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Abstract

This work presents the nonlinear analysis of the dynamics of large strain deformation of subsea flowlines and
jumpers conveying two-phase fluid. Precisely, flexible pipes operating in the stated condition undergo large strain
deformations. Thus, the known nonlinear deterministic model of the system is solved using method of discretized
perturbation. Precisely, this study obtained the nonlinear natural frequency of simply supported flexible pipes
modelled using the large strain deformation theory. Results show that both hardening and softening nonlinear
behaviors are indicated for pipe undergoing large strain deformation compared with deformations modelled with
small strain theory. Thus, operational insights and parameters for sustainable management of large strain
deformed subsea flow lines and jumpers conveying two phase flow are made available.
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1.0 INTRODUCTION

The first part of this work considered the effects of
temperature, pressure and tension on  linear free
vibration of a pipe conveying two-phase flow modeled
using large strain deformation theory.

However, the present study investigates the effects of
nonlinearities due to large strains in a straight pipe
conveying two-phase flow. It considers the influence
of thermal strains, pressurization and tension on the
system’s dynamics. By adopting the discrete form of
multiple time scale perturbation method, the nonlinear
equations in [1] were expanded and regrouped. This
facilitates the determination of nonlinear natural
frequencies and responses of pipes subjected to large
strains deformation [2] [3]. It also enabled the
investigation of the effects of thermal strains,
pressurization and tension in the presence of large
nonlinear strains.

2.0 NONLINEAR VIBRATION ANALYSIS
Recalling the dimensionless transverse and
longitudinal vibration equations as derived in the first
part of this work, we have;

W+ 2 + (Vp1/Bri B1 + VpaqfBray/ B2 )W + (.Bflvflz +
ﬁfz”fz2 W 4 (Vp14/Bri Br + Vpar[Bray/ B2 )W + WV +
g(u"’w" + 20w + urWIV) _ g(u”w' + u’w”) _ n&;w
1(8 6thw' + 6th'w’ + 6thw") + % (MTW — Oth'w"" —
Oth W’V) —Tew"” + %Te w!V + (Pr'w’ + 6Prw’ + Prw'") —

%(Pr”w” +2Pr'w"" + Prw!V) =0 (1a)

i+ (01/Briv/Br + Vp2yBrav/B2) + (Vp1/Briv/By +
Vpa[BravB2 )W + 2(vs1y/Briv/Br + vpay/Bray/Bo)it’ +
(ﬁflvflz + ﬁvafZZ)u” —EW”W”’ _ r](6u’ + r)u”) _

%17(611’2 +2u'u'") — %(ZW’W” +6w'?) + % (6 Oth + Oth') +
%(8 Othu' + Oth'u' + 0thu") + (—n Teu”) + G Pr' +

%6. Pr) + (Pr'u’' +6Pru' +Pru'")=0 (1b)

In Equations (1a) and (1b), u(x, t) and w(x, t) are the
dimensionless displacements in the longitudinal and
transverse directions respectively, (vfj) is the flow
velocities of the constituent phases/components used
in the analysis of the dynamics of the system, (8j) is
the mass ratio which relates the mass of a fluid phase
to the total mass of the fluids and the pipe as derived
in [1] for a single phase fluid, ( Sfj ) is the mass ratio


http://www.nijotech.com/

131

Fashanu et al. (2023)

which relates the mass of a fluid phase to the total fluid
mass, and n index the pipe flexibility, Te is the
dimensionless Tension, while Pr is dimensionless
pressurization.

The complementary boundary conditions are;
w(0) =X (0 =w®) =5 =u@ =u® =0 (19

For nonlinear analysis, approximate solutions of the
coupled nonlinear problem can be obtained using a
three-time scale discretized perturbation technique [4]
by assuming basis solution of the form:

W(X, t) = Z;?:l qn(t)¢n(x) (23)
u(x, t) = Xpzy Pn(0)Pn (%) (2b)
Here, gq,(t)and p,(t)are the generalized

coordinates, ¢, (x) and y,, (x) are the eigenfunctions
of the linear vibration of a simply supported pipe
conveying fluid, [5].

