𝑑𝑥 − ∫ 𝑝(𝑥)𝛿𝑤𝑑𝑥 − ∫ 𝑁𝑥𝑥

𝑑𝑢𝑧

𝑑𝑥

𝑑𝛿𝑢𝑧

𝑑𝑥
𝑑𝑥 = 0

𝑙

0

𝑙

0𝐴

𝑙

0
  (17) 
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or, 

∫ ∫ ∫ {𝜎𝑥𝑥 (−𝑧
𝑑2𝛿𝑢𝑧

𝑑𝑥2
− (

1+𝜇

4
)ℎ2𝛽(𝑧)

𝑑4𝛿𝑢𝑧

𝑑𝑥4
) +

𝐴

𝑙

0

𝜏𝑥𝑧 (−(
1+𝜇

4
) ℎ2𝛽′(𝑧)

𝑑3𝛿𝑢𝑧

𝑑𝑥3
)} 𝑑𝐴𝑑𝑥 + 𝜌∫ ∫ ∫ (

𝑑2𝑢𝑥𝛿𝑢𝑥

𝑑𝑡2
+

𝐴

𝑙

0
𝑑2𝑢𝑧𝛿𝑢𝑧

𝑑𝑡2
)𝑑𝐴𝑑𝑥 − ∫ 𝑝(𝑥)𝛿𝑤𝑑𝑥

𝑙

0
− ∫ 𝑁𝑥𝑥

𝑑𝑢𝑧

𝑑𝑥

𝑑𝛿𝑢𝑧

𝑑𝑥

𝑙

0
𝑑𝑥 = 0            (18) 

 

∫ ∫ ∫(−𝜎𝑥𝑥𝑧) 𝑑𝐴
𝑑2𝛿𝑢𝑧

𝑑𝑥2
𝑑𝑥 − (

1+𝜇

4
)ℎ2 ∫ ∫ ∫𝜎𝑥𝑥 𝛽(𝑧)𝑑𝐴

𝑑4𝛿𝑢𝑧

𝑑𝑥4
𝑑𝑥

𝐴

𝑙

0𝐴

𝑙

0
−

(
1+𝜇

4
)ℎ2 ∫ ∫ ∫ 𝜏𝑥𝑧𝐴

𝑙

0
𝛽′(𝑧)𝑑𝐴

𝑑3𝛿𝑢𝑧

𝑑𝑥3
𝑑𝑥 + 𝐼0 ∫

𝑑3𝑢𝑧

𝑑𝑥𝑑𝑡2

𝑑𝛿𝑢𝑧

𝑑𝑥
𝑑𝑥

𝑙

0
+

𝐼1 ∫
𝑑3𝑢𝑧

𝑑𝑥𝑑𝑡2

𝑙

0

𝑑3𝛿𝑢𝑧

𝑑𝑥3
𝑑𝑥 + 𝐼1 ∫

𝑑5𝑢𝑧

𝑑𝑥3𝑑𝑡2

𝑙

0

𝑑𝛿𝑢𝑧

𝑑𝑥
𝑑𝑥 + 𝐼2 ∫

𝑑5𝑢𝑧

𝑑𝑥3𝑑𝑡2

𝑙

0

𝑑3𝑑𝛿𝑢𝑧

𝑑𝑥3
𝑑𝑥 +

𝐼3 ∫
𝑑2𝑢𝑧

𝑑𝑡2

𝑙

0
𝛿𝑢𝑧𝑑𝑥 − ∫ 𝑝(𝑥)

𝑙

0
𝛿�̅�𝑧𝑑𝑥 − ∫ 𝑁𝑥𝑥

𝑙

0

𝑑𝑢𝑧

𝑑𝑥

𝑑𝛿𝑢𝑧

𝑑𝑥
𝑑𝑥 = 0                (19) 

 

The bending moment resultants are the double 

integrals: 

𝑀𝑏 = ∬ 𝜎𝑥𝑥𝐴
𝑧𝑑𝑦𝑑𝑧             (20) 

𝑀𝑠 = ∬ 𝜎𝑥𝑥𝐴
𝛽(𝑧)𝑑𝑦𝑑𝑧                 (21) 

Mb is the bending moment due to flexure; Ms is 

bending moment caused by shear. 

