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Abstract  
Vibration analysis, a vital tool in the scheduling of equipment for maintenance is used to assess the useful life of equipment for 

allocation of resources to mitigate downtime. Compared to previous approaches of univariate prediction, this study presents a more 

practical model by employing vibration analysis data as a multivariate problem in predicting the remaining useful life (RUL) of an 

equipment. Applying the model, Multiple Linear Regression (MLR) and Linear Programming (LP) were explored to determine the 

deterioration rate and the RUL of the equipment. The results showed that the MLR had a high predictive accuracy on the data sets. 

Furthermore, a p-value of 1.546e-06 and Multiple R-squared value of 0.8215 were obtained showing that the MLR appears to be a 

good prediction model. From the solution of the LP formulation, the RUL of the equipment was 181 days. These results closely 

matched the historical data of the equipment which implied this model could be used for planning of maintenance activity for this 

equipment and any similar equipment. 
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1.0 INTRODUCTION 

In any typical industrial scenarios, one of the main 

goals is to increase the business profit margins. To achieve 

this, several approaches could be utilised, which may be 

by increasing the service delivery charges to be paid by the 

customers or by implementing some cost reduction 

strategies to reduce the operational cost [1-2]. As 

companies strive to meet the mark of a near zero unwanted 

cost which may be termed as waste, there has been an 

increasing need for a right implementation of a cost-

effective maintenance strategy. Proper maintenance results 

in the decrease of depreciation costs (resulting from longer 

economic life) and consequently leads to increased 

profitability while improper planning of maintenance of 

structures will give rise to uneconomic management 

practices that lead to the overspending of budgeted 

finances and a negative outcome in productivity [3]. 

Predictive maintenance (PdM) has gained much 

ground with regards to a cost-effective based maintenance 

policy since it is efficient in early detection of impending 

equipment failure which in turn reduces unplanned  
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downtime [4-5]. For an effective early fault detection 

strategy, PdM implements predictive tools in Condition 

based Maintenance (CBM) programme to provide robust 

information about equipment’s state at a future period [6]. 

The CBM uses many tools for checking state of equipment 

among which vibration-based monitoring is a most applied 

technique in the industry [7].  

The aim of any vibration analysis is to ascertain the 

vibration severity of an equipment and the trend of the 

vibration over time, which tells on the equipment 

degradation pattern to avoid equipment breakdown [8]. In a 

sense, vibration analysis gives view of the happenings in an 

equipment, from the running condition of the shaft to the 

motor, blades, and other components [9]. This results in a 

set of vibration data representing vibration magnitude. 

Generally, readings are taken from the vertical, horizontal, 

and axial (VHA) direction due to its mode of installation 

and active forces causing the vibration of the equipment as 

represented by Figure 1 [10]. 

By conducting vibration analysis, single value peak 

readings are gotten which are trended with previous 

readings to ascertain the degradation pattern of such 

equipment. The severity of the vibration reading which 

would regard the equipment as failed is governed by some 

ISO standards. ISO 10817 and ISO 7919 are most adhered 
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to generally [7-8][11]. When equipment condition degrades 

over time, the vibration severity tends to show an upward trend  

 
(a) Locations of measurement 

 

 
(b) Directions of measurement 

Figure 1: Locations and Directions of Measurements (Alsalaet 

2012) 

 

i.e., vibration increases overtime under normal working 

conditions [12]. This is the general rule of thumb for 

which several literatures have applied various forecasting 

techniques towards equipment prognosis. For example, 

Chukwuekwe et al. [7], worked on predicting future 

vibration severity level of one of the gearbox bearings of 

an industrial machine, such that readings within a six-

month period interval were used to predict the severity 

level for the next six months with the Autoregressive 

Moving Average (ARMA) model for which the results 

proved to be better-off compared to when the root mean 

square (RMS) values of the time waveform were trended 

over time. Similarly, Chen et al. [13] worked on fault 

prediction of a steam turbine for a power plant based on a 

full vector spectrum fusion of vibration amplitudes from 

the horizontal and vertical planes of the equipment and 

then using an ARMA model to determine its prediction 

model. 

Gangsar and Tiwari [14] investigated equipment 

condition monitoring by vibrations as well as electrical 

current for effective fault prediction on the electrical and 

mechanical components of an induction motor. This was 

achieved by training a one-versus-one multi class support 

vector machine (MSVM) with data obtained at different 

equipment running conditions. The prediction results 

performance was investigated for a large set of radial basis 

function (RBF) kernel parameter and an optimal result was 

selected for each case. In a study by Xu et. al., [15], it was 

noted that previous research had considered CBM for 

predictive maintenance as single-component problems and 

as such usually made predictions based on one variable. 

The study of Wang et al. [16] captured the fluctuations in 

equipment degradation patterns utilized a dynamic RUL 

technique with the aid of Gamma process model. While 

previous research has introduced various methods for 

degradation and RUL prediction, as [15] stated, these 

studies have utilized only univariate modelling approaches 

for degradation predictors which take away some of the 

complexities akin to real life scenarios. In this work, 

degradation predictor (i.e., vibration features) was taken as 

multivariate components to estimate the RUL for a real-

life manufacturing equipment. 