Substituting Equations (2a) and (2b) into the coupled
governing nonlinear equations (1a) and (1b).
Minimizing the resultant residual equations require
that the integrand of the convoluted weighing
functions should vanish, such that:

Jy R - o (0)dx = 0 (3a)
Jy Ru - Wmo(x)dx = 0 (3b)

Where R, and R,, are residual equations along the
transverse and longitudinal directions respectively.
This results in a system of simultaneous equations.
Thus, based on finite mode analysis, the following
system of differential equations is obtained:

awll q,(t) + awl2 p,(t)q,(t) + awl3 ¢, (t) +
awl4 G,(t) =0 (4a)

aullp,(t) + aul2p,(t)? + aul3q,(t)? + auld p,(t) +
aul5 p,(t) = 0 (4b)

Where,
awll, awl?2, awl3, awl4, aull, aul?2, aul3
and au14 are specifically defined below.

AW11 = P [ o (X)n" (x) dx = Te [ o ()" () dx +
() B0 00" () dx) v,y +
(J Bmo)bn” () dx) V2, By + 3 0th [ o ()" () dx +
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1
1 Pr [ dmo(x)$n (%) dx
[ $mo(n® () dx - =22 +
2Te [ pmo()dn @) dx  Oth [ Pmo(x) by P (x) dlx
n n

awl2 = — %TI fol d)mo(x)lpn,(x)d)n”(x) dx —

371 Jy b0 (s’ I dx =3 J o (D)br” (Wb () dx +
%fol Pmo ()" )PP (x) dx +

N "rd. @

2 [ Gmo (' (1) P (x) dx

aw13 = 2B ([ bmo@)bn’ (¥) dx) vy By +
2B (Jy mo ()0’ () dx) vy iy

aw14 = [ o (X)n (x) dx

aull = Pr fol Wmo COW," (%) dx +

() Wmo 0" () dx) vy By +

() Womo (" ) dx) 2o B = 1 fy Wmo ()" (x) dx —
Ten fy Yo COn” () dx + 3 0h [ o (0" (x) dx

Q12 = =21 [ Yo COWn’ (P (x) dx

aul3 = _277 fol Irbmo(x)qhn’(x)d’n”(x) dx —
Efol Yo ()" ()0, P (x) dx

au14 = 2B (J; Ymo (' () dx) vya iy +
2y (13 hmo (n’ () dx) vy

Q15 = [ Ymo () (x) dx

Subsequently, a three time-scale perturbation
technique is applied to analyze the differential
equations by assuming time scale expansion of the
form;

4n(To, T, T2) = €Gn1(To, T1, T2) + €2 2 (To, T1, T2) +
€3qn,3(To, T, T2) (59)

Pn(To, T1, T2) = €pp1 (To, Ty, T2) + €2py2(To, Ty, T2) +
e3pn,3(T0, Ty, T,) (5b)

Here, the time derivative operators take the forms;

& =Dy + €Dy + -+
dZ

) (50)
=2 = Do” +2eDoDy + -+

Substituting Equations (5a), (5b) and (5c¢) into
Equations (4a) and (4b), and making the coefficients
of €!,i=1,2,3. to vanish; the three time-scale
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perturbation analysis returns the following equations
for gn,1, Gn 2, Gn,3  Pn,1, Pn,280d Dy 35

el: aw13(D1qn,) + awl4(Diqn,) + awllq,,; =0 (6a)

€l: aul4(Dipnq) + aul5(Dip,,) + aullp,; =0 (6b)

€2 aw13(D1qn2) + awl4(Diqn,) + awllqy, =
—aw13(Dzqn,1) — 2awl4(D1D;qp1) — awl2py 1Gn, (6c)