The shear force resultant, Q is: 

𝒬 = ∬ 𝜏𝑥𝑧𝛽
′(𝑧)𝑑𝑦𝑑𝑧

𝐴
                (22) 

The virtual work equation is then: 

∫ 𝑀𝑏
𝑙

0

𝑑2𝛿𝑢𝑧

𝑑𝑥2
𝑑𝑥 − (

1+𝜇

4
)ℎ2 ∫ 𝑀𝑠

𝑙

0

𝑑4𝛿𝑢𝑧

𝑑𝑥4
𝑑𝑥 − (

1+𝜇

4
)ℎ2 ∫ 𝒬

𝑑3𝛿𝑢𝑧

𝑑𝑥3
𝑑𝑥

𝑙

0
+

𝐼0 ∫
𝑑3𝑢𝑧

𝑑𝑥𝑑𝑡2

𝑑𝛿𝑢𝑧

𝑑𝑥

𝑙

0
𝑑𝑥 + 𝐼1 ∫

𝑑3𝑢𝑧

𝑑𝑥𝑑𝑡2

𝑑3𝛿𝑢𝑧

𝑑𝑥3
𝑑𝑥

𝑙

0
+ 𝐼1 ∫

𝑑5𝑢𝑧

𝑑𝑥3𝑑𝑡2

𝑑𝛿𝑢𝑧

𝑑𝑥
𝑑𝑥

𝑙

0
+

𝐼2 ∫
𝑑5𝑢𝑧

𝑑𝑥3𝑑𝑡2

𝑑3𝛿𝑢𝑧

𝑑𝑥3
𝑑𝑥

𝑙

0
+ 𝐼3 ∫

𝑑2𝑢𝑧

𝑑𝑡2
𝛿�̅�𝑧𝑑𝑥

𝑙

0
− ∫ 𝑝(𝑥)𝛿�̅�𝑧𝑑𝑥

𝑙

0
−

∫ 𝑁𝑥𝑥
𝑙

0

𝑑𝑢𝑧

𝑑𝑥

𝑑𝛿𝑢𝑧

𝑑𝑥
𝑑𝑥 = 0            (23) 

where 𝐼0 = 𝜌∬ 𝑧2𝑑𝐴
𝐴

          (24) 

 

𝐼1 = 𝜌
(1+𝜇)

4
ℎ2∬ 𝑧

𝐴
𝛽(𝑧)𝑑𝑧𝑑𝑦              (25) 

𝐼2 =
𝜌(1+𝜇)2ℎ4

16
∬ (𝛽(𝑧))

2

𝐴
𝑑𝑦𝑑𝑧         (26) 

𝐼3 = 𝜌∬ 𝑑𝑦𝑑𝑧
𝐴

                      (27) 

Integration by parts and collecting the terms involving 

uz gives the domain equation of equilibrium as: 
𝑑2𝑀𝑏

𝑑𝑥2
+ (

1+𝜇

4
)ℎ2

𝑑4𝑀𝑠

𝑑𝑥4
− (

1+𝜇

4
)ℎ2

𝑑3𝒬(𝑥)

𝑑𝑥3
+ 𝐼2

𝑑8𝑢𝑧

𝑑𝑥6𝑑𝑡2
+ 2𝐼1

𝑑6𝑢𝑧

𝑑𝑥4𝑑𝑡2
+

𝐼0
𝑑4𝑢𝑧

𝑑𝑥2𝑑𝑡2
− 𝐼3

𝑑2𝑢𝑧

𝑑𝑡2
+ 𝑝(𝑥) + 𝑁𝑥𝑥

𝑑2𝑢𝑧

𝑑𝑥2
= 0                        (28) 

