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Abstract 
Plate materials play a significant role in civil engineering and its application is found in building, bridges, marine, nuclear and 

structural engineering. Plates are three-dimensional (3-D) structural elements and normal practice in its analysis as two-dimensional 

(2-D) element has produced unreliable design which is a major problem in the construction industry. In this paper, a 3-D exact elastic 

plate theory (alternative I refined plate theory) is developed and applied to the bending analysis of an isotropic rectangular plate with 

free support at the third edge and the other edges clamped (CCFC) under uniformly distributed transverse load. The energy equation 

is formulated using the three-dimensional constitutive relations thereafter, the compatibility equation was obtained through general 

variation. The solution of the compatibility equation gave an exact deflection function of the plate as presented in the trigonometric 

form. This deflection function which is a product of the coefficient of deflection and shape function of the plate are substituted back 

into the energy equation, and simplified through minimization with respect to the coefficients of deflection and shear deformation to 

get a realistic formula for calculating the deflection, rotations and stresses of thick rectangular plate. The results of deflections and 

stresses obtained at aspect ratio of 2 were compared with those of previous studies available in the literature. It was observed that the 

present theory varied more with those of 2-D refined plate theory (RPT) with an assumed deflection function by 6.2% whereas it 

varied with exact 2-D RPT by 3.1%. This shows the inefficiency of assuming the deflection function in the analysis of thick plate. 

Meanwhile, the recorded total percentage differences showed that 2-D RPT over predicted the bending characteristics of the plate 

with 4.7%. This finding provides in-depth insight about the coarseness of 2-D RPT in the thick plate analysis. 

 

Keywords: Exact solution of CCFC plate, alternative I refined plate theory (AIRPT), compatibility equation, elastic bending analysis 

and trigonometric displacement functions.  

 

 

1.0 INTRODUCTION 

The use of plate materials in engineering is on the 

increase over the years due to its attractive properties such 

as light weight, economy, its ability to withstand heavy 

loads and ability to tailor the structural properties [1 and 

2]. They are used for the construction of civil engineering 

structures and other industrial applications, like bridges, 

roof, floor slabs, retaining walls, turbine disks, railways, 

ships dams, coaches, aircraft, etc., [3 and 4].  

Plates are classified based on the nature of the 

deformation and material properties: orthotropic, isotropic, 

anisotropic plates, etc., and based on shape: rectangular, 

triangular, circular plates, etc. The support conditions at 

the edges of the plate can either be free, fixed or simply 

supported, etc. [5 and 6]. They can also be classified in  
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terms of thickness (t) as; thin and thick plates, Anon [7]. 

Thin plate thickness is generally smaller than that of thick 

plate, the line perpendicular to the middle plane remains 

the same before and after deformation in thin plates. But in 

thick plates, the straight line at right angle to the middle 

surface before deformation does not remain the same after 

elongation. Thick plate has a wide range of applications 

due to its advantages such as: high mechanical properties, 

light weight, reduction in cost, heavy loads carrying 

capacities etc. [8].  

The static flexural load carried by plates is usually 

perpendicular to the surface of the plate, Osadebe [5] and 

plates can have different supports at their edges, which can 

be fixed, simply supported, point, etc., just as seen in other 

structural elements like column, beams, etc. Due to the 

loads acting on a plate, stresses are developed [9], as such, 

it is important to carry out plate analysis in order to 

determine its ability to resist loads. 
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Due to a wide application of thick plate in 

engineering and structures, various theories and 

approaches has been formulated and used in its analysis, 

for the determination of displacements, moments, stresses 

and stress resultants of the plates. Kirchhoff [10] 

formulated the classical plate theory (CPT) with the 

assumption that line which is normal to the neutral surface 

before deformation remain straight and normal on the 

neutral surface after deformation and it is mainly applied 

for the analysis of thin plate. The CPT has been found to 

be inadequate for the analysis of thick plates in that it 

doesn’t put transverse shear deformation into consideration 

[11]. As a result, refined plate theory is developed which 

take care of transverse shear deformation effect on the 

plate structure. 

First Order Shear Deformation Theory (FSDT) 

which is generally considered to be an improvement of 

CPT, and also considers transverse shear deformation in 

the analysis of plates. The FSDT has some limitation as it 

needs a shear correction factor. The limitation of the CPT 

and FSDTs led to the development of second order and 

higher order shear deformation theory [12 and 13]. These 

Higher Order Shear Deformation Theories (HSDT) give 

more accurate analysis results and also put transverse shear 

deformation into consideration by avoiding shear 

correction factors. 

Mantari, et al. [14] and Sayyad, et al. [15] 

formulated a more accurate HSDT by using Exponential 

Shear Deformation Theory (ESDT) and Trigonometric 

Shear Deformation Theory (TSDT) in the analysis of 

isotropic plates subjected to uniformly distributed loads. 

Matikainen, et al. [16] used polynomial displacement 

functions in the analysis of thick plate. 

Much work has not been carried out on the thick 

plate analysis considering the effect of shear deformation 

on the three directions (three-dimensional plate analysis). 

Few of them in the literature, the authors carried out the 

numerical analysis of plate like finite element method, 

finite strip method, etc. [6 and 17]. However, others try 

performing three-dimensional (3-D) analysis of solid 

rectangular plate by employing the Ritz approach which 

assumed the displacement function [18 and 19]. By 

assuming the displacement function, the result of the 3-D 

plate analysis will yield an approximate solution. Only 

Ibearugbulem, et al. [20] and Onyeka, et al. [21] utilized 

the analytical approach to get the exact displacement 

function from the governing equation (without 

assumption) in the bending analysis of thick rectangular 

plate. They did not apply trigonometric function which 

gives closer form solution than polynomial in the plate 

analysis [22]. Onyeka, et al. [21] used a 2-D model based 

on HSDT, they neglected the stresses along the thickness 

axis which made their solution not to be exact. 

Ibearugbulem, et al. [20] did not solve for plate with free 

support at the third edge and the other edges clamped 

(CCFC) boundary condition. This gap in the literature is 

worth filling. 

