

© FACULTY OF ENGINEERING, UNN, 2021

Database Management System for Mobile Crowdsourcing Applications

F.M. Dahunsi1*, A. J. Joseph2, O. A. Sarumi3, O. O. Obe4

1,2Department of Computer Engineering, Federal University of Technology Akure, Ondo State, NIGERIA.

3,4Department of Computer Science, Federal University of Technology Akure, Ondo State, NIGERIA.

Abstract
The evaluation of mobile crowdsourcing activities and reports require a viable and large volume of data. These data are gathered

in real-time and from a large number of paid or unpaid volunteers over a period. A high volume of quality data from smartphones

or mobile devices is pivotal to the accuracy and validity of the results. Therefore, there is a need for a robust and scalable database

structure that can effectively manage and store the large volumes of data collected from various volunteers without compromising

the integrity of the data. An in-depth review of various database designs to select the most suitable that will meet the needs of a

real-time, robust and large volunteer data handling system is presented. A non-relational database was proposed for the mobile-

end database: Google Cloud Firestore specifically due to its support for mobile client implementation, this choice also makes the

integration of data from the mobile end-users to the cloud-hosted database relatively easier with all proposed services being part

of the Google Cloud Platform; although it is not as popular as some other database services. Separate comparative reviews of the

Database Management System (DBMS) performance demonstrated that MongoDB (a non-relational database) performed better

when reading large datasets and performing full-text queries, while MySQL (relational) and Cassandra (non-relational) performed

much better for data insertion. Google BigQuery was proposed as an appropriate data warehouse solution. It will provide continuity

and direct integration with Cloud Firestore and its Application Programming Interface (API) for data migration from Cloud

Firestore to BigQuery, and the local server. Also Google BigQuery provides machine learning support for data analytics.

.

Keywords: Database management system, mobile applications, crowdsourcing, big data

1.0 INTRODUCTION

A database is a collection of data stored

electronically such that information relevant to an

enterprise, organization or entity can be retrieved

conveniently and efficiently [1]. Although the terms

“database” and “database management system (DBMS)”

are used interchangeably the former correctly refers to the

collection of data which comprises all data significant to

an organization while the latter refers to the entire system

which comprises of the collection of stored data

(database) and a set of programs that handle operations

through transactions on the stored data [2]. Appropriate

database architecture is critical in ensuring reliable data,

minimizing data duplication, effective query execution,

high-performance usage and integration. The database

architecture becomes more relevant at the point of

analysis for the extraction of meaningful information. An

important issue in the management of large amounts of

data handled by a DBMS is data inconsistency. This

occurs when different versions of the same data exist at

*Corresponding author (Tel: +234 (0) 8101564160)

Email addresses: fmdahunsi@futa.edu.ng (F. M.

Dahunsi), josephayo110@gmail.com (A. J. Joseph),

oasarumi@futa.edu.ng (O.A. Sarumi), ooobe@futa.edu.ng

(O.O. Obe)

different places and are usually made worse by data

redundancy which occurs when there are multiple entries

of the same data in different places [3]. Modern DBMSs

sufficiently handle data consistency, redundancy issues,

and several others by ensuring that every transaction has

the following properties [2], [4]:

1. Atomicity: This requires that all concurrent

operations or co-dependent operations must be

successfully executed, in the case where an error or

failure occurs during the execution of any of these

operations the transaction should be terminated and

all changes reversed.

2. Consistency: This ensures that changes made through

transactions occur only in predefined ways by always

following certain rules and constraints. An example

of a constraint is the data type for a column in a

relational database which dictates the type of values

that can be stored in that specific column any attempt

to store data of the wrong type results in a failed

transaction.

3. Isolation: This defines the rule for cascading

transactions and it restricts the use of data to1 only

one transaction at a time and that data can only be

Nigerian Journal of Technology (NIJOTECH)

Vol. xx, No. x, xxx, 20xx, pp. 1 – 20

www.nijotech.com

 ,

Print ISSN: 0331-8443

 Electronic ISSN: 2467-8821
 http://dx.doi.org/10.4314/njt.vxxix.xx

Nigerian Journal of Technology (NIJOTECH)

Vol. 40, No. 4 July, 2021, pp.713 –727

www.nijotech.com

Print ISSN: 0331-8443

 Electronic ISSN: 2467-8821
http://dx.doi.org/10.4314/njt.v40i4.18

mailto:samnnaemeka.ugwu@unn.edu.ng
mailto:oasarumi@futa.edu.ng
mailto:ooobe@futa.edu.ng
http://www.nijotech.com/
http://dx.doi.org/10.4314/njt.vxxix.x
http://www.nijotech.com/
http://dx.doi.org/10.4314/njt.v40i4.

 DATABASE MANAGEMENT SYSTEM FOR MOBILE CROWDSOURCING APPLICATIONS 714

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

used by another once the current transaction is done.

This property determines how changes made by one

or more users are committed in the database and

become visible to other users, it usually involves a

trade-off between perfectly isolated transactions and

concurrent transactions through the use of strategies

such as serializability which executes concurrent

transactions serially depending on the business logic

[5].

4. Durability: This enforces the changes made by a

successful transaction and ensures that those changes

cannot be reversed or lost except by the execution of

another transaction.

5. Serializability: This property ensures that concurrent

transactions are properly scheduled serially to ensure

consistency in results.

DBMSs have become more important to the

efficiency of several tasks ranging from day-to-day

activities of large and small organizations to research in

various fields. It is especially relevant in the past few

decades where the amount of data collected and stored has

risen in exponential magnitudes according to several

indicators [6]. This high growth rate of created data has

highlighted how data can be underutilized due to poor

management and the limitations of the present

technology. Some of the features considered at various

levels in ensuring that a suitable database was selected are

normalization, data structure, and prioritized operations.

Database normalization involves the structuring

of data into a specified normal form to reduce avoidable

duplication of data and improve the integrity of database

operations. This gives an advantage of efficiency for

relational databases which hold structured data but this is

not the case for non-relational databases.