 

Substituting the expressions for Mb, Ms and Q, gives 

the GDE 

𝐺3
𝑑8𝑢𝑧

𝑑𝑥8
+ (2𝐺2 − 𝐺4)

𝑑6𝑢𝑧

𝑑𝑥6
+ 𝐺1

𝑑4𝑢𝑧

𝑑𝑥4
− 𝐼2

𝑑8𝑢𝑧

𝑑𝑥6𝑑𝑡2
− 2𝐼1

𝑑6𝑢𝑧

𝑑𝑥4𝑑𝑡2
− 𝐼0

𝑑4𝑢𝑧

𝑑𝑥2𝑑𝑡2
+

𝐼3
𝑑2𝑢𝑧

𝑑𝑡2
= 𝑝(𝑥) + 𝑁𝑥𝑥

𝑑2𝑢𝑧

𝑑𝑥2
           (29) 

where 𝐺1 = 𝐸 ∫ ∫ 𝑧2
ℎ/2

−ℎ/2

𝑏/2

−𝑏/2
𝑑𝑦𝑑𝑧        (30) 

𝐺2 =
𝐸(1+𝜇)ℎ2

4
∫ ∫ 𝑧𝛽(𝑧)𝑑𝑦𝑑𝑧

ℎ/2

−ℎ/2

𝑏/2

−𝑏/2
       (31) 

𝐺3 = 𝐸 (
1+𝜇

4
)
2
ℎ4 ∫ ∫ (𝛽(𝑧))

2
𝑑𝑦𝑑𝑧

ℎ/2

−ℎ/2

𝑏/2

−𝑏/2
         (32) 

𝐺4 = 𝐺 (
1+𝜇

4
)
2
ℎ4 ∫ ∫ (𝛽′(𝑧))

2
𝑑𝑦𝑑𝑧

ℎ/2

−ℎ/2

𝑏/2

−𝑏/2
     (33) 

𝐺1 = 𝐸 ∫ 𝑑𝑦
𝑏/2

−𝑏/2 ∫ 𝑧2
ℎ/2

−ℎ/2
𝑑𝑧 =

𝐸𝑏ℎ3

12
= 𝐸𝐼     (34) 

𝐺2 =
𝐸(1+𝜇)ℎ2

4
∫ 𝑑𝑦
𝑏/2

−𝑏/2 ∫ 𝑧
ℎ/2

−ℎ/2
.
ℎ

𝜋
sin (

𝜋𝑧

ℎ
) 𝑑𝑧 =

𝐸(1+𝜇)ℎ2𝑏

2𝜋3
             (35) 

𝐺3 = 𝐸 (
1+𝜇

4
)
2
ℎ4 ∫ 𝑑𝑦

𝑏/2

−𝑏/2 ∫ (
ℎ

𝜋
sin (

𝜋𝑧

ℎ
))

2ℎ/2

−ℎ/2
𝑑𝑧 =

𝐸(1+𝜇)2ℎ7𝑏

32𝜋2
  (36) 

𝐺4 = 𝐺 (
1+𝜇

4
)
2

ℎ4 ∫ 𝑑𝑦
𝑏/2

−𝑏/2
∫ (

ℎ

𝜋

𝜋

ℎ
cos (

𝜋𝑧

ℎ
))

2

𝑑𝑧
ℎ/2

−ℎ/2
=

𝐺(1+𝜇)2ℎ5𝑏

32
                   (37) 

 

Similarly, 

𝐼0 = ρ∫ ∫ 𝑧2
ℎ/2

−ℎ/2
𝑑𝑦𝑑𝑧

𝑏/2

−𝑏/2
= ρ

𝑏ℎ3

12
= ρ𝐼      (38) 

𝐼1 =
ρ(1+𝜇)

4
ℎ2 ∫ ∫ 𝑧𝛽(𝑧)𝑑𝑦𝑑𝑧

ℎ/2

−ℎ/2
=

𝜌(1+𝜇)ℎ5𝑏

2𝜋3

𝑏/2

−𝑏/2
  (39) 