In this study, an exact 3-D elastic plate theory 

(Alternative I RPT) will be analytically developed and 

applied it in the three-dimensional rectangular plate 

subjected to a uniform distributed load using trigonometric 

displacement functions. The aim of this work is to study an 

elastic bending analysis a thick rectangular plate by 

determining the exact displacement and stress solutions of 

the plate with a free support at the third edge and the other 

edges clamped boundary conditions using the general 

variation approach.  

 

2.0 METHODOLOGY 

Based on the general thick plate assumption, the 

energy equation of a thick rectangular plate is formulated 

following the kinematics and three-dimensional 

constitutive relations for a static elastic theory of plate. 

 

2.1 Kinematics 

In this section, the displacement field which 

includes the displacements along x, y and z-axes: u, v and 

w are obtained assuming that the x-z section and y-z 

section, which are initially normal to x-y plane before 

bending go off normal to x-y plane after bending of the 

plate (see Figure 1). As shown in figure 1, the spatial 

dimensions of the plate along x, y and z-axes are a, b and t 

respectively [22].  

 

 
Figure 1: Rotation of x-z (or y-z) section after 

 

From figure 1, the displacement and slope along 

the x axis and y axis are mathematically expressed as [22]: 
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𝑥 =
𝜕𝑢

𝜕𝑧
                                                                                   (1) 

 

𝑦 =
𝜕𝑣

𝜕𝑧
                                                                                    (2) 

 

Considering assumption iii and figure 1, F as used 

is a function of z coordinate. Thus, the in-plane 

displacements; u and v as presented in the Equation 2 and 

3 are further defined using trigonometric relations for 

small angles as: 

 

𝑢 = 𝑧𝑥                                                                                      (3) 

 

𝑣 = 𝑧𝑦                                                                                     (4) 

 

Where: 

𝑢 and 𝑣 is the in-plane displacement along x-axis and y 

axis respectively,  

𝜃𝑥 and 𝜃𝑦 is the shear deformation slope along x axis and 

y axis, and 𝐹 represents the shear deformation profile. 

 

Taking the non-dimensional form of coordinates to 

be R = x/a, Q = y/b and S = z/t corresponding to x, y and 

z-axes respectively, the six strain components in terms of 

non-dimensional coordinates are written as: 

 

𝑥 =
𝑆𝑡

𝑎

𝑑𝜃𝑥

𝑑𝑅
                                                                             (5) 

 

𝑦 =
𝑆𝑡

𝑎𝛽

𝑑𝜃𝑦

𝑑𝑄
                                                                            (6) 

 

𝑧 =
1

𝑡

𝑑𝑤

𝑑𝑆
                                                                                (7) 

 


𝑥𝑦

=
𝑆𝑡

𝑎𝛽

𝑑𝜃𝑥

𝑑𝑄
+

𝑆𝑡

𝑎

𝑑𝜃𝑦

𝑑𝑅
                                                         (8) 

 


𝑥𝑧

= 𝜃𝑥 +
1

𝑎

𝑑𝑤

𝑑𝑅
                                                                     (9) 

 


𝑦𝑧

= 𝜃𝑦 +
1

𝑎𝛽

𝑑𝑤

𝑑𝑄
                                                               (10) 

 

Where: 

 

𝜀𝑥 , 𝜀𝑦 and 𝜀𝑧 are normal strain along x axis, y axis and z 

axis respectively, 

 𝛾𝑥𝑦, 𝛾𝑥𝑧 𝑎𝑛𝑑 𝛾𝑦𝑧 represents the shear strain in the plane 

parallel to the x-y, x-z and y-z plane. 

2.2 Constitutive Relations 

By considering the stresses causing the body 

movements, the generalized Hooke’s law principle was 

applied to get the three dimensional constitutive relation as 

given in Equation 11: 

[
 
 
 
 
 
𝜀𝑥

𝜀𝑦

𝜀𝑧
𝛾𝑥𝑧

𝛾𝑦𝑧

𝛾𝑥𝑦]
 
 
 
 
 

=
1

E

[
 
 
 
 
 

1 −𝜇 −𝜇 0 0 0
−𝜇 1 −𝜇 0 0 0
−𝜇 −𝜇 1 0 0 0

0 0 0 2(1 + 𝜇) 0 0

0 0 0 0 2(1 + 𝜇) 0

0 0 0 0 0 2(1 + 𝜇)]
 
 
 
 
 

[
 
 
 
 
 
𝜎𝑥

𝜎𝑦

𝜎𝑧
𝜏𝑥𝑧

𝜏𝑦𝑧

𝜏𝑥𝑦]
 
 
 
 
 

      (11) 

 

Modulus of elasticity and Poisson’s ratios are 

denoted with E and µ respectively. 

Substituting Equations 5 to 10 into Equation 11 and 

writing the equations of the six stress components one by 

one in term of the displacements gives: 

 

𝑥

=
𝐸𝑡𝑠

(1 + 𝜇)(1 − 2𝜇)𝑎
[(1 − 𝜇) .

𝜕𝑥

𝜕𝑅
+


𝛽
.
𝜕𝑦

𝜕𝑄

+
𝑎

𝑠𝑡2
.
𝜕𝑤

𝜕𝑆
]                                                                           (12) 

 

𝑦

=
𝐸𝑡𝑠

(1 + 𝜇)(1 − 2𝜇)𝑎
[ .

𝜕𝑥

𝜕𝑅
+

(1 − 𝜇)

𝛽
.
𝜕𝑦

𝜕𝑄

+
𝑎

𝑠𝑡2
.
𝜕𝑤

𝜕𝑆
]                                                                         (13) 

 

𝑧

=
𝐸𝑡𝑠

(1 + 𝜇)(1 − 2𝜇)𝑎
[ .