One challenge that could surface in using a 

multivariate approach to trending vibration feature 

magnitude over time is finding an optimum RUL since 

each of the features trend differently. In tackling this, 

maintenance model fuses a deterioration model and a 

decision model to reach an optimum policy defining the 

RUL in line with Kallen [17] definition of a proper 

maintenance system as seen in Figure 2.  

 

 
Figure 2: Deterioration and decision models as elements of a 

maintenance model (Kallen 2009) 

 

2.0 METHODOLOGY 

2.1 Materials and Methods 

A motor for a cement mill industrial fan which 

sucks air into the combustion chamber of a boiler and 

produces water at superheated temperatures was used for 

prognosis study. The status quo maintenance practice 

involved the utilization of vibration analysis for equipment 

fault diagnosis or for the determination of the current 

health status of the equipment to make maintenance 

decision i.e., to schedule maintenance or not. In this 

context, scheduling maintenance is done based on the 

intuition of the vibration analyst.  

For this equipment, in addition to the use of 

velocity readings for vibration magnitude at the VHA 
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axes, shock pulse and thermography readings were used to 

enhance maintenance decision based on deduced health 

status. Having observed the obtained data from the 

equipment, this study proposes a forecast model using the 

framework given in Figure 3. 

 
Collect Independent Variables 

(e.g. velocities, acceleration etc..) 

and Dependent Variables (i.e. 

Days) from the model data

Does any Independent 

Variable correlate with the 

Dependent Variable?

Discard the Uncorrelated 

Variables

Use Correlated Variables to 

Formulate the deterioration model 

using MLR

Validate the deterioration model 

and reach an optimum RUL using 

Linear Programming

No

Yes

 
Figure 3: Framework for the Proposed Maintenance Model 

 

2.2 Multiple Linear Regression (MLR) 

In cases where there are more than one 

independent variable affecting an outcome, Multiple 

Linear Regression (MLR) is often applied. MLR is a 

generalized regression model for the simple linear 

regression in cases where there are multiple independent 

variables and a single dependent variable. The basic form 

of the MLR is given by Equation 1 for discrete 

observations i to n: 

 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑛𝑋𝑖𝑛 + 𝜀                      (1) 

 

In Equation 1, 𝛽 represents regressor parameters to 

be estimated with the regressor coefficient 𝛽0 called the 

intercept. 𝑌𝑖 is the dependent variable and 𝑋𝑖𝑛 stands for all 

independent variables for all 𝑖 observations in the model 

while 𝜀 represents normally distributed error term. 

The estimation of parameters is determined based 

on the least square method (LSM) with the ordinary least 

square (OLS) being the most widely used LSM [18-19]. 

To assess the goodness of fit of the model, the 

coefficient of determination 𝑅2 as given in Equation 2 was 

used to describe the ratio of the explained variance to the 

total variance of the dependent variable 𝑌𝑖 

𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
=

𝑆𝑆𝐸

𝑆𝑆𝑇
                                                            (2) 

 

where SST is the total sum of squares, SSR is the residual 

sum of squares, SSE is the sum of squares if the regression 

contains a constant. 𝑅2 assumes values from 0 to 1 such 

that higher values depict better goodness of fit and explains 

how much of the deviations of 𝑌𝑖 is explained by 𝑋𝑖𝑛. 

The t-statistic and F-statistic are also computed for 

significance testing of each of the predictor variables on the 

explanatory variables. 

The statistic to test the significance of regression is 

the F-statistic, given by: 

 

𝐹𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝑀𝑆𝑅

𝑀𝑆𝐸
                                                                 (3) 

 

where: 𝑀𝑆𝑅 denotes the regression mean square and 𝑀𝑆𝐸 

denotes mean square error. 

To check the significance of individual regressors in the 

MLR model, t-test was conducted. More regressors may or 

may not affect the effectiveness of the MLR model. In 

carrying out the test, statistical software revealed p-values 

for all coefficients in the model. Each p-value was based on 

a t-statistic calculated as: 
 

𝑡𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
(𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 −  ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒) 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
 

                (4) 

 

To prevent the likely problem of over fitting that 

might arise through MLR, and to improve model accuracy, 

only variables that contributed significantly were 

considered. These variables were selected through 

determination of Correlation coefficient. 

 

2.3 Pearson’s Correlation Coefficient 

Correlation coefficient is a measure used in 

statistics to show the strength of the relationship between 

two variables. i.e., the degree to which one variable affects 

the outcome of the other. There are several methods used 

for computing correlation coefficients. However, the 

Pearson’s correlation coefficient, otherwise referred to as 

the Pearson’s – r, is very widely used. The Pearson’s – r is 

given by: 

𝑟 =  
𝑁 ∑ 𝑥𝑦 − (∑ 𝑥) (∑ 𝑦)

√(𝑁 ∑ 𝑥2 − ( ∑ 𝑥)2) × (𝑁 ∑ 𝑦2 − (∑ 𝑦)2)
            (5) 
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where: 

N is number of sample data points 

X is independent variable(s) 

y is dependent variable(s) 

r normally takes values ranging from -1 to 1 where absolute 

values greater than 0.5 shows some strong correlation. 