𝐼2 =
𝜌(1+𝜇)2ℎ4

16
∫ ∫ (𝛽(𝑧))

2
𝑑𝑦𝑑𝑧

ℎ/2

−ℎ/2
=

𝜌(1+𝜇)2ℎ7𝑏

32𝜋2

𝑏/2

−𝑏/2
  (40) 

𝐼3 = 𝜌∫ ∫ 𝑑𝑦𝑑𝑧
ℎ/2

−ℎ/2

𝑏/2

−𝑏/2
= 𝜌𝑏ℎ = 𝜌𝐴       (41) 

 

2.7  Equation for Natural Vibration 

For natural vibrations, the transverse load distribution 

p(x) and the compressive force Nxx in Equation (35) 

vanish; and the governing homogeneous differential 

equation becomes: 

𝐺3
𝑑8𝑢𝑧

𝑑𝑥8
+ (2𝐺2 − 𝐺4)

𝑑6𝑢𝑧

𝑑𝑥6
+ 𝐺1

𝑑4𝑢𝑧

𝑑𝑥4
− 𝐼2

𝑑8𝑢𝑧

𝑑𝑥6𝑑𝑡2
−

2𝐼1
𝑑6𝑢𝑧

𝑑𝑥4𝑑𝑡2
− 𝐼0

𝑑4𝑢𝑧

𝑑𝑥2𝑑𝑡2
+ 𝐼3

𝑑2𝑢𝑧

𝑑𝑡2
= 0         (42) 

 

3.0  METHODOLOGY 
By finite sine transformation of Equation (48): 

∫ (𝐺3
𝑑8𝑢𝑧

𝑑𝑥8
+ (2𝐺2 − 𝐺4)

𝑑6𝑢𝑧

𝑑𝑥6
+ 𝐺1

𝑑4𝑢𝑧

𝑑𝑥4
− 𝐼2

𝑑8𝑢𝑧

𝑑𝑥6𝑑𝑡2
−

∞

0

2𝐼1
𝑑6𝑢𝑧

𝑑𝑥4𝑑𝑡2
− 𝐼0

𝑑4𝑢𝑧

𝑑𝑥2𝑑𝑡2
+ 𝐼3

𝑑2𝑢𝑧

𝑑𝑡2
) sin

𝑛𝜋𝑥

𝑙
𝑑𝑥 = 0      (43) 

Utilizing the linear property of transform, 

𝐺3 ∫
𝑑8𝑢𝑧

𝑑𝑥8
sin

𝑛𝜋𝑥

𝑙
𝑑𝑥 + (2𝐺2 − 𝐺4)

∞

0
∫

𝑑6𝑢𝑧

𝑑𝑥6
sin

𝑛𝜋𝑥

𝑙
𝑑𝑥 +

∞

0

𝐺1 ∫
𝑑4𝑢𝑧

𝑑𝑥4
sin

𝑛𝜋𝑥

𝑙
𝑑𝑥

∞

0
− 𝐼2

𝑑2

𝑑𝑡2
∫

𝑑6𝑢𝑧

𝑑𝑥6
sin

𝑛𝜋𝑥

𝑙
𝑑𝑥 −

∞

0

2𝐼1
𝑑2

𝑑𝑡2
∫

𝑑4𝑢𝑧

𝑑𝑥4

∞

0
sin

𝑛𝜋𝑥

𝑙
𝑑𝑥 − 𝐼0

𝑑2

𝑑𝑡2
∫

𝑑2𝑢𝑧

𝑑𝑥2

∞

0
sin

𝑛𝜋𝑥

𝑙
𝑑𝑥 +

𝐼3
𝑑2

𝑑𝑡2
∫ �̅�𝑧
∞

0
sin

𝑛𝜋𝑥

𝑙
𝑑𝑥 = 0          (44) 

 

Let ∫ �̅�𝑧 sin
𝑛𝜋𝑥

𝑙
𝑑𝑥

∞

0
= 𝑈𝑧𝑛        (45) 

𝑈𝑧𝑛 is the finite sine transform of �̅�𝑧. 