𝜕𝑥

𝜕𝑅
+


𝛽
.
𝜕𝑦

𝜕𝑄

+
(1 − 𝜇)𝑎

𝑠𝑡2
.
𝜕𝑤

𝜕𝑆
]                                                               (14) 

 

𝑥𝑦

=
𝐸(1 − 2)𝑡𝑠

2(1 + 𝜇)(1 − 2𝜇)𝑎
. [

1

𝛽

𝜕𝑥

𝜕𝑄

+
𝜕𝑦

𝜕𝑅
]                                                                                 (15) 

 

 

𝑥𝑧 =
𝐸(1 − 2)𝑡𝑠

2(1 + 𝜇)(1 − 2𝜇)𝑎
. [

𝑎

𝑡𝑠
𝑥 +

1

𝑡𝑠

𝜕𝑤

𝜕𝑅
]              (16) 
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𝑦𝑧 =
𝐸(1 − 2)𝑡𝑠

2(1 + 𝜇)(1 − 2𝜇)𝑎
. [

𝑎

𝑡𝑠
𝑦 +

1

𝛽𝑡𝑠

𝜕𝑤

𝜕𝑄
]              (17) 

 

2.3 Strain Energy 

Strain energy is defined as the average of the 

product of stress and strain indefinitely summed up within 

the spatial domain of the body. This mathematically 

expressed as: 

 

𝑈 =
𝑎𝑏𝑡

2
∫∫ ∫ (𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 + 𝜏𝑥𝑦𝑥𝑦

0.5

−0.5

1

0

1

0

+ 𝜏𝑥𝑧𝑥𝑧
+ 𝜏𝑦𝑧𝑦𝑧

) 𝑑𝑅 𝑑𝑄 𝑑𝑆          (18) 

 

Substituting Equations 5 to 10 and Equations 12 to 

17 into Equation 18, simplifying and carrying out the 

integration of the outcome with respect to S considering 

that S = z/t gives: 

 

𝑈

=
𝐷∗𝑎𝑏

2𝑎2
∫∫[(1 − 𝜇) (

𝜕𝑠𝑥

𝜕𝑅
)
2

 +
1

𝛽

𝜕𝑠𝑥

𝜕𝑅
.
𝜕𝑠𝑦

𝜕𝑄

1

0

1

0

+
(1 − 𝜇)

𝛽2 (
𝜕𝑠𝑦

𝜕𝑄
)

2

+
(1 − 2)

2𝛽2
(
𝜕𝑠𝑥

𝜕𝑄
)
2

+
(1 − 2)

2
(
𝜕𝑠𝑦

𝜕𝑅
)

2

+
6(1 − 2)

𝑡2 (𝑎2𝑠𝑥
2 + 𝑎2𝑠𝑦

2 + (
𝜕𝑤

𝜕𝑅
)
2

+
1

𝛽2
(
𝜕𝑤

𝜕𝑄
)
2

+ 2𝑎. 𝑠𝑥

𝜕𝑤

𝜕𝑅
+

2𝑎. 𝑠𝑦

𝛽

𝜕𝑤

𝜕𝑄
)

+
(1 − 𝜇)𝑎2

𝑡4
(
𝜕𝑤

𝜕𝑆
)
2

] 𝑑𝑅 𝑑𝑄                                            (19) 

 

Where: 

𝐷∗ =
𝐸𝑡3

12(1 + 𝜇)(1 − 2𝜇)
 = 𝐷 

(1 − 𝜇)

(1 − 2𝜇)
                      (20) 

 

2.4 Energy Equation Formulation 

Total Energy Expression be the algebraic 

summation of strain energy (U) and external work (E). 

That is: 

 

 = U − E                                                                            (21) 

 

The potential energy for the plate with uniformly 

distributed load is given as: 

 

𝐸 = −∫ ∫ 𝑞𝑤(𝑥, 𝑦)𝜕𝑥𝜕𝑦 
𝑏

0

𝑎

0

                                          (22) 

 

Where; the symbol w(x,y)  denotes the deflection in x and 

y direction, and 

q denotes the uniformly distributed load 

 

𝐸 = 𝑎𝑏𝑞 ∫ ∫ 𝑤
1

0

1

0

𝑑𝑅 𝑑𝑄                                                  (23) 

 

Where, the symbol h denotes the shape function of the 

plate, while; a and b is the length and breadth of the plate 

Substituting Equations 19 and 22 into Equation 21 gives: 

 



=
𝐷∗𝑎𝑏

2𝑎2
∫∫[(1 − 𝜇) (

𝜕𝑠𝑥

𝜕𝑅
)
2

 +
1

𝛽

𝜕𝑠𝑥

𝜕𝑅
.
𝜕𝑠𝑦

𝜕𝑄

1

0

1

0

+
(1 − 𝜇)

𝛽2 (
𝜕𝑠𝑦

𝜕𝑄
)

2

+
(1 − 2)

2𝛽2
(
𝜕𝑠𝑥

𝜕𝑄
)
2

+
(1 − 2)

2
(
𝜕𝑠𝑦

𝜕𝑅
)

2

+
6(1 − 2)

𝑡2 (𝑎2𝑠𝑥
2 + 𝑎2𝑠𝑦

2 + (
𝜕𝑤

𝜕𝑅
)
2

+
1

𝛽2
(
𝜕𝑤

𝜕𝑄
)
2

+ 2𝑎. 𝑠𝑥

𝜕𝑤

𝜕𝑅
+

2𝑎. 𝑠𝑦

𝛽

𝜕𝑤

𝜕𝑄
) +

(1 − 𝜇)𝑎2

𝑡4
(
𝜕𝑤

𝜕𝑆
)
2

] 𝑑𝑅 𝑑𝑄

− ∫ ∫ 𝑞𝑤 𝑎𝑏𝜕𝑅𝜕𝑄 
1

0

1

0

                                                        (24) 

 

This gives: 

 



=
𝐷∗𝑎𝑏

2𝑎2
∫∫[(1 − 𝜇) (

𝜕𝑠𝑥

𝜕𝑅
)
2

 +
1

𝛽

𝜕𝑠𝑥

𝜕𝑅
.
𝜕𝑠𝑦

𝜕𝑄

1

0

1

0

+
(1 − 𝜇)

𝛽2 (
𝜕𝑠𝑦

𝜕𝑄
)

2

+
(1 − 2)

2𝛽2
(
𝜕𝑠𝑥

𝜕𝑄
)
2

+
(1 − 2)

2
(
𝜕𝑠𝑦

𝜕𝑅
)

2

+
6(1 − 2)

𝑡2 (𝑎2𝑠𝑥
2 + 𝑎2𝑠𝑦

2 + (
𝜕𝑤

𝜕𝑅
)
2

+
1

𝛽2
(
𝜕𝑤

𝜕𝑄
)
2

+ 2𝑎. 𝑠𝑥

𝜕𝑤

𝜕𝑅
+

2𝑎. 𝑠𝑦

𝛽

𝜕𝑤

𝜕𝑄
) +

(1 − 𝜇)𝑎2

𝑡4
(
𝜕𝑤

𝜕𝑆
)
2

−
2𝑞𝑎4𝑤

𝐷∗ ] 𝑑𝑅 𝑑𝑄                                                                (25) 
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2.5 Governing Equation 