 

 

3.0 MODEL FORMULATION 

As an overview, to account for deterioration over 

time, the deterioration was modelled as a multiple linear 

regression (MLR) model. Thereafter, to ascertain the 

remaining useful life (RUL) of the equipment, the MLR 

deterioration model was used as the objective function of a 

Linear Programming (LP) problem where the constraints 

follow industry standards. 

 

3.1 Formulation of Deterioration Model 

The deterioration model for the equipment was 

formulated using the following parameters in depicting the 

equipment’s health status: 

• 𝑀𝑉𝑁𝐷𝐸𝑉: Motor non-drive-end vertical velocity 

readings in mm/s 

• 𝑀𝑉𝑁𝐷𝐸𝐻: Motor non-drive-end horizontal velocity 

readings in mm/s 

• 𝑀𝑉𝑁𝐷𝐸𝐴: Motor non-drive-end axial velocity 

readings in mm/s 

• 𝑀𝑉𝐷𝐸𝑉: Motor drive-end vertical velocity readings 

in mm/s 

• 𝑀𝑉𝐷𝐸𝐻: Motor drive-end horizontal velocity 

readings in mm/s 

• 𝑆𝑉𝑁𝐷𝐸𝑉: Shaft non-drive-end vertical velocity 

readings in mm/s 

• 𝑆𝑉𝑁𝐷𝐸𝐻: Shaft non-drive-end horizontal velocity 

readings in mm/s 

• 𝑆𝑉𝑁𝐷𝐸𝐴:  Shaft non-drive-end axial velocity 

readings in mm/s 

• 𝑆𝑉𝐷𝐸𝑉: Shaft drive-end vertical velocity readings in 

mm/s 

• 𝑆𝑉𝐷𝐸𝐻: Shaft drive-end horizontal velocity readings 

in mm/s 

• 𝑆𝑉𝐷𝐸𝐴: Shaft drive-end axial velocity readings in 

mm/s 

• 𝑀𝑈𝑁𝐷𝐷: The difference between shaft non-drive-end 

decibel carpet value and decibel maximum reading 

measured in dB 

• 𝑀𝑈𝐷𝐷: The difference between shaft drive-end 

decibel carpet value and decibel maximum reading 

measured in dB 

• 𝑆𝑈𝑁𝐷𝐸𝐶: Shaft non-drive-end decibel carpet value 

reading measured in dB  

• 𝑆𝑈𝑁𝐷𝐸𝑀: Shaft non-drive-end decibel maximum 

value reading measured in dB 

• 𝑆𝑈𝐷𝐸𝐶: Shaft drive-end decibel carpet value reading 

measured in dB 

• 𝑆𝑈𝐷𝐸𝑀: Shaft drive-end decibel maximum value 

reading measured in dB 

• 𝑀𝑇𝑁𝐷𝐸: Shaft nondrive-end temperature reading 

measured in 0C 

• 𝑀𝑇𝐷𝐸: Shaft nondrive-end temperature reading 

measured in 0C 

• 𝑆𝑇𝑁𝐷𝐸: Shaft drive-end temperature reading 

measured in 0C 

• 𝑆𝑇𝐷𝐸: Shaft drive-end temperature reading measured 

in 0C 

• 𝑇𝑖: Time associated with the readings given in days 

 

Hence, the deterioration model following the MLR is 

given by: 

𝑇1 =  𝛽0 + 𝛽1𝑀𝑉𝑁𝐷𝐸𝑉 + 𝛽2𝑀𝑉𝑁𝐷𝐸𝐻 + 𝛽3𝑀𝑉𝑁𝐷𝐸𝐴

+ 𝛽4𝑀𝑉𝐷𝐸𝑉 + 𝛽5𝑀𝑉𝐷𝐸𝐻 + 𝛽6𝑀𝑉𝐷𝐸𝐴

+ 𝛽7𝑆𝑉𝑁𝐷𝐸𝑉 + 𝛽8𝑆𝑉𝑁𝐷𝐸𝐻 + 𝛽9𝑆𝑉𝑁𝐷𝐸𝐴

+ 𝛽10𝑆𝑉𝐷𝐸𝑉 + 𝛽11𝑆𝑉𝐷𝐸𝐻 + 𝛽12𝑆𝑉𝐷𝐸𝐴

+ 𝛽13𝑀𝑈𝑁𝐷𝐷 + 𝛽14𝑀𝑈𝐷𝐷 + 𝛽15𝑆𝑈𝑁𝐷𝐷

+ 𝛽16𝑆𝑈𝐷𝐷 + 𝛽17𝑀𝑇𝑁𝐷𝐸 + 𝛽18𝑀𝑇𝐷𝐸

+ 𝛽19𝑆𝑇𝑁𝐷𝐸 + 𝛽20𝑆𝑇𝐷𝐸 + 𝜀                  (6) 
 

3.2 Model Validation 

To ascertain the validity of the model developed, 

vibration data for the motor of a cement mill of an 

industrial fan of a manufacturing company was collected 

for one year. The data obtained are shown in the Table 1.  