 

Integrating by parts and simplifying gives: 

𝐺3 (
𝑛𝜋

𝑙
)
8

𝑈𝑧𝑛 − (2𝐺2 − 𝐺4) (
𝑛𝜋

𝑙
)
6

𝑈𝑧𝑛 + 𝐺1 (
𝑛𝜋

𝑙
)
4

𝑈𝑧𝑛 +

𝐼2 (
𝑛𝜋

𝑙
)
6 𝑑2�̅�𝑧𝑛

𝑑𝑡2
− 2𝐼1 (

𝑛𝜋

𝑙
)
4 𝑑2�̅�𝑧𝑛

𝑑𝑡2
+ 𝐼0 (

𝑛𝜋

𝑙
)
2 𝑑2�̅�𝑧𝑛

𝑑𝑡2
+

𝐼3
𝑑2𝑈𝑧𝑛

𝑑𝑡2
= 0               (46) 

Simplifying, 

(𝐼2 (
𝑛𝜋

𝑙
)
6

− 2𝐼1 (
𝑛𝜋

𝑙
)
4

+ 𝐼0 (
𝑛𝜋

𝑙
)
2

+ 𝐼3)
𝑑2�̅�𝑧𝑛

𝑑𝑡2
+

(𝐺3 (
𝑛𝜋

𝑙
)
8

− (2𝐺2 − 𝐺4) (
𝑛𝜋

𝑙
)
6

+ 𝐺1 (
𝑛𝜋

𝑙
)
4

) �̅�𝑧𝑛 = 0    (47) 

   

This is now of the form: 

𝑀�̈� + 𝐾𝑋 = 0             (48) 

𝑋 is 𝑈𝑧𝑛          

where 𝑀 is inertia matrix, 𝐾 is elastic stiffness matrix. 

𝑀 = 𝐼2 (
𝑛𝜋

𝑙
)
6

− 2𝐼1 (
𝑛𝜋

𝑙
)
4

+ 𝐼0 (
𝑛𝜋

𝑙
)
2

+ 𝐼3           (49) 

𝐾 = 𝐺3 (
𝑛𝜋

𝑙
)
8

− (2𝐺2 − 𝐺4) (
𝑛𝜋

𝑙
)
6

+ 𝐺1 (
𝑛𝜋

𝑙
)
4

    (50) 
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Alternatively, solving by the method of trial functions, 

let �̅�𝑧𝑛 = 𝑒𝑖𝜆𝑡 where 𝑖 = √−1 then, 

−𝜆2 (𝐼2 (
𝑛𝜋

𝑙
)
6

− 2𝐼1 (
𝑛𝜋

𝑙
)
4

+ 𝐼0 (
𝑛𝜋

𝑙
)
2

+ 𝐼3) 𝑒
𝑖𝜆𝑡 +

(𝐺3 (
𝑛𝜋

𝑙
)
8

− (2𝐺2 − 𝐺4) (
𝑛𝜋

𝑙
)
6

+ 𝐺1 (
𝑛𝜋

𝑙
)
4

) 𝑒𝑖𝜆𝑡 = 0   (51) 

𝑒𝑖𝜆𝑡 ≠ .0   
 

Hence frequency equation becomes: 

−𝜆2 (𝐼2 (
𝑛𝜋

𝑙
)
6

− 2𝐼1 (
𝑛𝜋

𝑙
)
4

+ 𝐼0 (
𝑛𝜋

𝑙
)
2

+ 𝐼3) +

(𝐺3 (
𝑛𝜋

𝑙
)
8

− (2𝐺2 − 𝐺4) (
𝑛𝜋

𝑙
)
6

+ 𝐺1 (
𝑛𝜋

𝑙
)
4

) = 0         (52) 