In addition, determining if the data will be in a

structured, semi-structured, or unstructured format

depends mainly on if the DBMS is relational or non-

relational and the intended application of the data. In

addition to database normalization and data structure,

prioritized operations were examined to determine which

operations have precedence. For instance, at the point of

data collection, data write operations have priority while

at the most crucial stage (retrieving data for analysis) data

read and update operations take priority. Hence priority

varies, though retrieving data is of greater importance in

this application because the accuracy of results is hinged

on the retrieved data.

2.0 OVERVIEW OF EXISTING APPROACH

Mobile crowdsourcing applications are software

applications developed to leverage the widespread use of

mobile devices especially smartphones which have an

estimated 3.6 billion users worldwide [7] and 25-30

million users in Nigeria [8] and interact with specific user

demographics. Also to gather data that reflects actual user

experience and opinions provided that the crowdsourcing

project is properly planned and challenges such as crowd

engagement with the applications, data and user privacy,

data verification and crowdsourcing architecture which

are highlighted in [9]–[12] are considered. Some

examples of crowdsourcing projects which integrated

mobile applications are Waze [13], Open street map [14],

OpenSignal [15], Disaster management, and emergency

routing with google maps [16].

This research focuses on the comparative analysis

of various database management systems (DBMS) and

selecting an appropriate one to be used for a mobile

crowdsourcing application. The particular mobile

crowdsourcing application system considered is one

developed to evaluate the performance of mobile

communication services through the measurement of

certain voice and broadband key performance indicators

(KPIs) on volunteer’s mobile devices. The KPIs were

selected based on requirements from the Nigerian

Communication Commission (NCC) for quality-of-

service evaluations. For database design, a brief and

expected data type for each KPI is presented in this

section, though the data type can be changed if a different

approach is taken for the computation of the metrics [17].

2.1 Voice Service KPIs

The Voice Service KPIs considered are the Call

Setup Success Rate (CSSR), Radio Signal Quality and

Strength, Handover Success Rate (HSR), Bit Error Rate

(BER), and Traffic Channel Congestion (TCH-CONG).

• Call Setup Success Rate (CSSR): The call setup

success rate is the percentage of successfully linked

calls. The result from a single attempted call is stored

as a Boolean value to indicate success or failure.

• Radio Signal Quality and Strength: This metric is a

measure of the strength and the quality of signal

received by a mobile device antenna. It is computed

as integer values measured in dBm.

• Handover Success Rate (HSR): This is a percentage

of successful switches between cell towers which is

usually attempted when a mobile device moves to the

distance where the signal quality it is currently

receiving is weak. The result from a handover attempt

is stored as a Boolean value to indicate success or

failure.

• Bit Error Rate (BER): This is a measurement of the

end-to-end bit error that occurs in the data transmitted

during a voice call. The result from a single voice call

is stored as a floating-point value.

• Traffic Channel Congestion (TCH-CONG): This

indicates the level of unavailability of resources

needed for voice services which results in blocked

calls. A single test gives a Boolean value result that

indicates whether or not there is congestion.

715 F. M. Dahunsi, A. J. Joseph, O. A. Sarumi and O. O. Obe

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

2.2 Broadband Service KPIs

The broadband Service KPIs considered are

Download Speed, Upload Speed, Domain Name Service

(DNS) Lookup, Network availability, and Video

streaming experience.

• Download Speed: This is a measure in megabits per

second of the amount of data a user receives from a

server. The measured values are stored as floating-

point values.

• Upload Speed: This is a measure in megabits per

second of the amount of data a user sends to a server.

The measured values are stored as floating-point

values.

• Domain Name Service (DNS) Lookup: This metric

is the time taken in milliseconds to successfully send

a query for the internet protocol (IP) address of a

domain name and get a response. Results are stored as

integer values.

• Network availability: The percentage measure of

how often broadband service can be accessed in a

given period is the network availability. The

measured values are stored as floating-point values.

• Video streaming experience: This represents the

perceived experience a user gets when using a video

streaming service. The measured values are stored as

floating-point values.

This study consulted official documentation of

standard DBMS; their features, specifications, and

previous works where similar systems were implemented.

Some important requirements of a mobile crowdsourcing

application database are:

a. a flexible schema design that makes it much easier to

update the database to handle changing application

requirements.

b. an ability to seamlessly and effectively scale the

database and local server as data grows.

c. To be readily available and easy to use.

 The quality of analysis gleaned from gathered

data is highly dependent on the database implementation.

Several researchers have used different database

architectures in the implementation of mobile

crowdsourcing applications. In [18], mobile broadband

performance measurement was carried out using MySQL

database design for about one hundred Mobile Network

Operators (MNOs) subscribers in two cities in Nigeria.

This coverage is less than the projected number of users

and geographical coverage for this current research.

SQLite database technology was used in [19] is

also SQL-based and implements a structured database, but

it still has constraints similar to [18], which are the limited

amount number of users and geographical coverage.

Aside from these research papers mentioning the DBMS

used, no further insight was offered as to why these

specific systems were used. A comparison of a relational

(MySQL) and a non-relational (MongoDB) database was

done in [20], the approach of the comparative study

carried out here was to first explain the difference in how

data was organized with the former implementing a

graphical table format while the latter uses a document-

collection based structure, this review then moved on to

benchmarking four major operations; insert, select, update

and delete for large amounts of data and results showed

that MongoDB provided better execution times for all four

operations and it concludes that although a non-relational

database performed better for large amount of data the

choice ultimately depends on the particular application

that is to be integrated with the database. A more

particular comparative study of document-based DBMSs

was carried out in [21], this focused on the certain features

of the compared DBMS with an eventual conclusion that

each DBMS classification addresses specific

requirements that suit different application

implementation.

Section three of this study explains the types of

databases based on usage and application. Section four

presents the evaluation of DBMS using four distinct

parameters of the system: mobile application, cloud

application, web application, and the local server. Section

five discusses the results and presents the comparative

analysis. Section six presents the critical analysis gleaned

from the review and proposed research areas that could be

investigated in subsequent works.