 

Table 1: Sensor data for a cement mill industrial fan for a period of 1 year 
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3.3 Determination of the Remaining Useful Life 

(RUL) 

Having determined the deterioration model 

denoted by Equation 6, the RUL was evaluated based on 

some decision rules. Ordinarily, in the traditional usage of 

MLR, the dependent variable is ascertained by inputting the 

conditional values of the independent variables for which 

the dependent variable is to be derived. However, 

considering that in an MLR model, individual variables 

trend at different rate (i.e., when considered as distinct 

Linear Models), whereas in vibration monitoring, an 

extreme value reading in any of the axes could indicate a 

failure, it is not a plausible approach to input extreme 

vibration magnitude values in the MLR as it does not depict 

reality. Hence, a linear programming approach is used 

based on several criteria utilized to judge equipment status 

based on vibration readings. 

The decision criteria used follows the ISO 10816 

and 7919 specifications which is in line with the company’s 

maintenance policies regarding vibration analysis. The 

criteria are as follows: 

1. Motor non-drive-end velocities i.e., 𝑀𝑉𝑁𝐷𝐸𝑉, 

𝑀𝑉𝑁𝐷𝐸𝐻 and 𝑀𝑉𝑁𝐷𝐸𝐴, by exceeding a threshold 

value 𝜙1 for a range of different equipment running 

speed indicates a warning on the equipment and 

should be scheduled for maintenance. 

2. Motor drive-end velocities i.e., 𝑀𝑉𝐷𝐸𝑉, 𝑀𝑉𝐷𝐸𝐻 , and 

𝑀𝑉𝐷𝐸𝐴, by exceeding a threshold value 𝜙2 for a 

range of different equipment running speed indicates 

a warning on the equipment and should be scheduled 

for maintenance. 

3. Shaft non-drive-end velocities i.e., 𝑆𝑉𝑁𝐷𝐸𝑉, 𝑆𝑉𝑁𝐷𝐸𝐻, 

and 𝑆𝑉𝑁𝐷𝐸𝐴, by exceeding a threshold value 𝜙3 for a 

range of different equipment running speed indicates 

a warning on the equipment and should be scheduled 

for maintenance. 

4. Shaft drive-end velocities i.e., 𝑆𝑉𝐷𝐸𝑉, 𝑆𝑉𝐷𝐸𝐻, and 

𝑆𝑉𝐷𝐸𝐴, by exceeding a threshold value 𝜙4 for a 

range of different equipment running speed indicates 

a warning on the equipment and should be scheduled 

for maintenance. 

5. The difference between Motor non-drive-end decibel 

carpet value and decibel maximum reading i.e.  

𝑀𝑈𝑁𝐷𝐷,by exceeding a threshold value 𝜙5 for a 

range of different equipment running speed indicates 

a warning on the equipment and should be scheduled 

for maintenance. 

6. The difference between Motor drive-end decibel 

carpet value and decibel maximum reading i.e.  

𝑀𝑈𝐷𝐷, by exceeding a threshold value 𝜙6 for a 

range of different equipment running speed indicates 

a warning on the equipment and should be scheduled 

for maintenance. 

7. The difference between shaft non-drive-end decibel 

carpet value and decibel maximum reading i.e.  

𝑆𝑈𝑁𝐷𝐷, by exceeding a threshold value 𝜙7 for a 

range of different equipment running speed indicates 

a warning on the equipment and should be scheduled 

for maintenance. 

8. The difference between shaft drive-end decibel 

carpet value and decibel maximum reading i.e.  

𝑆𝑈𝐷𝐷, by exceeding a threshold value 𝜙8 for a range 

of different equipment running speed indicates a 

warning on the equipment and should be scheduled 

for maintenance 

9. Shaft and Motor, non-drive and drive ends i.e., 

𝑀𝑇𝑁𝐷𝐸, 𝑀𝑇𝐷𝐸, 𝑆𝑇𝑁𝐷𝐸, 𝑆𝑇𝐷𝐸 by exceeding a 

temperature 𝛿1, is a warning indication for which the 

equipment should be scheduled for maintenance 

within the next available period. 

10. Motor non-drive-end velocities i.e., 𝑀𝑉𝑁𝐷𝐸𝑉, 

𝑀𝑉𝑁𝐷𝐸𝐻 and 𝑀𝑉𝑁𝐷𝐸𝐴, by exceeding a threshold 

value 𝜓1 for a range of different equipment running 

speed indicates a criticality on the equipment and 

should be shut down immediately for maintenance. 