The solution of the governing equation in 

trigonometric form is obtained according to Onyeka, et 

al. [23] by minimizing the total potential energy 

functional with respect to deflection to give the exact 

deflection equation, shear deformation rotation in x-axis 

and shear deformation rotation in y-axis as presented in 

Equation 26, 27 and 28 respectively: 

 

𝑤 = [1 𝑅 𝐶𝑜𝑠(𝑐1𝑅) 𝑆𝑖𝑛(𝑐1𝑅)] [

𝑎0

𝑎1
𝑎2

𝑎3

]

× [1 𝑄 𝐶𝑜𝑠(𝑐1𝑄) 𝑆𝑖𝑛(𝑐1𝑄)] [

𝑏0

𝑏1

𝑏2

𝑏3

]       (26) 

 

𝜃𝑥 =
𝑐

𝑎
. ∆0. [1 𝑐1𝑆𝑖𝑛(𝑐1𝑅) 𝑐1𝐶𝑜𝑠(𝑐1𝑅)] [

𝑎1

𝑎2

𝑎3

]

× [1 𝑄 𝐶𝑜𝑠(𝑐1𝑄)  𝑆𝑖𝑛(𝑐1𝑄)] [

𝑏0

𝑏1

𝑏2

𝑏3

]    (27) 

 

𝑦

=
𝑐

𝑎β
. ∆0. [1 𝑅 𝐶𝑜𝑠(𝑐1𝑅)  𝑆𝑖𝑛(𝑐1𝑅)] [

𝑎0

𝑎1
𝑎2

𝑎3

]

× [1     𝑐1𝑆𝑖𝑛(𝑐1𝑄)  𝑐1𝐶𝑜𝑠(𝑐1𝑄)] [

𝑏1

𝑏2

𝑏3

]                        (28) 

 

Let: 

𝑤 = 𝐴1. ℎ                                                                             (29) 

 

 

𝑥 =
𝐴2

𝑎
.
𝜕ℎ

𝜕𝑅
                                                                        (30) 

 

 

𝑦 =
𝐴3

𝑎𝛽
.
𝜕ℎ

𝜕𝑄
                                                                       (31) 

 

Where; 𝐴1, 𝐴2 𝑎𝑛𝑑 𝐴3  is the coefficient of 

deflection, coefficient of shear deformation along x axis 

and coefficient of shear deformation along y axis 

respectively. 

Substituting Equation 29, 30 and 31 into 25, 

gives: 

 =
𝐷∗𝑎𝑏

2𝑎4
∫∫[(1 − 𝜇)𝐴2

2 (
𝜕2ℎ

𝜕𝑅2)

2

 

1

0

1

0

+
1

𝛽2
[𝐴2. 𝐴3 +

(1 − 2)𝐴2
2

2

+
(1 − 2)𝐴3

2

2
] (

𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2

+
(1 − 𝜇)𝐴3

2

𝛽4 (
𝜕2ℎ

𝜕𝑄2)

2

+ 6(1

− 2) (
𝑎

𝑡
)
2

([𝐴2
2 + 𝐴1

2

+ 2𝐴1𝐴2]. (
𝜕ℎ

𝜕𝑅
)
2

+
1

𝛽2
. [𝐴3

2 + 𝐴1
2 + 2𝐴1𝐴3]. (

𝜕ℎ

𝜕𝑄
)
2

)

−
2𝑞𝑎4ℎ𝐴1

𝐷∗
  ] 𝑑𝑅 𝑑𝑄                            (32) 

 

Writing Equation 32 in more symbolized form 

gives: 

 

 =
𝐷∗𝑎𝑏

2𝑎4
[(1 − 𝜇)𝐴2

2𝑘𝑥  

+
1

𝛽2
[𝐴2. 𝐴3 +

(1 − 2)𝐴2
2

2

+
(1 − 2)𝐴3

2

2
] 𝑘𝑥𝑦 +

(1 − 𝜇)𝐴3
2

𝛽4
𝑘𝑦

+ 6(1

− 2) (
𝑎

𝑡
)
2

([𝐴2
2 + 𝐴1

2 + 2𝐴1𝐴2]. 𝑘𝑧

+
1

𝛽2
. [𝐴3

2 + 𝐴1
2 + 2𝐴1𝐴3]. 𝑘2𝑧)

−
2𝑞𝑎4𝑘ℎ𝐴1

𝐷∗
]                                       (33) 

 

Where: 

 

𝑘𝑥 = ∫∫(
𝜕2ℎ

𝜕𝑅2)

21

0

1

0

𝑑𝑅𝑑𝑄                                               (34) 

 

 

𝑘𝑥𝑦 = ∫∫(
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

21

0

1

0

𝑑𝑅𝑑𝑄                                        (35) 
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 𝑘𝑦 = ∫∫(
𝜕2ℎ

𝜕𝑄2)

21

0

1

0

𝑑𝑅𝑑𝑄                                                 (36) 

 

𝑘𝑧 = ∫∫(
𝜕ℎ

𝜕𝑅
)
21

0

1

0

𝑑𝑅𝑑𝑄                                                     (37) 

 

𝑘2𝑧 = ∫∫(
𝜕ℎ

𝜕𝑄
)
21

0

1

0

𝑑𝑅𝑑𝑄; 𝑘ℎ = ∫∫ℎ

1

0

.