3.0 AN OVERVIEW OF DATABASE SYSTEMS

It is important to note that the term “database”

covers more than just data but is used to generally refer to

the data, database management system (DBMS), and all

associated applications [22]. An operational database is

used to manage and store data in real-time. It is the source

of information for the data warehouse and it is set up to

work efficiently with a high volume of transactional

processing. It deals mainly with operational information

which is the type of information required for day-to-day

routine activities [23].

A data warehouse system is used for services that

involve data analysis and decision-making [23]. Data

warehouses deal with strategic information which must

have a uniform and consistent view, conveniently

available, accessible, and correct. These systems are

optimized mainly for read operations; medium access

frequency larger amount of accessed data, and much more

complex queries compared to operational databases.

Although, it may frequently interact with the operational

database for data. In a basic sense, the create, read, update

and delete operations are the main activities of an

operational database and it includes both relational and

non-relational databases.

3.1 Comparative Analysis of Database Types

A relational database uses a structure that helps

the user to define and access data in the database

concerning some other piece of data. It is a collection of

tables representing both data and data relationships [22].

 DATABASE MANAGEMENT SYSTEM FOR MOBILE CROWDSOURCING APPLICATIONS 716

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

The physical arrangement of each table (known as

relations) is similar to that of a spreadsheet, having

multiple columns which are labelled with unique names

and records (rows) of various types. An instance of a

record specifies a set number of fields or attributes and

table columns refer to the attributes of the record type,

constraints, and data types. The outcome of a relational

database is structured data that fits perfectly into defined

fields and columns and it is managed using a Structured

Query Language (SQL) which has several flavours like

SQLite, MySQL.

 A non-relational database is a database that does

not follow the rows and column tabular structure used in

most conventional database systems. Alternatively, non-

relational databases utilize a retrieval model that is

designed to satisfy the particular needs of the data format

being processed [24]. The outcome of this is unstructured

and semi-structured data. Unstructured data has loose

formatting, with limited structure, it consists mainly of

qualitative data (text, audio, video, satellite imagery, etc.)

[1]. Semi-structured data is data comprising semantic tags

and elements (known as metadata) but not perfectly

compatible with the framework associated with traditional

relational databases [1]. This data model has some form

of structure because similar entities are grouped and

organized in a hierarchical format and can consist of both

quantitative and qualitative data. Both unstructured and

semi-structured data are managed using NoSQL

technologies like MongoDB, and Firebase.

A distributed database is a collection of different

databases, but at different geographical locations (sites)

connected over a network and is managed as a single

database [1]. It provides an advantage of improved

performances and system reliability. A distributed

database can be implemented by data fragmentation,

allocation, and replication [1], [25]. Fragmentation

involves breaking up data into chunks and storing them in

the constituent systems of the distributed database,

allocation is the operation by which fragments are placed

in the available distributed infrastructures, and replication

involves the duplication of data in the various available

systems that make up the distributed database. This

duplication serves as backups and fallbacks in the event

of the failure of any constituent system but comes at a

shortfall of cost and data redundancy. Most cloud

database services use this model to ensure that data is

secure and always available to users quickly and

consistently.

A comparison between relational databases

(structured data) and non-relational databases (semi-

structured and unstructured data) is presented in Table 1

from the standpoint of data structure which is the

fundamentals of all databases. The relational database

options for data with a predefined schema that is not easily

changed are available across various platforms i.e.

MySQL. These are quite straightforward to use alongside

Object-relational mapping (ORM) libraries which are

available in various programming languages but do not

easily scale up when data grows quickly [26]. Although a

relational database is better suited for quantitative data

which favours statistical analysis compared to a non-

relational database.

A non-relational database permits a structure that

does not necessarily have a rigid schema but can easily

accommodate changes to how data is organized or how

relationships exist. It is also readily available with

variations i.e. MongoDB. It can be integrated using well-

versed Object Relational Mapping (ORM) libraries in

various programming languages. Non-relational database

scales better with data that grows quickly and can hold

both unstructured and semi-structured data. The former

holds mainly qualitative data (useful for categorization)

and the latter includes both qualitative and quantitative

data this property makes it suitable for complex data

collection and analysis.

It is important to note that gathering and storing

data for analysis goes beyond an eventual purpose of

displaying data in charts but more importantly extracting

useful information from the gathered data [29], the

structure of the data inevitably affects this. The

measurement of parameters for mobile communication

quality of service can be implemented using several

algorithms, this implies that during the development of the

mobile application different algorithms may be

implemented with a consequence of modifying the

database schema to accommodate the new attributes of the

data like the data type or association constraints [29].

Hence there’s a need for a system that can accommodate

such changes. Even though a relational database is best

suited for quantitative data and a non-relational database

for qualitative data both database types can still handle

either form of data well. An example is the PostgreSQL

relational database having a JSON datatype which can

hold qualitative [30]. As mobile telecommunications

technology evolves with the introduction of newer

services such as 5G and Voice over LTE (VoLTE)

recently, the infrastructure for this research must suitably

accommodate changes and accommodate continued

research. Hence, a mutable database structure will be of

an advantage here.

Additional, comparative insights and rankings

were retrieved from DB-Engines ranking which calculates

ranking scores based on the number of mentions of the

system online, frequency of technical discussions, general

interests, etc [31] and not the actual performance of the

DBMS. Figure 1 shows the ranking scores of some select

database systems. It shows that relational databases like

Oracle and MySQL are much more popular than their

non-relational counterparts like MongoDB, this can be

attributed to the fact that they have been around longer

than non-relational DBMSs and hence have been and are

still used more frequently.

717 F. M. Dahunsi, A. J. Joseph, O. A. Sarumi and O. O. Obe

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

Table 1: Comparison between Relational Databases (structured data) and Non-relational Databases (semi-structured

and unstructured data).

Characteristics Relational (Structured) Non-relational (Semi-structured and unstructured)

Type of data Predefined and rigid schema Dynamic schema configuration

Size of data Scaling is vertical and expensive

because when relational databases

become large they have to be scaled

to a more powerful server which

comes at a higher cost [26].

Scaling is horizontal and cheaper since non-relational

databases can be scaled by distributing a single database

over multiple servers that are not required to be more

powerful than the ones already in use [27]. An example

can be seen from the pricing of digital ocean droplets,

horizontally scaling two basic droplets cost $10/month

each and will provide the same specifications as a single

$20/month basic droplet [28] but with an extra 20GB of

SSD disk storage.