Solving for , 

𝜆2 =
(𝐺3(

𝑛𝜋

𝑙
)
8
−(2𝐺2−𝐺4)(

𝑛𝜋

𝑙
)
6
+𝐺1(

𝑛𝜋

𝑙
)
4
)

(𝐼2(
𝑛𝜋

𝑙
)
6
−2𝐼1(

𝑛𝜋

𝑙
)
4
+𝐼0(

𝑛𝜋

𝑙
)
2
+𝐼3)

        (53) 

Hence,  

𝜆 = √(
𝐺3(

𝑛𝜋

𝑙
)
8
−(2𝐺2−𝐺4)(

𝑛𝜋

𝑙
)
6
+𝐺1(

𝑛𝜋

𝑙
)
4

𝐼2(
𝑛𝜋

𝑙
)
6
−2𝐼1(

𝑛𝜋

𝑙
)
4
+𝐼0(

𝑛𝜋

𝑙
)
2
+𝐼3

)        (54) 

 

4.0  RESULTS AND DISCUSSION 

4.1  Results 

Hence the natural frequencies n for any mode n of 

flexural vibration can  be found as: 

𝜔𝑛 = √(
𝐺3(

𝑛𝜋

𝑙
)
8
−(2𝐺2−𝐺4)(

𝑛𝜋

𝑙
)
6
+𝐺1(

𝑛𝜋

𝑙
)
4

𝐼2(
𝑛𝜋

𝑙
)
6
−2𝐼1(

𝑛𝜋

𝑙
)
4
+𝐼0(

𝑛𝜋

𝑙
)
2
+𝐼3

)        (55) 

 

The least natural frequency occurs at the first mode of 

vibration for which 𝑛 = 1.  

Hence, 

𝜔𝑛(𝑛 = 1) = √(
𝐺3(

𝑛𝜋

𝑙
)
8
−(2𝐺2−𝐺4)(

𝑛𝜋

𝑙
)
6
+𝐺1(

𝑛𝜋

𝑙
)
4

𝐼2(
𝑛𝜋

𝑙
)
6
−2𝐼1(

𝑛𝜋

𝑙
)
4
+𝐼0(

𝑛𝜋

𝑙
)
2
+𝐼3

)   (56)

   

Equation (56) is utilized to compute fundamental 

frequency for a SS thick beam with 𝐸 = 210𝐺𝑃𝑎, 𝜇 =
0.3, 𝜌 = 7,800𝑘𝑔/𝑚2, lh-1 = 4 and lh-1 = 10 which are 

presented in Table 1 together with previous values by 

other researchers. 

 

Similarly, Equation (55) is used to compute the natural 

frequencies for the first five modes of transverse 

vibration which are presented in Table 2, together with 

results from previous researchers. 

For 𝐸 = 210𝐺𝑃𝑎, 𝜇 = 0.3, 𝜌 = 7,800𝑘𝑔/𝑚2   (64) 

and dimensionless frequency �̅�𝑛 is: 

�̅�𝑛 = 𝜔𝑛 (
𝑙2

ℎ
)√

𝜌

𝐸
             (65) 

 

Table 1: Comparisons of fundamental frequencies of 

SS thick isotropic beam 𝐸 = 210𝐺𝑃𝑎, 𝜇 = 0.3, 

(�̅�𝑛 = 𝜔𝑛 (
𝑙2

ℎ
)√

𝜌

𝐸
)  

 

 Fundamental Frequencies �̅� 
Reference/Theory lh-1 = 4 % Difference lh-1 = 10 % Difference 

Present 2.6021 0.000 2.8024 –0.0713 

EBBT 2.8491 9.4923 2.8240 0.6989 

Exact/Elasticity 

Theory [9] 

2.6021 0.000 2.8044 0.0000 

PSDBT [18] 2.6030 0.0345 2.8022 –0.0784 

TBT [7] 2.5987 –0.1307 2.8027 –0.0606 

HSDBT [22] 2.5960 –0.2344 2.8020 –0.0856 

 