1

0

𝑑𝑅𝑑𝑄            (38) 

 

Minimizing Equation 33 with respect to 𝐴2 gives: 

 
𝜕

𝜕𝐴2
= (1 − 𝜇)𝐴2𝑘𝑥  +

1

2𝛽2
[𝐴3 + 𝐴2(1 − 2)]𝑘𝑥𝑦

+ 6(1 − 2) (
𝑎

𝑡
)
2

[𝐴2 + 𝐴1]. 𝑘𝑧

= 0                                                             (34) 

 

Minimizing Equation 33 with respect to 𝐴3 gives: 

 
𝜕

𝜕𝐴2
=

(1 − 𝜇)𝐴3

𝛽4
𝑘𝑦 +

1

2𝛽2
[𝐴2 + 𝐴3(1 − 2)]𝑘𝑥𝑦

+
6

𝛽2
(1 − 2) (

𝑎

𝑡
)
2

([𝐴3 + 𝐴1]. 𝑘2𝑧)

= 0                                                            (35) 

 

Rewriting Equations 34 and 35 gives: 

 

[(1 − 𝜇)𝑘𝑥 +
1

2𝛽2
(1 − 2)𝑘𝑥𝑦 + 6(1 − 2) (

𝑎

𝑡
)
2

𝑘𝑧] 𝐴2

+ [
1

2𝛽2
𝑘𝑥𝑦] 𝐴3

= [−6(1

− 2) (
𝑎

𝑡
)
2

𝑘𝑧] 𝐴1                                (36) 

 

[
1

2𝛽2
𝑘𝑥𝑦] 𝐴2 + [

(1 − 𝜇)

𝛽4
𝑘𝑦 +

1

2𝛽2
(1 − 2)𝑘𝑥𝑦

+
6

𝛽2
(1 − 2) (

𝑎

𝑡
)
2

𝑘2𝑧] 𝐴3

= [−
6

𝛽2
(1

− 2) (
𝑎

𝑡
)
2

𝑘𝑄] 𝐴1                                  (37) 

 

Solving Equations 36 and 37 simultaneously gives: 

 

𝐴2 = 𝑈𝐴1                                                                              (38) 

 

𝐴3 = 𝑉𝐴1                                                                              (39) 

 

Let: 

𝑈 =
(𝑟12𝑟23 − 𝑟13𝑟22)

(𝑟12𝑟12 − 𝑟11𝑟22)
                                                       (40) 

 

𝑉 =
(𝑟12𝑟13 − 𝑟11𝑟23)

(𝑟12𝑟12 − 𝑟11𝑟22)
                                                       (41) 

 

Where: 

 

𝑟11 = (1 − 𝜇)𝑘𝑥 +
1

2𝛽2
(1 − 2)𝑘𝑥𝑦

+ 6(1 − 2) (
𝑎

𝑡
)
2

𝑘𝑧                          (42) 

 

𝑟22 =
(1 − 𝜇)

𝛽4
𝑘𝑦 +

1

2𝛽2
(1 − 2)𝑘𝑥𝑦

+
6

𝛽2
(1 − 2) (

𝑎

𝑡
)
2

𝑘2𝑧                       (43) 

 

𝑟12 = 𝑟21 =
1

2𝛽2
𝑘𝑥𝑦; 𝑟13 = −6(1 − 2) (

𝑎

𝑡
)
2

𝑘𝑧;  𝑟23

= 𝑟32 = −
6

𝛽2
(1 − 2) (

𝑎

𝑡
)
2

𝑘2𝑧       (44) 

 

Minimizing Equation 33 with respect to A1 gives: 

 

𝜕𝛱

𝜕𝐴1
=

𝐷∗𝑎𝑏

2𝑎4
[6(1 − 2) (

𝑎

𝑡
)
2

([2𝐴1 + 2𝐴2]. 𝑘𝑧

+
1

𝛽2
. [2𝐴1 + 2𝐴3]. 𝑘2𝑧) −

2𝑞𝑎4𝑘ℎ

𝐷∗
]

= 0                                                            (45) 

 

That is: 

 

6(1 − 2) (
𝑎

𝑡
)
2

([𝐴1 + 𝑈𝐴1]. 𝑘𝑧 +
1

𝛽2
. [𝐴1 + 𝑉𝐴1]. 𝑘2𝑧)

−
𝑞𝑎4𝑘ℎ

𝐷∗
= 0                                          (46) 

 

Factorizing Equations 46 and simplifying gives: 

 

6(1 − 2) (
𝑎

𝑡
)
2

𝐴1 ([1 + 𝑈]. 𝑘𝑧 +
1

𝛽2
. [1 + 𝑉]. 𝑘2𝑧)

=
𝑞𝑎4𝑘ℎ

𝐷∗
                                                                               (47) 
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𝑇𝐴1 =
𝑞𝑎4𝑘ℎ

𝐷∗
                                                                       (48) 

 

𝐴1 =
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)                                                                    (49) 

 

Where: 

 

𝑇 = 6(1 − 2) (
𝑎

𝑡
)
2

∗ ([1 + 𝐺2]. 𝑘𝑧 +
1

𝛽2
. [1 + 𝐺3]. 𝑘2𝑧) (50) 

 

2.6 Exact Displacement and Stress Expression 

By substituting the value of 𝐴1, 𝐴2 𝑎𝑛𝑑 𝐴3 in 

Equation 49, 38 and 39 into Equation 13 – 17, simplify 

appropriately, we have: 

 

𝑢 = z 
𝐴2

a
 
𝑑ℎ

𝑑𝑅
                                                                       (51) 

 

𝑤 = (𝑅 − 2𝑅3 + 𝑅4) × (𝑄 − 2𝑄3 + 𝑄4)𝐴1              (52) 

 

𝑥 =
Ets

(1 + μ)(1 − 2μ)a
[ 𝐴2

∂2ℎ

∂𝑅2
+   

𝐴3

𝛽2
 
𝑑2ℎ

𝑑𝑄2

+
(1 − μ)a

𝑠t2
.
∂w

∂S
]                                     (53) 

 

z =
Ets

(1+μ)(1−2μ)a
[ .

∂2ℎ

∂𝑅2 +


β
.
∂2ℎ

∂𝑄2 +
(1−μ)a

𝑠t2
.
∂w

∂S
]          (54)  

 

𝑥𝑦 =
Ets

2(1 + μ)(1 − 2μ)
.

1

𝛽𝑎3
[ 𝐴2 + 𝐴3]

∂2ℎ

∂𝑅 ∂𝑄
         (55) 

 

𝑦𝑧 =
Ets

2(1 + μ)(1 − 2μ)
.