11. Motor drive-end velocities i.e., 𝑀𝑉𝐷𝐸𝑉, 𝑀𝑉𝐷𝐸𝐻 , and 

𝑀𝑉𝐷𝐸𝐴, by exceeding a threshold value 𝜓2 for a 

range of different equipment running speed indicates 

a criticality on the equipment and should be shut 

down immediately for maintenance. 

12. Shaft non-drive-end velocities i.e., 𝑆𝑉𝑁𝐷𝐸𝑉, 𝑆𝑉𝑁𝐷𝐸𝐻, 

and 𝑆𝑉𝑁𝐷𝐸𝐴, by exceeding a threshold value 𝜓3 for a 

range of different equipment running speed indicates 

a criticality on the equipment and should be shut 

down immediately for maintenance. 

13. Shaft drive-end velocities i.e., 𝑆𝑉𝐷𝐸𝑉, 𝑆𝑉𝐷𝐸𝐻, and 

𝑆𝑉𝐷𝐸𝐴, by exceeding a threshold value 𝜓4 for a 

range of different equipment running speed indicates 

a criticality on the equipment and should be shut 

down immediately for maintenance. 

14. The difference between Motor non-drive-end decibel 

carpet value and decibel maximum reading i.e.  

𝑀𝑈𝑁𝐷𝐷, by exceeding a threshold value 𝜓5 for a 

range of different equipment running speed indicates 

a criticality on the equipment and should be shut 

down immediately for maintenance. 

15. The difference between Motor drive-end decibel 

carpet value and decibel maximum reading i.e.  

𝑀𝑈𝐷𝐷, by exceeding a threshold value 𝜓6 for a 

range of different equipment running speed indicates 

a criticality on the equipment and should be shut 

down immediately for maintenance 
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16. The difference between shaft non-drive-end decibel 

carpet value and decibel maximum reading i.e.  

𝑆𝑈𝑁𝐷𝐷, by exceeding a threshold value 𝜓7 for a 

range of different equipment running speed indicates 

a criticality on the equipment and should be shut 

down immediately for maintenance 

17. The difference between shaft drive-end decibel 

carpet value and decibel maximum reading i.e.  

𝑆𝑈𝐷𝐷, by exceeding a threshold value 𝜓8 for a range 

of different equipment running speed indicates a 

criticality on the equipment and should be shut down 

immediately for maintenance 

18. Shaft and Motor, non-drive and drive ends i.e., 

𝑀𝑇𝑁𝐷𝐸, 𝑀𝑇𝐷𝐸, 𝑆𝑇𝑁𝐷𝐸, 𝑆𝑇𝐷𝐸 not exceed the 

temperature 𝛿2, otherwise it is regarded as a critical 

state for which the equipment must be maintained 

immediately. 

By considering the above boundaries, the RUL for the 

Lower Bound can be denoted as: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒:                  
𝑇1 =  𝛽0 + 𝛽1𝑀𝑉𝑁𝐷𝐸𝑉 + 𝛽2𝑀𝑉𝑁𝐷𝐸𝐻 + 𝛽3𝑀𝑉𝑁𝐷𝐸𝐴

+ 𝛽4𝑀𝑉𝐷𝐸𝑉 + 𝛽5𝑀𝑉𝐷𝐸𝐻 + 𝛽6𝑀𝑉𝐷𝐸𝐴

+ 𝛽7𝑆𝑉𝑁𝐷𝐸𝑉 + 𝛽8𝑆𝑉𝑁𝐷𝐸𝐻 + 𝛽9𝑆𝑉𝑁𝐷𝐸𝐴

+ 𝛽10𝑆𝑉𝐷𝐸𝑉 + 𝛽11𝑆𝑉𝐷𝐸𝐻 + 𝛽12𝑆𝑉𝐷𝐸𝐴

+ 𝛽13𝑀𝑈𝑁𝐷𝐷 + 𝛽14𝑀𝑈𝐷𝐷 + 𝛽15𝑆𝑈𝑁𝐷𝐷

+ 𝛽16𝑆𝑈𝐷𝐷 + 𝛽17𝑀𝑇𝑁𝐷𝐸 + 𝛽18𝑀𝑇𝐷𝐸

+ 𝛽19𝑆𝑇𝑁𝐷𝐸 + 𝛽20𝑆𝑇𝐷𝐸 + 𝜀 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
𝑀𝑉𝑁𝐷𝐸𝑉, 𝑀𝑉𝑁𝐷𝐸𝐻, 𝑀𝑉𝑁𝐷𝐸𝐴 ≤ 𝜙1 