Table 2: Comparison of dimensionless frequencies 

of the thick isotropic beam for first five modes of 

vibration and lh-1 = 4 and lh-1 = 10 
l/h Method/Reference n = 1 n = 2 n = 3 n = 4 n = 5 

4 Present 2.6021 8.612 16.004 24.027 32.443 

Exact/Elasticity 

Theory [9] 

2.6021 – – – – 

EBBT 2.8491 – – – – 

Reddy [14] 2.596 8.569 15.793 23.435 31.339 

       

10 Present 2.8024 10.715 22.598 37.271 53.827 

Exact/Elasticity 

Theory [9] 

2.8044 – – – – 

EBBT 2.8240 – – – – 

Reddy [14] 2.8020 10.7090 22.5660 37.1640 53.557 

 

4.2  Discussion 
Table 1 presents the resonant frequencies of a SS thick 

isotropic beam for material properties considered in 

the study and for lh-1 = 4 and lh-1 = 10, for the present 

study and previous studies. Table 1 shows that the 

present study is identical with the exact theory of 

elasticity solutions presented by [9].  Table 1 further 

shows that the present study gave more accurate 

solutions than the previous studies by [18] who used 

polynomial shear deformation beam theory and 

Navier’s method resulting in a difference of 0.0345% 

for lh-1 = 4, and –0.0784% for lh-1 = 10 from the exact 

results of [9]. Other previous results by [7] gave 

differences from the exact results of –0.1307% for lh-

1 = 4 and –0.0606% for lh-1 = 10. The previous result 

by [22] using HSDT gave differences from the exact 

result of [9] of –0.2344% for lh-1 = 4 and –0.0856% 

for lh-1 = 10.  The EBBT results gave the greatest 

difference between the exact result of [9] as the error 

was 9.4923% for lh-1 = 4 and reduced to 0.6989% for 

lh-1 = 10. 

 

Table 2 presents the comparison of the dimensionless 

frequencies of thick isotropic beam for the first five 

modes of flexural vibration and for lh-1 = 4 and lh-1 = 

10 for the present sinusoidal shear deformation beam 

theory (SSDBT) results and the previous results. 

Table 2 illustrates the insignificant differences 

between the present results and the previous results by 

[14] for all the five modes of vibration; and for lh-1 = 

4 and lh-1 = 10. Table 2 shows that for lh-1 = 10, the 

present solution for resonant frequency shows a 

difference of less than 0.75% from the EBBT, while 

when lh-1 = 4 for thick beams, the present results 

shows a remarkable difference of more than 9% from 
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the EBBT; confirming the unreliability of the EBBT 

for predicting the resonant frequency of thick beams. 

 

5.0  CONCLUSION 
The study has presented a rigorous approach to the 

variational formulation of flexural vibration equations 

of motion of sinusoidal shear deformable thick beams. 

The governing equation is formulated for transverse 

and in-plane compressive loading but solved for free 

vibrations. FSTM was used for the solution of the 

GDE. In conclusion: 

ii. The FSTM simplifies the GDE to an algebraic 

eigenvalue problem. 

iii. FSTM gives analytical expression for the 

frequency of vibration at any mode and the 

resonant frequency at the first vibration mode. 

iiii. The resonant frequencies obtained for this study 

for lh-1 = 4 and lh-1 = 10 are identical with the exact 

result obtained using theory of elasticity methods 

and close to the previous results obtained using 

TBT and HSDBT. 

ivi. The present results for natural vibration 

frequencies for the first five modes of vibration 

were very close to the previous results using 

HSDBT. 

vi. The present FSTM results gave exact solutions for 

the simply supported thick beam vibration 

problem because the sinusoidal kernel functions 

of the integral transformation used satisfies the 

boundary conditions and hence the FSTM is 

ideally suited for the vibration problem. 
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