Applicability Well suited for quantitative data Well suited for qualitative data

Availability Readily available across various

platforms (MySQL, SQL Server,

etc.)

Readily available across various platforms

(MongoDB, Firebase, etc.)

Ease of use Modifiable, supported, friendly user

interface (MySQL Workbench) and

availability of object-relational

mapping (ORM) libraries

Modifiable and supported friendly user interfaces

(MongoDB Atlas, Firebase Console), and availability of

object-relational mapping (ORM) libraries

Figure 1: DB-Engines Database Ranking [31]

 DATABASE MANAGEMENT SYSTEM FOR MOBILE CROWDSOURCING APPLICATIONS 718

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

4.0 DATABASE DESIGN CONSIDERATIONS

FOR MOBILE CROWDSOURCING

APPLICATION

The system architecture for the mobile

crowdsourcing application system considered for this

research is a crowdsourcing system to evaluate the

performance of mobile communication services as shown

in Figure 2. KPIs are measured from volunteer's mobile

phones and saved on the mobile application database. The

measurements are collated on the phone and sent via the

internet to the cloud server database. Thereafter through

an API layer, the data and its analysis can be accessed by

the web application for presentation and visualization.

There are four databases considered for this study, the

mobile application database, cloud server database, web

application database, and the local server database.

a. Mobile application database: This is the primary

database in the database architecture for this system.

It is the entry point for data gathered from

measurements on the mobile devices of users.

Although this database holds measurement data it also

doubles as a database for volunteers’ information.

b. Cloud server database: This has its functions

interleaved with the mobile application database and

both can be implemented as a single DBMS

depending on the cloud database service being used.

For example, Firebase works perfectly for the features

required by a mobile application database and also a

cloud server database but MongoDB and some others

are optimized for a cloud server database rather than

a mobile application database except when integrated

with complementary mobile application database

service [32]. The basic differential as seen in Figure 2

is that data collected from mobile devices is

transferred to cloud storage via an internet

connection.

c. Web application database: This database serves the

purpose of providing a web application with data

results extracted from aggregated computations on the

data measurements gathered from mobile devices of

volunteers. Besides providing data results it also

performs the role of an operational database that

executes transactional operations that are required by

the features of the web applications such as

management of authorized and unauthorized users. A

web application database is a cloud database that

provides database service to a web application [33].

d. Local server database: This is the final layer of the

database architecture for this system. This database is

the final destination for data gathered from

volunteers’ mobile devices. Although the cloud

database safely holds data and makes it readily

available without the restriction of location. Some

problems posed are increased cost, large data size, and

increased data retrieval time, these issues are solved

by having data available on a local machine. The local

server pulls data intermittently from the cloud

database and stores it in a local machine (see Figure

2) from which it can be accessed any time for analysis

without incurring the additional costs.

These databases are reviewed more explicitly in the

next sub-sections.

Figure 2: System architecture for the crowdsourced mobile communication quality of service analysis system

719 F. M. Dahunsi, A. J. Joseph, O. A. Sarumi and O. O. Obe

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

4.1 Mobile Application DBMS

Databases are essential to most smartphone

applications and selecting the correct one is key to the

performance of the application. User details and

interactions at specific points during the use of the

application are required to be stored for various uses such

as displaying the same information at a later time or using

the information to ensure consistent and correct updates

and read on a more diverse database. Features of databases

for mobile applications are:

i. Support for client platform: The level of support of a

database service on a mobile client platform is critical

to the overall performance of the application. Without

basic support for a database service on a mobile client,

it will be difficult to integrate such a database with a

mobile client application.

ii. Flexible data model: It is common for changes to be

made to a mobile application, and in some instances,

these changes will involve the data model being used.

Hence, the data model must be modifiable without

causing crashes or breaks.

iii. Ability to resolve data conflict: A database that will

be integrated with any mobile client should

adequately compensate for occurrences of data

conflict which occurs frequently considering the

conditions where user internet connectivity is not

always guaranteed and this leads to queued updates or

queries from specific users locally on their mobile

devices to the same data field or a document in the

database cloud.

iv. Synchronization between multiple devices: Since the

mobile client application users connect to a database

using mobile applications from different geographical

locations at different times, data read to the same

document or data field must be consistent to separate

users from the most recent update at the instant when

connectivity is established.

v. Scalability and speed: As the number of users of a

mobile client application increases the database must

be able to effectively scale to accommodate the

increase. Also, delays in response to user queries to

the database should be minimal as this is noticeable

and directly affects the user perception of the

application performance.

vi. Network topology: The database physical network

interaction should be in a manner such that data

synchronization and availability can be configured in

a way that will best suit the mobile client application

requirements. Some topologies like mesh for instance

allow different sections of data to be available offline

without much synchronization issues arising as a

result of any modification to the offline data.

vii. Data security and customization: The security of data

with authentication protocols should be efficiently

handled by the database, to avoid malicious use, data

read/write, or misappropriation of user data and even

the mobile client application.

viii. Secure data at rest and in motion: Data at the stages

where it is stored both locally or on the cloud and

when it is being moved between the client and the

cloud database should be secured from external and

unauthorized access and also should not be lost.

ix. Good access to data: The database should be readily

accessible at any instant when there is a request by the

mobile client.

4.2 Cloud Application DBMS

Features of databases for Cloud DBMS and the

requirement for the DBMSs of mobile crowdsourcing

application technique proposed include:

i. An ability to store basic data types such as String,

Boolean, and number types. These basic data types

are a predefined format for storing data in distinct

ranges and forms like alphanumeric characters,

numbers, date, Unicode characters, etc., and user

custom-defined data format.

ii. The ability to hold as much data that is collected, easy

integration, and support with mobile clients.

iii. Cost-effectiveness of the technique

iv. A storage format that supports hierarchical data

format and access.

v. The ability for the data to be easily shipped to the local

server.