€2 aul4(Dipy,) + aul5(Dip,,) + aullp,, =
aul4(Dypn,1) — 2aul5(D;Dypy ) — aul2p2, — aul3qs 1 (6d)

€3: awl3(Dyqn3) + awl4(Diqn3) + awllq,s =
—aw13(Dyqn,2) — 2awl4(D, Dy qp2) — aW14(D22qn,1) -
aw13(Dsqp,1) — 2awl4(D1D3qp 1) — awl2py ,qn, —
awl2p,1qn; (6e)

€3 aul4(D1pn3) + aul5(Dip,3) + aullp,s =
—aul4(Dypy2) — 2aul5(D1Dypy ) — aul5(Dipp:) —
aul4(D3py,1) — 2aul5(D1Dspn 1) — 2aul2py 1Py, —
2au13qn,1qn,2 (Gf)

Consequently, approximate solutions to Equations
(6a) and (6b) can be presented as:

qni1 = eiTownAn(Tl) + e_iTownAn(Tl) (7a)

Pny = eT®B, (T)) + e~ B, (T;) (7b)

Substituting equations (7a) and (7b) into equations
(6¢) and (6d), the approximate solutions of Equations
(6¢) and (6d) can be obtained as:

G = e~ Toan=ho@ngqywF21, (T}, T,) +
e~ ToantilowngyE22 (T, T,) + elTotn=ilo®nqwE23. (T, T,) +
eToantilo®nqywFE24, (T, T,) (8a)

Dnz = e 2 T0®nquF21, (Ty, Ty) + e 2 0%quF22, (Ty, T,) +
e?Mo@nquF23, (T, T,) + e?o%quF24, (T;, T,) (8b)

Where,

awF21,(Ty,T,), awF22,(Ty,T,) ,awF23,(Ty,T,),
awF24,(Ty,T,), auF21,(Ty,T,), aufF22,(Ty,T,),
aufF23,(T,,T,) and auF24,(T,,T,) are specifically
expressed below.

awF21,(T, T,) =
anZAin(TpTz)Bin(TpTz)
awll-iawl13a,—awl4a2—iawl3w,—2awlda, w,—awliw?

aWFZZn(Tl, Tz) =
aw12Bn (T1,T) An(Ty,T5)
awll—iawl13a,—awlda2+iawl3w,+2awlda, w,—awliw?
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awF23,(Ty,T,) =
aw124,(Ty,T,) By (Ty,Ty)
awll+iawl3a,—awldaZ—iawl3w,+2awlda, w,—awliw?
awF24, (T, T,) =
aw12Ay,(Ty,T2) By (Ty,T)
awll+iawl3a,—awldaZ+iawl3w,—2awlda, w,—awliw?

au13A,(Ty,T,)?
aull-2iauldw,—4aul5w?

auF21,(Ty,T,) = —

aul2 By (Ty,T,)
aull-2iaul4a,—4aul5a?

auF22,(Ty,T,) = —

au134,(Ty,T,)?
aull+2iauldw,—4aul5w?

auF23,(T;,T,) = —

au12By(Ty,T,)?
aull+2iaulda,—4auls5a?

auF24,(T,,T,) = —

auF25,(T;,T,) =
_ 2(au134n(T1, ) An(T1, Tp) +@U12B, (Ty,Tp) Bn (T1,T3))
aull

Substituting Equations (6a) and (6b) into Equations
(6e) and (6f), upon the elimination of secular terms,
amplitudes solutions of the form,

Ay =20, (TP, 4, =1a,(T)e ™, B, =
%bn(TZ)eIGn(Tz)’ B, = %bn(Tz)e—IGn(Tz) ©)
can be obtained.