𝑀𝑉𝐷𝐸𝑉, 𝑀𝑉𝐷𝐸𝐻,𝑀𝑉𝐷𝐸𝐴 ≤ 𝜙2 

𝑆𝑉𝑁𝐷𝐸𝑉, 𝑆𝑉𝑁𝐷𝐸𝐻, 𝑆𝑉𝑁𝐷𝐸𝐴 ≤ 𝜙3 

𝑆𝑉𝐷𝐸𝑉, 𝑆𝑉𝐷𝐸𝐻 , 𝑆𝑉𝐷𝐸𝐴, ≤ 𝜙4 

𝑀𝑈𝑁𝐷𝐷 ≤ 𝜙5 

𝑀𝑈𝐷𝐷 ≤ 𝜙6 

𝑆𝑈𝑁𝐷𝐷 ≤ 𝜙7 

𝑆𝑈𝐷𝐷 ≤ 𝜙8 

𝑀𝑇𝑁𝐷𝐸, 𝑀𝑇𝐷𝐸, 𝑆𝑇𝑁𝐷𝐸, 𝑆𝑇𝐷𝐸 ≤ 𝛿1 

𝑀𝑉𝑁𝐷𝐸𝐻 , 𝑀𝑉𝑁𝐷𝐸𝑉, 𝑀𝑉𝑁𝐷𝐸𝐴, 𝑀𝑉𝐷𝐸𝐻,𝑀𝑉𝐷𝐸𝐴, 𝑀𝑉𝐷𝐸𝑉 , ≥ 0 

𝑆𝑉𝑁𝐷𝐸𝑉, 𝑆𝑉𝑁𝐷𝐸𝐻, 𝑆𝑉𝑁𝐷𝐸𝐴, 𝑆𝑉𝐷𝐸𝑉, 𝑆𝑉𝐷𝐸𝐻 , 𝑆𝑉𝐷𝐸𝐴, ≥
0 

𝑆𝑈𝑁𝐷𝐷, 𝑆𝑈𝐷𝐷 ≥ 0 

𝑀𝑈𝑁𝐷𝐷 , 𝑀𝑈𝐷𝐷 ≥ 0 

𝑀𝑇𝑁𝐷𝐸, 𝑀𝑇𝐷𝐸, 𝑆𝑇𝑁𝐷𝐸, 𝑆𝑇𝐷𝐸 ≥
0                                                                               7 

 

Similarly, for the upper bound, the RUL model formulation 

is given by: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒:                  
𝑇2 =  𝛽0 + 𝛽1𝑀𝑉𝑁𝐷𝐸𝑉 + 𝛽2𝑀𝑉𝑁𝐷𝐸𝐻 + 𝛽3𝑀𝑉𝑁𝐷𝐸𝐴

+ 𝛽4𝑀𝑉𝐷𝐸𝑉 + 𝛽5𝑀𝑉𝐷𝐸𝐻 + 𝛽6𝑀𝑉𝐷𝐸𝐴

+ 𝛽7𝑆𝑉𝑁𝐷𝐸𝑉 + 𝛽8𝑆𝑉𝑁𝐷𝐸𝐻 + 𝛽9𝑆𝑉𝑁𝐷𝐸𝐴

+ 𝛽10𝑆𝑉𝐷𝐸𝑉 + 𝛽11𝑆𝑉𝐷𝐸𝐻 + 𝛽12𝑆𝑉𝐷𝐸𝐴

+ 𝛽13𝑀𝑈𝑁𝐷𝐷 + 𝛽14𝑀𝑈𝐷𝐷 + 𝛽15𝑆𝑈𝑁𝐷𝐷

+ 𝛽16𝑆𝑈𝐷𝐷 + 𝛽17𝑀𝑇𝑁𝐷𝐸 + 𝛽18𝑀𝑇𝐷𝐸

+ 𝛽19𝑆𝑇𝑁𝐷𝐸 + 𝛽20𝑆𝑇𝐷𝐸 + 𝜀 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
𝑀𝑉𝑁𝐷𝐸𝑉, 𝑀𝑉𝑁𝐷𝐸𝐻, 𝑀𝑉𝑁𝐷𝐸𝐴 ≤ 𝜓1 