4.3 Web Application DBMS

A web application is a program or software accessible

through a web browser with its content delivered over a

web server, and like any other native application on a

mobile client, it communicates with a database for

operational data. The database is important to web

applications for the following reasons:

1. A database serves the purpose of storing a vast

amount of data and optimizing queries of data, the

same data that will be needed in populating the

web application with content.

2. A database also provides data-to-program

insulation.

3. A database easily allows the distribution of data to

multiple users which ultimately makes it an

essential part of a multi-user web application as

the case is most of the time.

Features of databases for web application include:

1. Scalability: As the number of users of a web

application increase, more volume of data will need

to be handled to keep up with good performance

hence the need for scalability which can be

 DATABASE MANAGEMENT SYSTEM FOR MOBILE CROWDSOURCING APPLICATIONS 720

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

efficiently handled by the database host service

provider.

2. Speed: This is a foreground feature that defines

operational capability. Delays attributable to

requests in the database would be significant

because this is tangible and impacts how the client

perceives the application’s performance [1].

Improvements can be made through strategies such

as distributed database and browser features like

caching can be used to improve speed performance

for data retrieval on web applications.

3. Structure: This depends mainly on the business

solutions for which the application will be used and

subsequently the type of data that will be generated

and stored, this data may be structured, semi-

structured, or unstructured.

4. Availability: Data is always available to connected

clients with multiple views for specific users [34].

5. Data consistency and security: Security is essential

in preventing data breaches, loss, and availability

[35]. Also, data consistency must be guaranteed and

modifications must be constrained to set down rules

to ensure that any document or data field can only

be changed in a specific way [36].

4.4 The Local Server DBMS

The database becomes increasingly important

down the workflow. Data on the cloud database will be

shipped to the local server, for further analysis and

storage. Exporting data from the cloud to the local server

can be handled by a scheduled job that performs

automated shipping of data from Cloud Firestore to the

local server and it is best implemented using Firestore

server SDKs [37]. The exported data retains its document-

based structure which does not pose many difficulties for

analysis and as regards the management of data on the

local server is can be done using the Firestore server SDKs

or cloud functions [38].

Data archived in the local server database is

stored in formats that are suited for how they will be used.

This research on mobile communication quality of

service, for instance, requires this data to be available

locally for analysis, therefore data that is pulled from the

cloud database will be stored in a format (possibly .csv)

that will serve the purpose of data analysis perfectly, focus

on the review here will be on the server application and

not particularly on data. Some features of databases for

Local Server DBMS.

1. High storage capacity.

2. Cost-effective

3. Low downtimes

4. High-end computers to ensure minimum

downtime.

5.0 SELECTED DATABASE FOR MOBILE

CROWDSOURCING APPLICATION

5.1 Database Models (Services) for Cloud DBMS

Database Models (Services) considered for the

Cloud DBMS are Firebase Real-Time Database, Cloud

Firestore, MongoDB, PostgreSQL, Redis, Neo4j, and

Cassandra. The non-relational databases were chosen in a

way that the four major categories (Document stores,

Column stores, Key-value stores, and Graph stores) are

represented, except for PostgreSQL which is a relational

database.

a. Firebase Real-Time Database

It is a NoSQL cloud-hosted database service offered

by Firebase Incorporation. Data is stored as a JSON tree

and synchronized in real-time to every connected client

and remains available when the application goes offline.

As mentioned earlier, data is stored as one simple large

JSON tree and this generally gives efficiency and

guarantees optimized performance in the execution of

high-volume queries without delay or loss (low-latency

advantages) [39].

b. Cloud Firestore

It is a NoSQL, document-based cloud-host database

service also offered by Firebase Inc. Each document is

grouped into collections may further point to other sub-

collections. It features queries that are much faster and

efficient than Firebase Real-Time Database and it also has

better scalability [40], the speed advantage it has over

Firebase Real-Time Database is attributed to all queries

being indexed by default, this ensures that the query

performance is proportional to the size of the result set

data unlike Firebase Real-Time Database whose querying

performance degrades as data grows [41].

c. MongoDB

It is similar to Cloud Firestore in that each document

is grouped into collections and it is a NoSQL, document

database. It is an open-source DBMS service offered by

MongoDB Inc. and it is the most popular NoSQL database

according to DB-Engines rankings [31], [42].

d. PostgreSQL

This is an open-source relational database where data

is organized in tables, columns, and rows. It can be

deployed on a self-managed cloud server or a fully

managed cloud service.

e. Redis

This is a key-value store type non-relational database

that natively provides fast response time hence its

common use as a caching database and for applications

that carry out heavy computation on query results that is

to be sent to a client (mobile or web) since it

significantly reduces query time.

f. Neo4j

This is a graph store type non-relational database

mostly used for systems that are heavily reliant on

721 F. M. Dahunsi, A. J. Joseph, O. A. Sarumi and O. O. Obe

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

relationships that exist between data and uses its graph

architecture to optimize complex queries.

g. Cassandra

This is a column store type non-relational database

particularly built for storing a large amount of data

quickly and easily scales when data becomes large.

Each of the compared database services provides

various data types that cover whatever will be required,

easy data migration features using REST APIs or

Command Line Tools [43], [44], and can be easily

integrated with mobile clients using reliable SDKs.

Although MongoDB’s solution does not provide as wide

a range of cloud database management tools compared to

the other [45]–[47]. Most especially when the database is

not hosted using MongoDB Atlas which is a more

expensive alternative to hosting on the personal cloud

server also management tools are provided as part of the

cloud database service for Firebase Real-Time Database

and Cloud Firestore.

Limits to data storage size are based solely on

subscription plans in the cases of Cloud Firestore and

Firebase Real-Time Database [48] while in the case of

MongoDB it is based on the configuration setup on

MongoDB Atlas [49] Firebase Real-Time Database has

the best presence support for native mobile applications

[41] amongst all three although Cloud Firestore can

leverage on Firebase Real-Time Database for this

functionality [41] and pricing is generally cost-effective

on pay-as-you-go plans [42], [48], [50].

Table 2: Comparison between Selected Database Models (Services) for the Cloud DBMS.

Characteristics Firebase

Real-Time

Database

Cloud

Firestore

MongoDB
PostgreSQL Redis Neo4j Cassandra

Type of data Supports most

data types and

generally

structured in a

JSON tree.