Given that steady state dynamics suggests constant
amplitude and phases, it follows that a,'(T,) =
0,an(T2) = ag,bn'(T,) =0, by(T2) = by As a
result, the transverse nonlinear frequency for the small
strain model can be written as:

2
Wpy = E(—inllag - %) + wy (10a)

Where, Kw1l, Kw2I are specifically expressed below.

2aul3awil2

Kwil = Im ( ‘
aull(—awil3—-2iawl4wy)
aul3awil2 )
(—aw13-2iawl4wy)(aull+2iaul4w, —4aul5w2)
2aul2awil2
kw2l = Im( ‘
aull(—awi13—2iawldwy)

aw12?

(—aw13-2iawldwy)(awll+iawl3a,—awldaz+iawl3w,—2awlda, wy—awldw?)
aw122 )

(—aw13-2iawl4wy)(awll—-iawl3a,—awlda?+iawl3w,+2awlda,w,—awldw?)

It then follows that the longitudinal nonlinear
frequency for the large strain model can be written as:

) +a, (10b)

1 Ku2Ib}
Ay = e(—ZKullag -—

Also, Kull and Ku2I are specifically shown below.
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4aul2aul3

aull(—aul4—2iaul5a,)
2aul3awil2

Kull = Im(

(—aul4-2iaul5ay,)(awll+iawl3a,—awl4as+iawl3w,—2awlda,w,—awliw?)

2aul3awi12

(—aul4-2iaul5a,)(awll+iawl3a,—awlda—iawl3w,+2awléa, w,—awléw?2)

4au12?
K2UI = Im ( :
aull(—aul4—2iaulSa,)
2au12? )
(—au14-2iaul5ay,)(aull+2iaul4a, —4aulsa?)

Following identical procedure, approximate solutions
of the large strain model up to the third order in the
transverse and longitudinal steady state conditions are
also obtained as:

w(t) = € Cos (3 KwlIT,a + > Kw2IT,b% — o —

twn) Gohn (x) (11a)
u(t) = € Cos GTZ(—Kullag — Ku2Ibd) + ta, + 90) b, (x)
(11b)

3.0 RESULTS OF NONLINEAR VIBRATION
ANALYSIS OF A PIPE WITH LARGE STRAIN
The linear vibration problem has been solved and the
results analyzed in earlier part of this work. We now
present the numerical simulation of the nonlinear
order 2 and order 3 dynamics as expressed in
equations (6c) — (6f).

3.1 Effect of Pressure on Transverse and Axial
Vibration
10 Pressure
Pr =00
08 Pr=01
—— Pr=01
& —— Pr=02
o 06
S
%
£ o4
02
00
—25x107% -—2.x107% -15x10™% -1.x107% -5x10°10 0

Transverse Nonlinear frequency
Figure 1a: Transverse amplitude-frequency respon-
se at void fraction=0.3 , mixture quality = 0.00037088;
6b=1.2; Teb=0.1;Pr=0.05; 0.10; 0.15; 0.20;

The effect of pressure on the large strain model for the
transverse and longitudinal vibrations are shown in
Figures 1a and 1b respectively. Clearly, changes in
pressurization significantly alter the transverse
nonlinear response but has negligible effect on the
longitudinal response. A change from softening to
hardening nonlinear behavior is observed in the
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transverse response whereas the longitudinal response
maintained hardening nonlinear profile [6].

10

038

o
o]
o 06
k]
2
=
E 04 Pressure
Pr = 0.05
02 E =01
= Pr =015
== Pr =02
00
130 x108  135x10® 140 x10° 145 x10® 150 x 10°

Longitudinal Nonlinear frequency
Figure 1b: Longitudinal amplitude-frequency res-
ponse at void fraction=0.3 , mixture quality =
0.00037088; 6b=1.2; Teb=0.1;Pr = 0.05; 0.10; 0.15;
0.20;

Meanwhile, for a pipe conveying two-phase fluid, the
variation of the longitudinal frequencies with flow
velocity is as shown in Figure 1b. It is evident that
when the effects of temperature, pressure and tension
are negligible, the dynamic response of a large strain
deformed pipe is identical to that of a small strain
deformed pipe. Similar results were obtained in the
work of [3], however, they were obtained for
cantilevered pipes.