𝑀𝑉𝐷𝐸𝑉, 𝑀𝑉𝐷𝐸𝐻,𝑀𝑉𝐷𝐸𝐴 ≤ 𝜓2 

𝑆𝑉𝑁𝐷𝐸𝑉, 𝑆𝑉𝑁𝐷𝐸𝐻, 𝑆𝑉𝑁𝐷𝐸𝐴 ≤ 𝜓3 

𝑆𝑉𝐷𝐸𝑉, 𝑆𝑉𝐷𝐸𝐻 , 𝑆𝑉𝐷𝐸𝐴, ≤ 𝜓4 

𝑀𝑈𝑁𝐷𝐷 ≤ 𝜓5 

𝑀𝑈𝐷𝐷 ≤ 𝜓6 

𝑆𝑈𝑁𝐷𝐷 ≤ 𝜓7 

𝑆𝑈𝐷𝐷 ≤ 𝜓8 

𝑀𝑇𝑁𝐷𝐸, 𝑀𝑇𝐷𝐸, 𝑆𝑇𝑁𝐷𝐸, 𝑆𝑇𝐷𝐸 ≤ 𝛿2 

𝑀𝑉𝑁𝐷𝐸𝐻 , 𝑀𝑉𝑁𝐷𝐸𝑉, 𝑀𝑉𝑁𝐷𝐸𝐴, 𝑀𝑉𝐷𝐸𝐻,𝑀𝑉𝐷𝐸𝐴, 𝑀𝑉𝐷𝐸𝑉 , ≥ 0 

𝑆𝑉𝑁𝐷𝐸𝑉, 𝑆𝑉𝑁𝐷𝐸𝐻, 𝑆𝑉𝑁𝐷𝐸𝐴, 𝑆𝑉𝐷𝐸𝑉, 𝑆𝑉𝐷𝐸𝐻 , 𝑆𝑉𝐷𝐸𝐴, ≥
0 

𝑆𝑈𝑁𝐷𝐷, 𝑆𝑈𝐷𝐷 ≥ 0 

𝑀𝑈𝑁𝐷𝐷 , 𝑀𝑈𝐷𝐷 ≥ 0𝑀𝑇𝑁𝐷𝐸, 𝑀𝑇𝐷𝐸, 𝑆𝑇𝑁𝐷𝐸, 𝑆𝑇𝐷𝐸 ≥
0                                                                                     (8)   

 

By solving the optimization problem of Equations 

7 and 8 through linear programming and determining RUL 

to give Lower and Upper bound respectively, the plausible 

time to schedule maintenance would be known. 

 

4.0 RESULTS AND DISCUSSION  

4.1 Results 

From analysis of the data collected and solving for 

the RUL at lower and upper bound, the summary of the 

results is displayed in Tables 2 to 6. 

 

Table 2: Pearson’s Correlation Coefficient for the Independent Variables 

Independent Variables Pearson's R-value 

𝑀𝑁𝐷𝐸𝑉*** 0.587813 

𝑀𝑉𝑁𝐷𝐸𝐻 0.406206 

𝑀𝑉𝑁𝐷𝐸𝐴 -0.089466 

𝑀𝑉𝐷𝐸𝑉 0.453869 

𝑀𝑉𝐷𝐸𝐻 0.395642 
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Independent Variables Pearson's R-value 

 𝑀𝑉𝐷𝐸𝐴 0.092645 

𝑆𝑉𝑁𝐷𝐸𝑉 -0.146301 

𝑆𝑉𝑁𝐷𝐸𝐻 -0.138284 

𝑆𝑉𝑁𝐷𝐸𝐴 0.195799 

𝑆𝑉𝐷𝐸𝑉 -0.041291 

𝑆𝑉𝐷𝐸𝐻 0.394019 

𝑆𝑉𝐷𝐸𝐴*** 0.782795 

𝑀𝑈NDD -0.190366 

𝑀𝑈𝐷𝐷 0.078332 

𝑆𝑈𝑁𝐷𝐷 0.176138 

𝑆𝑈𝐷𝐷*** 0.636801 

𝑀𝑇𝑁𝐷𝐸 0.151755 

𝑀𝑇𝐷𝐸 0.167939 

𝑆𝑇𝑁𝐷𝐸*** 0.717093 

𝑆𝑇𝐷𝐸 -0.110101 

Key: *** Variables that have strong correlation 

 

Table 3: Summary of MLR Result for Equipment 

Coef of: Estimate Std. Error t value Pr(>|t|) 

𝑀𝑉𝑁𝐷𝐸𝑉 2.869 130.391 0.022 0.98269 

𝑆𝑉𝐷𝐸𝐴 51.921 17.652 2.941 0.00873 

𝑆𝑈𝐷𝐷 4.755 4.066 1.170 0.25742 

𝑆𝑇𝑁𝐷𝐸 -1.820 1.400 -1.300 0.21006 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 66.96 on 18 degrees of freedom 

Multiple R-squared 0.8215, 

F-statistic: 20.71 on 4 and 18 DF, p-value: 1.546e-06 

 

Table 4: Boundary Values for RUL Model 

Parameters Remark Values 

𝜙1 Warning motor non-drive-end velocity 4 mm/s 

𝜙2 Warning motor drive-end velocity 4 mm/s 

𝜙3 Warning shaft non-drive-end velocity 4 mm/s 

𝜙4 Warning shaft drive-end velocity 4 mm/s 

𝜙5 Warning decibel carpet and maximum difference for 

motor non-drive-end 

16 dB 

𝜙6 Warning decibel carpet and maximum difference for 

motor drive-end 

16 dB 

𝜙7 Warning decibel carpet and maximum difference for 

shaft non-drive-end 

16 dB 
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Parameters Remark Values 