Supports most

data types,

Cloud Firestore

references and

generally

structured in a

JSON tree.

Data structures

are represented

in JSON,

internal data is

stored as

BSON.

Supports a

wide range of

data types for

table columns

which

constraints the

values to be

stored [51].

Supports a

wide range of

data types with

the basic being

String which

covers various

data types [52]

Basic data

types are

supported

[53].

Supports a

wide range of

data types with

the

aforementioned

basic data types

covered by its

native data type

Size of data Dependent on

plan

The free tier

plan (Spark)

allows up to

1GB of data to

be stored [48].

Dependent on

plan

The free tier

plan (Spark)

allows up to 1

GB of stored

data to be

stored [48].

The maximum

BSON

document size

is 16MB and

collection size

vary according

to shards into

which data is

split [49]

Data size is

primarily

capped by the

available

storage

allocated for

the database

[54] or the

database-as-a-

service plan.

Depends on the

limits set by

the cloud

management

service in use.

Depends on

the allocated

space for

the database

or the limit

set by the

database-as-

a-service

plan.

Depends on the

allocated space

for the database

or the limit set

by the

database-as-a-

service plan.

Applicability It is well suited

for iOS and

Android clients

with offline

support and

can be

seamlessly

integrated with

the aid of

mobile-first,

real-time

SDKs.

It is well suited

for iOS,

Android, and

web clients

with offline

support and

can be

seamlessly

integrated with

the aid of

mobile-first,

real-time

SDKs.

It is more

suited for

large-scale

applications

which are

mainly web-

based.

It works well

with web

technologies

such as

websites

through server-

client web

services like

web

Application

Programmable

Interfaces

(APIs).

It is an

excellent

option for

analyzing data

in real-time,

caching, and

web-based

applications.

It is ideal

for systems

where data

is highly

connected

and

complex

queries are

regularly

executed as

user-to-user

interaction-

intensive

applications.

It is more

suited for large-

scale

applications

that require

high uptimes

and large

amounts of

data.

Availability It is more

suited for

recording client

connection

It is not suited

for recording

client

connection

It does not

have active

presence

It has no

presence

It has no

presence

It has no

presence

support on

It has no

presence

 DATABASE MANAGEMENT SYSTEM FOR MOBILE CROWDSOURCING APPLICATIONS 722

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

status (it is

presence

supported) [41]

status (it does

not have native

presence

support) [41]

support on

mobile clients

support on

mobile clients.

support on

mobile clients.

mobile

clients.

support on

mobile clients.

Ease of use It can be

integrated

without much

hassle with

mobile clients

using reliable

SDKs [47].

It can be

integrated

without much

hassle with

mobile and

web clients

using reliable

SDKs [46].

It can be

integrated with

mobile clients

using the new

MongoDB

Stitch [45].

Integration

with mobile

clients cannot

be done

directly but it

requires an

extra web API

layer.

Integration of

mobile clients

is not possible

without the use

of a separate

web API layer.

Integration

with mobile

clients

cannot be

done

directly

without an

additional

API layer.

Integration with

mobile clients

cannot be done

directly without

an additional

API layer.

Cost Pricing

depends on the

Firebase plan.

Spark -free

tier- (which has

a limit caps on

features), Blaze

-pay as you go-

with a rate of

$5/GB for

stored data

[48].

Pricing

depends on the

Firebase plan.

Spark -free

tier- (which has

a limit caps on

features), Blaze

-pay as you go-

with a rate of

$0.18/GB for

stored data

[48].

Although

initial use is on

a free tier,

pricing is

calculated on

an hourly basis

depending on

several factors

[42], if

MongoDB

Atlas is used

rather than a

self-managed

server is.

This DBMS is

usually

deployed on a

self-managed

server and so

the accrued

cost for using

this DBMS is

just the cost of

the cloud

server,

alternative

fully managed

cloud services

are also offered

at different

prices.

The cost is

determined by

the fully-

managed cloud

service

provider [55].

The cost is

determined

by the

database-as-

a-service

provider or

the cost of a

self-

managed

server on

which the

DBMS is

deployed.

While a self-

managed cloud

deployment

cost is that of

the server a

fully managed

Apache

Cassandra

Pricing varies

depending on

the service

provider.

Storage format Data is stored

as a large

JSON tree.

Data is stored

as collections

of documents.

Data is also

stored as

collections of

documents.

Data is stored

in tables;

column-row

format.

Data is stored

in a key-value

format.

Data is

stored as a

property

graph

model.

Data is stored

in wide column

stores.

Data

acquisition

Data can be

exported in a

straightforward

manner using a

REST API

service

provided by

Firebase [44]

in JSON or

CSV format.

Data can also

be exported

using the

Cloud Firestore

API [43] in

JSON or CSV

format.

Data can be

exported using

a command-

line tool that

produces a

JSON or CSV

export of data

stored in a

MongoDB

instance [56].

Data backup

dumps can be

executed using

the Postgres

command line

(CLI) tool [57]

or a graphical

user interface

(GUI) like

TablePlus [58].

Data exports

can be carried

out through a

file transfer

protocol (FTP)

server or any of

the other

options

provided by the

cloud

management

service [59].

It supports

various

methods for

whole and

partial

database

exports

through CLI

commands

or Cypher

scripts [60].

Cassandra

Query

Language

(CQL) can be

easily used to

export data

through a CLI

tool.

The comparison in Table 2 shows that all discussed

databases have features that cover each requirement

except some specific cases like:

1. PostgreSQL does not easily scale when data

grows large.

2. The requirement for a mobile client integration

which Cloud Firestore and Firebase Realtime

database provide by default, unlike others that

require an additional API layer to connect the

database to the mobile application.

The proposed procedure for gathering data in this research

is not labour-intensive (such as a physical survey) making

the exact amount of data to be gathered unpredictable, this

window of uncertainty at this point will only reflect in the

723 F. M. Dahunsi, A. J. Joseph, O. A. Sarumi and O. O. Obe

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

pricing incurred for the cloud storage provider and

physical storage capacity and limits of local server for

analysis.