3.2 Effect of Temperature on Transverse and
Axial Vibration
1.0

08

&
o 06
=}
2
g
£ o4 Pressure
=1
02 6=2
--— 0=3
- Q=4
00
-2.x10710  _1 x10710 0 1.x10"10 2.x10710

Transverse Nonlinear frequency
Figure 2a: Transverse amplitude-frequency resp-
onse at void fraction=0.3 , mixture quality =
0.00037088; Teb=0.1; Pr=0.05; 6b=1,2,3,4;

The effect of temperature on the large strain model for
the transverse and longitudinal vibrations respectively
are shown in Figures 2a and 2b. It was observed that
nonlinear response of the systems dynamics is very
sensitive to temperature changes. It changes the
transverse response from softening nonlinear to
hardening nonlinear behavior. However, the
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longitudinal response remains a softening type, with
sharp difference magnitudes of the longitudinal and
transverse responses.

10 Pressure

08

o
(2}

| ©l DI DI
m m nmn

Amplitude by

o
~

0.2

00

100000 120000 140000 160000 180000 200000
Longitudinal Nonlinear frequency
Figure 2b: Longitudinal amplitude-frequency resp-
onse at void fraction=0.3 , mixture quality =
0.00037088; Teb=0.1;Pr=0.05; 6b=1,2,3,4;

3.3 Effect of Tension on Transverse and Axial
Vibration
10 Pressure
Te=1
Te=2
— Te=3
- Te=4

08

o
o

Amplitude ag
o
SN

02

00

~1.x1078 -5.x1079
Transverse Nonlinear frequency
Figure 3a: Transverse amplitude-frequency resp-
onse at void fraction=0.3, mixture quality =
0.00037088; 6b=1.2;Prb=0.05; Teb=1,2,3,4;
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Eosa Pressure
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Figure 3b: Longitudinal amplitude-frequency resp-
onse at void fraction=0.3, mixture quality =
0.00037088; 6b=1.2;Prb=0.05; Teb=1,2,3.4;

With respect to increasing tension; in profile, the
system followed a split mode response between the
transverse and axial vibrations. As expected,
tensioning induced a damping effect on the transverse
dynamics. On the other hand, the axial dynamics
indicated a strong nonlinear excitation in the
frequency response under a bounded amplitude
response. Clearly, Figures 3a and 3b showed the
absence of a fixed point in the response of nonlinear
axial and transverse vibrations of large strain
deformed pipes over the range of induced tension.
Hence, the range of tension considered has a linear
second order control effect on the system’s dynamics.

40 CONCLUSION

Linear theories predict an unbounded growth of the
amplitude of vibration of subsea flow line conveying
two phase flow with time. However, nonlinear
analyses of the dynamics show a bounded response.
Nonlinearities in large strain model induce hardening
and softening nonlinear behaviour in the dynamics of
pipes conveying two phase fluids. For the transverse
vibration, changes in systems parameters have both
qualitative and quantitative influence on the system’s
transverse response. However, in most cases,
parametric changes have negligible influence on the
qualitative behaviour of the longitudinal vibration.

Whereas nonlinearities in large strain deformed pipes
impose a softening behavior on the pipe transverse
vibration, nonlinearities due to small strain
deformation cause a hardening behaviour of the pipe
transverse vibration. However, converse responses
were observed in the longitudinal vibration for both
cases, with large strain deformation model exhibiting
hardening nonlinear behaviour while the small strain
deformation model shows softening nonlinear
behaviour. Outcomes of these analyses provide broad
spectrum information for optimum and sustainable
management of subsea flowlines and jumper
conveying two phase flow with attendant parametric
changes in transport conditions.
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