1

𝛽𝑎2
. [𝐴1 +

𝐴3

𝑡

∂𝐹

𝑑𝑆
 ]

∂ℎ

∂𝑄
       (56) 

 

3.0 NUMERICAL ANALYSIS 

The analysis of a thick rectangular SSSS plate 

whose Poisson’s ratio is 0.3 and carrying uniformly 

distributed load (including self-weight) is presented. This 

is done by determining the deflection, w where R = 0.5, Q 

= 0.5 and S = 0; normal in-plane stresses σx, and σy, 

where R = 0.5, Q = 0.5 and S = 0.5; x-y plane shear stress 

τxy where R = 0, Q = 0 and S = 0.5; x-z plane shear stress 

τxz 

where R= 0, Q = 0.5 and S = 0. The trigonometric 

shape function as was obtained in the previous section is 

subjected to the rectangular SSSS plate boundary 

condition shown on Figure 2 for various aspect ratios and 

span-depth ratio.  

 
Figure 2: CCFC Rectangular Plate 

 

The trigonometric exact displacement function for the 

plate analysis as derived in Equation 26 is given as 

presented in Equation (57). 

 

𝑤 = (𝑎0 +  𝑎1𝑅 + 𝑎2 cos𝑔1𝑅 + 𝑎3 sin𝑔1𝑅)
× (𝑏0 +  𝑏1𝑄 + 𝑏2 cos𝑔2𝑄
+ 𝑏3 sin𝑔2𝑄)                                          (57) 

 

The boundary conditions of the plate in figure 3 

are as follows: 

 

At 𝑅 =  𝑄 =  0;  𝑤 = 0                                                    (58) 

 

At 𝑅 =  𝑄 =  0; 
𝑑𝑤

𝑑𝑅
=

𝑑𝑤

𝑑𝑄
= 0                                         (59) 

 

At 𝑅 =  𝑄 =  1;  𝑤 = 0                                                     (60) 

 

At 𝑅 =  𝑄 =  1;
𝑑𝑤

𝑑𝑅
=

𝑑𝑤

𝑑𝑄
= 0                                          (61) 

 

The trigonometric displacement 𝑤 (𝑥, 𝑦) functions 

that satisfy the boundary conditions for one edge free and 

other three edges clamped rectangular plate boundary 

conditions are determined as follows: 

Substituting Equation 58 to 61 into the derivatives 

of w and solving gave the characteristic equation as: 

 

2𝐶𝑜𝑠 𝑔1 + 𝑔1 𝑆𝑖𝑛 𝑔1 − 2 = 0; 𝑏2𝐶𝑜𝑠 𝑔1 = 0              (62) 

 

The value of 𝑔1 that satisfies Equation (62) is: 

 

𝑔1 = 2𝑚𝜋; 𝑔1 =
𝑛𝜋

2
[𝑤ℎ𝑒𝑟𝑒 𝑚 = 𝑛 = 1, 2, 3… ]       (63) 
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Substituting Equation (63) into the derivatives of 

w and satisfying the boundary conditions of Equation (58) 

to (61) gives the following constants; 

 

𝑎1 = 𝑎3 = 𝑏3 = 0; 𝑏1 = −𝑔1 𝑏3 = 0; 𝑎0 = −𝑎2; 𝑏0

= −𝑏2                                                        (64) 

 

Substituting the constants of Equation (63) and 

(64) into Equation (57) gave; 

 

𝑤 = 𝑎0(1 −  𝐶𝑜𝑠2𝑚𝜋𝑅) × 𝑏0 (1 −  𝐶𝑜𝑠
𝑛𝜋𝑄

2
)           (65) 

 

Similarly; 

𝑤 = 𝑎2( 𝐶𝑜𝑠2𝑚𝜋𝑅 − 1) × 𝑏2 (𝐶𝑜𝑠
𝑛𝜋𝑄

2
− 1)            (66) 

 

Recall from Equation (45), that; 

 

𝑤 = 𝐴1ℎ 

 

Let 𝑚 = 1 

 

Therefore: 

𝑤 = 𝑎2 × 𝑏2( 𝐶𝑜𝑠2𝜋𝑅 − 1). (𝐶𝑜𝑠
𝑛𝜋𝑄

2
− 1)              (67) 

 

 

Let the amplitude, 

 

𝐴1 = 𝑎2 × 𝑏2                                                                         (68) 

 

 

ℎ = ( 𝐶𝑜𝑠2𝜋𝑅 − 1). (𝐶𝑜𝑠
𝑛𝜋𝑄

2
− 1)                              (69) 

 

Thus, the trigonometric deflection functions after 

satisfying the boundary conditions is:  

 

𝑤 = 𝐴1( 𝐶𝑜𝑠2𝜋𝑅 − 1). (𝐶𝑜𝑠
𝑛𝜋𝑄

2
− 1)                         (70) 

 

Thus; using Equation (34),(35), (36), (37) and (38), the 

stiffness coefficients of CCFC rectangular plate is obtained 

and presented in the Table 1. 

 

Table 1: Trigonometric form of stiffness coefficients of 

CCFC rectangular plate 

Deflection 

form 

𝒌𝒙 𝒌𝒙𝒚 𝒌𝒚 𝒌𝒛 𝒌𝟐𝒛 

Trigonometry 80𝜋4 π4

4
 

3𝜋4

64
 

9𝜋2

20
 

3𝜋2

16
 

4.0 RESULTS AND DISCUSSIONS  

The values of trigonometric stiffness coefficient 

displacement shape functions are presented in Table 1. The 

numerical results of displacements and stresses for the 

three dimensional isotropic plate subjected to a uniform 

distributed load are presented in non-dimensional form in 

Tables 2 and 3. To determine the correctness of the results 

from the present studies, comparison was made between 

values from the present study and those of past scholars. 

The comparative analysis of non-dimensional in-

plane displacement at the given coordinate positions for 

the span-to-thickness ratios (β =
a

t
) from 4 to 9, 10, 20, 

30, 40, 50, 60, 70, 80, 90, 100 and 1000 are presented in 

Tables 4. The in-plane displacement have compared those 

of CPT, 2-D HSDT by Gwarah [24], and an elasticity 

solution for pure bending analysis of plate Onyeka, et al. 

[21] and presented in terms of percentage error 

calculations.  