A cloud-hosted database removes the burden of

setting up synchronization configuration procedures with

the mobile client because they have an easy-to-configure

cloud service. Also, cloud-hosted databases solve issues of

data distribution during scale-up operations (which is

handled by the cloud host) and availability of data [41].

Cloud Firestore for instance is a Backend-as-a-Service

 (BaaS) deployment option under the larger Google Cloud

Platform, providing server-side services for mobile and

web clients.

Figure 3: DB-Engines Ranking of Document Stores [31]

The database proposed for a cloud DBMS is a non-

relational database. For the cloud storage, the proposed is

the Cloud Firestore, the main reasons for choosing Cloud

Firestore are as follows:

1. Cloud Firestore does not have native presence

support for instant synchronization of data but it can

leverage on Firebase Realtime Database's support

by syncing Cloud Firestore and Realtime Database

using Cloud Functions, the other databases

compared do not have this feature hence it would

require the software developers to create an

additional API service to connect the mobile

application to the cloud database.

2. The scalability of Cloud Firestore goes further

compared to Firebase Real-time Database, with

Cloud Firestore scaling up to 1 million concurrent

connections while Firebase Real-time Database

scales to about 200,000 concurrent connections

[40]. PostgreSQL doesn’t scale very well as it is a

relational database that has to scale vertically and

distributed clusters are not as easy to manage

compared to other compared non-relational

databases. MongoDB, Redis, Neo4j, and Cassandra

all scale easily.

3. MongoDB has been filtered out due to not having

active support for mobile clients, compared with

both Firebase Real-time Database and Cloud

Firestore [45]–[47] which are more commonly used

for mobile applications and are more preferred by

mobile application developers.

4. The cost of hosting a Cloud Firestore is much

cheaper compared to Firebase Realtime Database

according to the official pricing lists which prices

Cloud Firestore storage at $0.18/GiB and Firebase

Real-time database storage at $5/GB [42], [48],

[50]. The cost of hosting a cloud instance of the

 DATABASE MANAGEMENT SYSTEM FOR MOBILE CROWDSOURCING APPLICATIONS 724

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

other compared databases depends on whether it is

hosted on a self-managed server or a fully-managed

database service of which is the former is usually

charged for just the infrastructure while the latter is

charged based on storage and query usage.

Firebase Real-Time Databases are limited to zonal

availability in a single region and Cloud Firestore ensures

data is shared across multiple data centres at once which

will provide strong consistency of data at any instant [41].

5.2 Database Models (Services) for the Web

Application DBMS

The requirements for a Web Application DBMS

for operational database operations such as the

management, authentication, and authorization of users

(stakeholders) as seen in Figure 2 and also evaluation of

aggregated results on the web application can be

efficiently handled by the existing cloud database which is

already managing metrics measurement data. This can be

achieved using an API layer software that will interface

with the database, execute the required database

operations needed by the web application for operational

data. Therefore, the review already carried out for Cloud

Application Database covers the database service for the

web application. The decision of utilizing an API layer

instead of a separate database for the web application

ensures that a centralized cloud database service is used

for the entire system which subsequently saves the cost of

running multiple cloud database services.

5.3 Database Models (Services) for the Local Server

DBMS

The requirements for the local database server are

that the server performs an intermittent extraction and

storage of data from the cloud database to local storage

and also grants data access to other computers that are

securely connected locally for analysis. Therefore,

decisions to be made concerning the server depends on

optimization plans, developers’ preference, and existing

cloud database service.

Figure 4: A Typical 3 Tier Server Architecture

(adapted from: https://images.app.goo.gl/icJBVqjMJYHMpvBb9)

https://images.app.goo.gl/icJBVqjMJYHMpvBb9

725 F. M. Dahunsi, A. J. Joseph, O. A. Sarumi and O. O. Obe

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

a. Optimization: The local server could be run on a

regular desktop operating system environment like

Windows, but this will only compete with the primary

assignments of the server mentioned above for the

computing power of the computer [61]. For an

optimized server, the computer should run a dedicated

server operating system like Ubuntu Server.

b. Developers’ Preference: This particularly determines

the server’s operating system; the choice of the

operating system depends on which one the developer

who will set up the system can efficiently work with.

c. Existing Cloud Database Service.

The already deployed cloud database service from

which the local server will determine what SDK or

software to be used to extract data from it. For

instance, Firebase has cloud functions that can be

implemented with custom scripts that will run on the

server to execute data exports [38].

6.0 DISCUSSION

A robust mobile crowdsourcing application data

management system is heavily reliant on data for its

functionality, the word robust here signifies a system that

covers most of the requirements for a DBMS that were

identified in this study. In this survey, different features of

DBMSs were compared along with the previous

implementation of crowdsourcing mobile quality of

service measurement systems and benchmark tests and

reports carried out by [62], [63]. Although database

normalization gives a huge advantage of reducing data

redundancy it is most suited for structured data which

requires a predefined and rigid schema. The need for

normalization was not so desirable as it was pointed out in

this review and a flexible data schema will be more

suitable. Database query optimization by the DBMS

service providers in combination with standard object-

relational mapping libraries ensure that the absence

efficiency of normalization of structured data is catered for

by the aforementioned optimization features. Therefore, a

non-relational database was proposed for the mobile-end

database with Google Cloud Firestore proposed

specifically due to its support for mobile client

implementation. This choice also makes the integration of

data from the mobile end-users to the cloud-hosted

database relatively easier with all proposed services being

part of the Google Cloud Platform. Although it is not as

popular as some other database services as seen in Figures

1 and 3, separate comparative reviews of the DBMS

performance by [62], [63] demonstrated that MongoDB

(a non-relational database) performed better when reading

large datasets and performing full-text queries, while

MySQL (relational) and Cassandra (non-relational)

performed much better for data insertion.