𝜙8 Warning decibel carpet and maximum difference for 

shaft drive-end 

16 dB 

𝛿1 Warning temperature reading for shaft and motor 60 0C 

𝜓1 Critical motor non-drive-end velocity 7 mm/s 

𝜓2 Critical motor drive-end velocity 7 mm/s 

𝜓3 Critical shaft non-drive-end velocity 7 mm/s 

𝜓4 Critical shaft drive-end velocity 7 mm/s 

𝜓5 Critical decibel carpet and maximum difference for 

motor non-drive-end 

20 dB 

𝜓6 Critical decibel carpet and maximum difference for 

motor drive-end 

20 dB 

𝜓7 Critical decibel carpet and maximum difference for 

shaft non-drive-end 

20 dB 

𝜓8 Critical decibel carpet and maximum difference for 

shaft drive-end 

20 dB 

𝛿2 Critical temperature reading for shaft and motor 700C 

 

Table 5: Lower Bound Solution for RUL Linear Program 

Variable Value 

Objective function value 324.7146 

𝑀𝑉𝑁𝐷𝐸𝑉 0.0000 

𝑆𝑉𝐷𝐸𝐴 4.0000 

𝑆𝑈𝐷𝐷 16.0000 

𝑆𝑇𝑁𝐷𝐸 0.0000 

 

 

Table 6: Upper Bound Solution for RUL Linear Program 

Variable  Value 

Objective function value 526.8925 

𝑀𝑉𝑁𝐷𝐸𝑉 0.0000 

𝑆𝑉𝐷𝐸𝐴 7.0000 

𝑆𝑈𝐷𝐷 20.0000 

𝑆𝑇𝑁𝐷𝐸 0.0000 

 

4.2 Discussion of Results 

From Table 2, the Pearson’s R-value of the 

independent variables ranges from -0.190366 to 0.782795. 

When Pearson’s R-value is near ± 1, then it said to be a 

perfect correlation as one variable increases, the other 

variable tends to also increase (if positive) or decrease (if 

negative). If the coefficient value lies between ± 0.50 and 

± 1, then it is said to be a strong correlation [19]. From the 

results indicated in Table 2, it could be seen that 4 

variables out of the initial 20 variables showed strong 

correlation with the dependent variables RUL (depicted as 

𝑇𝑖 in the model formulation). This is because these 4 

variables have their absolute Pearson’s R-value greater 

than or equal to 0.5. The variables that are strongly 

correlated in this case are 𝑀𝑁𝐷𝐸𝑉, 𝑆𝑉𝐷𝐸𝐴, 𝑆𝑈𝐷𝐷, 

and 𝑆𝑇𝑁𝐷𝐸 implying they are the one critical for the 

continuous functioning of the equipment.  

For the MLR results (Table 3), though the Pr(>|t|) 

value for each variable are quite large proving some 

insignificance, the combined model p-value of 1.546e-06, 

a Multiple R-squared value of 0.8215 results to 

 

𝑇𝑖 = 2.869𝑀𝑉𝑁𝐷𝐸𝑉 + 51.921𝑆𝑉𝐷𝐸𝐴 + 4.755𝑆𝑈𝐷𝐷 −
1.82𝑆𝑇𝑁𝐷𝐸                                                                                (9)  

 

Equation 9 is a good prediction model that is 

statistically significant and can be applied for failure 

prediction of the equipment.  

Having determined the multiple linear regression 

as regarding the deterioration function for the equipment, 

the result of the MLR was then applied to the RUL Model.  

The boundary conditions for the RUL formulation are 

given in Table 4 from which the Lower and Upper Bound 

RUL value for the equipment were gotten after solving the 

Linear Programme problem. The results for the RUL model 

for the equipment as shown by Table 5 and Table 6 reveal a 

Lower Bound value of 324.7146 and an Upper bound value 

of 526.8925 days. By subtracting 345 (since the last 

reading for the equipment was taken on day 345) from both 

values which is the day the most recent reading was taken, 

the Lower bound and Upper bound RUL for Equipment is -

20.29 and 181.89 days respectively. This implies that the 

equipment should be scheduled for maintenance not later 

 than 181.89 days (into the future) to avoid failure. 



 748                       A. Kolawole and C. O. Ekoh 

           

         
Nigerian Journal of Technology (NIJOTECH)                     Vol. 41, No. 4, July 2022. 

5.0 CONCLUSION 

Appropriate scheduling maintenance is very 

essential to ensure a smooth running of any operational 

system, hence should be well planned. In this study MLR 

was explored to model the vibration features of any 

equipment with the aim of predicting time to maintain 

such machine. For the equipment used as a case study, 

twenty (20) independent variables were found to be 

associated with the equipment, from the procedure 

adopted, four (4) of the variables were identified as 

critical. And with the analysis of the vibration data 

collected for the equipment, a deterioration model to 

predict time to failure of the machines was developed. The 

model developed aided in determining the remaining 

useful life (RUL) of the equipment. With a p-value of 

1.546e-06 and Multiple R-squared value of 0.8215 gotten 

these results show that the model has a good reliability in 

forecasting time for equipment maintenance. The 

procedure described in this study if implemented, could 

aid in planning and scheduling effective maintenance 

system for any operational set-up. 
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