From a critical look at table 2 and 3, it is shown 

that the value of in-plane displacement characteristics 

along x and y axis (u, v) increases as the span-thickness 

ratio increases while that the value of out of plane 

displacement characteristics (w) decreases as the span-

thickness ratio increases. It is also observed in the table 

that the in-plane displacement along x and y axis (u, v) 

values decreases as the length to breadth ratio increases 

while out of plane displacement (w) value increases as the 

length to breadth ratio increases. This could imply that, the 

axial displacement is functions of x, y and z as it varies 

with the plate thickness while the deflection is only a 

function of x and y and did not vary linearly with the 

thickness of the plate thickness.  

Furthermore, it was deduced from the Table 2 and 

3 that the normal stress along x and y axis (𝜎𝑥  𝑎𝑛𝑑 𝜎𝑦) 

and shear stress in the plane parallel to the x-y plane (𝜏𝑥𝑦) 

increases as the span-thickness ratio increases while the 

shear stress in the plane parallel to the x-z and y-z plane 

(𝜏𝑥𝑧 𝑎𝑛𝑑 𝜏𝑦𝑧 ) decreases as the span-thickness ratio 

increases. It is also observed that the values of these 

stresses (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦, 𝜏𝑥𝑧 𝑎𝑛𝑑 𝜏𝑦𝑧 ) increase as the length to 

breadth ratio (∝= b/a) of the plate increases. This implies 

that, as the length of the plate material increases, more 

stresses are induced in the plate which consequently leads 

to the failure of the plate material. 

Looking at the tables 4, it is observed that as the 

span-to-thickness ratio increases, the values of in-plane 

displacement in the present study, which used exact 3-D 

elasticity theories gets close to those obtained from the 

past scholars that used classical plate theory and the 2-D 

refined thick plate theories (Gwarah [24] Onyeka, et al. 

[21]). The thickest plate (a/t of 4) has a percentage 
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difference of 5.1% (Onyeka, et al. [21]) and 21.4% 

(Gwarah [24]) with the present study. The lightest plate 

(a/t of 1000) has a percentage difference of 0 (Onyeka, et 

al. [21]) and 0.03% (Gwarah, [24), which gives the same 

difference when compared with the value of the CPT. It is 

also, showed that at a span - thickness ratio above 100, the 

values obtained from the models used herein almost 

coincide with the values from the RPT and CPT. This is 

quite expected since we assumed in CPT analyses that at 

span-thickness ratios of 100 and above, a plate can be 

taken as being thin.  

The comparative analysis performed as presented 

in the table 3 showed that the overall average percentage 

difference values of displacement obtained by present 

theory and those of Onyeka, et al. [21] and Gwarah [24] 

are 3.1% and 6.2% respectively. This means that the 

analytical 2-D RPT with exact displacement function 

(Onyeka, et al. [21]) gives a closer result when compared 

with exact 3-D plate theory (Alternative I, RPT) than that 

of Gwarah [24] which used an assumed displacement  

function in the analysis. Meanwhile, the values predicted 

by the present theory are in close agreement with previous 

scholars. The slightly higher average percentage difference 

of 6.2% showed the coarseness of refined plate theories in 

the thick plate analysis as they underestimate the stresses 

in the plate structure. Hence, the need to employ a typical 

3-D with exact displacement function for plate analysis to 

achieve efficiency.  

The present study converges with previous work 

as the span to thickness ratio increases and becomes the 

same or equal to CPT value at span to thickness ratio of 

100. The rate of convergence can be seen in Figure 3. The 

total average percentage difference between the present 

study and that of previous studies is 4.7%. This means that 

at about 95% confidence level, the values from the present 

study are the same with those of previous studies. This 

higher confidence level proved that the present model 

(AIRPT) can be used with confidence for stress and 

bending analysis of thick rectangular plate that is clamped 

at the three edges and free of support at the other edge. 

 

 

 

Table 2: Displacement and Stresses of CCFC plate for length to breadth ratio (∝= b/a) of 2.0 

∝= 2.0 

𝛃 =
𝐚

𝐭
 𝒘 𝒖  𝒗  𝝈𝒙  𝝈𝒚 𝝉𝒙𝒚 𝝉𝒙𝒛 𝝉𝒚𝒛  

4 0.016715 -0.003999 -0.008990 0.256405 0.141043 -0.063781 0.016624 0.023142 

5 0.013512 -0.003456 -0.007401 0.218636 0.118105 -0.053364 0.007347 0.009496 

6 0.012075 -0.003456 -0.007401 0.218636 0.118105 -0.053364 0.007347 0.009496 

7 0.011222 -0.003346 -0.007062 0.210928 0.113312 -0.051184 0.005437 0.006884 

8 0.010675 -0.003275 -0.006840 0.205980 0.110209 -0.049772 0.004207 0.005247 

9 0.010302 -0.003227 -0.006688 0.202613 0.108086 -0.048806 0.003368 0.004152 

10 0.010036 -0.003193 -0.006579 0.200217 0.106568 -0.048115 0.002770 0.003383 

20 0.009193 -0.003085 -0.006227 0.192622 0.101720 -0.045906 0.000868 0.001003 

30 0.009038 -0.003065 -0.006162 0.191227 0.100823 -0.045497 0.000518 0.000576 

40 0.008984 -0.003059 -0.006139 0.190740 0.100509 -0.045354 0.000395 0.000428 

50 0.008959 -0.003055 -0.006128 0.190514 0.100363 -0.045288 0.000339 0.000359 

60 0.008946 -0.003054 -0.006122 0.190392 0.100284 -0.045252 0.0003079 0.0003223 

70 0.008937 -0.003053 -0.006119 0.190318 0.100237 -0.04523 0.0002894 0.0002999 

80 0.008932 -0.003052 -0.006116 0.190270 0.100206 -0.045216 0.0002773 0.0002854 

90 0.008928 -0.003051 -0.006115 0.190237 0.100185 -0.045207 0.0002691 0.0002754 

100 0.008926 -0.003051 -0.006114 0.190214 0.100169 -0.045200 0.0002632 0.0002683 

1000 0.008926 -0.003051 -0.006114 0.190214 0.100169 -0.045200 0.0002632 0.0002683 

CPT 0.008926 -0.003051 -0.006114 0.190214 0.100169 -0.045200 0.0002632 0.0002683 
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Table 3: Displacement and Stresses of CCFC plate for length to breadth ratio (∝= b/a) of 2.0 

∝= 2.0 

β =
a

t
 𝒘 𝒖  𝒗  𝝈𝒙  𝝈𝒚 𝝉𝒙𝒚 𝝉𝒙𝒛 𝝉𝒚𝒛  

4 0.019368 -0.004413 -0.005713 0.282623 0.104958 -0.038818 0.018687 0.008563 

5 0.016204 -0.003986 -0.004967 0.25509 0.093972 -0.03426 0.011808 0.005176 

6 0.014539 -0.003762 -0.004565 0.240605 0.088156 -0.031825 0.008186 0.003518 

7 0.013553 -0.00363 -0.004323 0.232024 0.084698 -0.03037 0.006040 0.002581 

8 0.012920 -0.003545 -0.004166 0.226516 0.082473 -0.029429 0.004662 0.001998 

9 0.012489 -0.003487 -0.004058 0.222766 0.080955 -0.028787 0.003723 0.001611 

10 0.012182 -0.003446 -0.003981 0.220098 0.079874 -0.028328 0.003056 0.001339 

20 0.011210 -0.003349 -0.003736 0.211639 0.076439 -0.026867 0.000938 0.000505 

30 0.011031 -0.003315 -0.00369 0.210084 0.075806 -0.026597 0.000549 0.000356 

40 0.010969 -0.003291 -0.003674 0.209541 0.075585 -0.026502 0.000413 0.0003042 

50 0.01094 -0.003283 -0.003667 0.20929 0.075483 -0.026459 0.000350 0.0002803 

60 0.010924 -0.003279 -0.003663 0.209154 0.075427 -0.026435 0.0003156 0.0002674 

70 0.010915 -0.003277 -0.003661 0.209072 0.075394 -0.026421 0.000295 0.0002596 

80 0.010909 -0.003275 -0.003659 0.209018 0.075372 -0.026411 0.0002817 0.0002545 

90 0.010904 -0.003275 -0.003658 0.208982 0.075357 -0.026405 0.0002725 0.000251 

100 0.010901 -0.003274 -0.003657 0.208955 0.075347 -0.0264 0.0002659 0.0002486 

1000 0.010901 -0.003274 -0.003657 0.208955 0.075347 -0.0264 0.0002659 0.0002486 

CPT 0.010901 -0.003272 -0.003657 0.208955 0.075347 -0.0264 0.0002659 0.0002486 

 

Table 4: Comparative analysis of present study for length to breadth ratio (∝= b/a) of 2.0 and past studies showing their 

percentage difference calculations at varying span-depth ratio (β = a/t). 

∝= 2.0 

𝛃 =
𝐚

𝐭
 

Present work 

(𝒖) 

Onyeka, et al. 

[21] (𝒖) 

Percentage 

difference (%) 

Present work 

(𝒖) 

Gwarah [24] 

(𝒖) 

Percentage 

difference (%) 

4 -0.004651 -0.004413 -5.11718 -0.004413 -0.003654 -21.4363 

5 -0.00421 -0.003986 -5.32067 -0.003986 -0.003517 -16.4608 

6 -0.003971 -0.003762 -5.26316 -0.003762 -0.003442 -13.3216 

7 -0.003835 -0.00363 -5.3455 -0.00363 -0.003397 -11.4211 

8 -0.003751 -0.003545 -5.49187 -0.003545 -0.003368 -10.2106 

9 -0.003692 -0.003487 -5.55255 -0.003487 -0.003348 -9.31744 

10 -0.003631 -0.003446 -5.09502 -0.003446 -0.003333 -8.20711 

20 -0.003571 -0.003349 -6.21675 -0.003349 -0.003299 -7.61691 

30 -0.003518 -0.003315 -5.77032 -0.003315 -0.003287 -6.56623 

40 -0.003412 -0.003291 -3.54631 -0.003291 -0.003279 -3.89801 

50 -0.003385 -0.003283 -3.01329 -0.003283 -0.003274 -3.27917 

60 -0.00328 -0.003279 -0.03049 -0.003279 -0.003274 -0.18293 

70 -0.003278 -0.003277 -0.03051 -0.003277 -0.003274 -0.12203 

80 -0.003277 -0.003275 -0.06103 -0.003275 -0.003273 -0.12206 

90 -0.003276 -0.003275 -0.03053 -0.003275 -0.003273 -0.09158 

100 -0.003275 -0.003274 -0.03053 -0.003274 -0.003273 -0.06107 

1000 -0.003274 -0.003274 0 -0.003274 -0.003273 -0.03054 

CPT -0.003272 -0.003272 0 -0.003272 -0.003272 0 

Average % 

difference 

 

3.1 

 

6.2 

Average total 

% difference 

 

4.7 
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Figure 3: Graph of out-of-plane displacement (w) versus span to 

thickness ratio (a/t) 

 

5.0 CONCLUSION AND RECOMMENDATION 

The 3-D exact theory is a plate theory that 

involves all the six strains (𝜀𝑥 , 𝜀𝑦, 𝜀𝑧, 𝛾𝑥𝑦, 𝛾𝑥𝑧 𝑎𝑛𝑑 𝛾𝑦𝑧 ) 

and stress (𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜏𝑥𝑦, 𝜏𝑥𝑧 𝑎𝑛𝑑 𝜏𝑦𝑧 ) components in the 

analysis. Hence, they include more modulus of elasticity 

(E) and other mechanical properties of the plate. As a 

consequence, the proposed 3-D approach always predicts 

buckling load greater than those predicted by CPT and 

RPT because of these additional load (stresses), modulus 

of elasticity (E) and other mechanical properties of the 

plate.  

From the result of percentage difference recorded, 

it can be concluded that the CPT and 2D RPT is only an 

approximate relation for buckling analysis of thick plate 

(although it turns out to be exact in the case of pure 

bending). Furthermore, the trigonometric displacement 

shear deformation theory developed to give a close form 

solution, thereby considered more accurate and safer for 

complete exact three-dimensional thick plate analysis. Its 

use in the analysis of thick plates will yield almost an 

exact result. Thus, confirming that the exact 3-D plate 

theory using trigonometric displacement function provides 

a good solution for the stability analysis of plates and, can 

be recommended for analysis of any type of rectangular 

plate under the same loading and boundary condition. 
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