Google BigQuery was proposed as an appropriate

data warehouse solution since it will provide continuity of

direct integration with Cloud Firestore and its APIs for

data migration from Cloud Firestore to BigQuery, and the

local server. Google BigQuery provides machine learning

support for data analytics. Furthermore, from this study,

the need for a separate database for the web application

was eliminated, considering that the web application

mainly serves the purpose of visualization of results

gathered from the analysis of collected data from the

mobile clients, the required functional data can be

provided through the API layer. This serves as an

intermediary with specific endpoints and provides the web

application with the required data. This also serves the

purpose of separation of concerns as the web application

only deals with just requesting data via the API endpoints

and visualization while the API handles all queries on the

database. It also optimizes the already existing database

for the mobile client which the API will query for

functional data required by the web application.

7.0 CONCLUSION

In this review, a comparison of DBMSs was

carried out for a mobile crowdsourcing application and

analysis, a broad overview of database types was given,

through the description of their features, suitable areas of

application and previous implementation of mobile

applications along with database performance

benchmarking reports helped to narrow down from the

vast DBMS options. A mobile crowdsourcing application

should be flexible considering the continuous evolution of

the technology of mobile communication, this, therefore,

makes it necessary that new systems and existing ones

should be capable of accommodating changes instead of

entirely new systems being developed due to innovations,

to this effect the choice of a non-relational database in this

review was considered. Also, when choosing a DBMS, it

is important to consider how efficient such a system will

be at the point of extracting data for analysis and

comprehensive result, it will not do much good if data that

is gathered cannot serve this end purpose well. Data

should exist in a format or structure that will ensure that

analysis and its results can be conveyed empirically. The

proposed focus for subsequent works is that proper

documentation of the process of choosing a DBMS and

review of the basis for their preference should be discussed

in upcoming works of literature on mobile applications

because of its importance in the overall system accuracy

and sustainability.

ACKNOWLEDGEMENT

This research was funded by the Nigerian

Communication Commission Research Fund Grant 2020

REFERENCES

[1] Silberschatz, A., Korth, H. F. and Sudarshan, S.

Database System Concepts (7th. edition), (2019).

[2] Carlos, C., Steven, M. and Rob, P. "Database Systems:

Design, Implementation and Management", 13th ed.
CENGAGE, (2010).

 DATABASE MANAGEMENT SYSTEM FOR MOBILE CROWDSOURCING APPLICATIONS 726

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

[3] Connolly, T., Begg, C. and Begg, C. “System Database

A Practical Approach to Design, Implementation, and

Management,” (2005), 1427. Available:

www.booksites.net/connbegg,.

[4] Machado, K., Kank, R., Sonawane, J. and Maitra, S.

“A Comparative Study of ACID and BASE in

Database Transaction Processing”. International

Journal of Scientific & Engineering Research, 8(5),

(2017), 116–119.

[5] Oracle, “Data Concurrency and Consistency,”

Oracle9i Database Concepts Release 2 (9.2) Part
Number A96524-01, (2002).

https://docs.oracle.com/cd/B10501_01/server.920/a96

524/c21cnsis.htm.

[6] Shanhong, L. “Big data - Statistics & Facts Statista,”

Statista, (2020).

https://www.statista.com/topics/1464/big-data/.

[7] O’Dea, S. “Smartphone users worldwide 2016-2023,

Statista,” Statista, (2021).

https://www.statista.com/statistics/330695/number-

of-smartphone-users-worldwide/

[8] O’Dea, S. “Smartphone users in Nigeria 2014-2025,

Statista,” Statista, (2020).

https://www.statista.com/statistics/467187/forecast-

of-smartphone-users-in-nigeria/

[9] Phuttharak, J. and Loke, S. W. “A Review of Mobile

Crowdsourcing Architectures and Challenges: Toward

Crowd-Empowered Internet-of-Things,” IEEE

Access, 7, (2019), 304–324. doi:

10.1109/ACCESS.2018.2885353.

[10] Chatzimilioudis, G., Konstantinidis, A., Laoudias, C.

and Zeinalipour-Yazti, D. “Crowdsourcing with

smartphones,” IEEE Internet Comput. 16(5), (2012),

36–44. doi: 10.1109/MIC.2012.70.

[11] Sukhwani, V. and Shaw, R. “Operationalizing

crowdsourcing through mobile applications for

disaster management in India”. Progress in Disaster

Science, (5), (2020), 100052. doi:

10.1016/j.pdisas.2019.100052.

[12] Wang, Y., Jia, X., Jin, Q. and Ma, J. “Mobile

crowdsourcing: framework, challenges, and

solutions,” Concurrency and Computation: Practice
and experience, 29(3), (2017), e3789. doi:

10.1002/cpe.3789.

[13] Waze, “Harnessing real-time, crowdsourced data to

improve crisis response.”

https://www.waze.com/ccp/casestudies/harnessing_re

al_time_crowdsourced_data_to_improve_crisis_respo

nse.

[14] PennState University, “OpenStreetMap and its use as

open data| GEOG 585: Web Mapping,” GEOG 585:

Open Web Mapping, Department of Geography,

(2020). https://www.e-

education.psu.edu/geog585/node/738.

[15] Gill, B. “Measuring the Consumer Mobile Experience:

Let’s Get the Facts Straight | OPENSIGNAL,”

OPENSIGNAL, (2017).

[16] Nedkov, S. and Zlatanova, S. “Google Maps for

Crowdsourced Emergency Routing,” International

Society for Photogrammetry and Remote Sensing

XXXIX-B4, (2012), 477–482, doi:

10.5194/isprsarchives-xxxix-b4-477-2012.

[17] Nigerian Communications Commission, “Quality of

Service.”

https://www.ncc.gov.ng/technology/standards/qos.

[18] Dahunsi, F. M. and Akinlabi, A. A. “Measuring

mobile broadband performance in Nigeria: 2G and

3G,” Nigerian Journal of Technology, 38(2), (2019),

422-436. doi: 10.4314/njt.v38i2.19.

[19] Dahunsi, F. M. and Kolawole, G. “Participatory

Analysis of Cellular Network Quality of Service,”

International Journal of Computing & ICT
Research 9,(1),(2015),25-40.

http://ijcir.mak.ac.ug/volume9-issue1/article3.pdf.

[20] Győrödi, C., Győrödi, R., Pecherle, G. and Olah, A.,

“A comparative study: MongoDB vs. MySQL,”

In 2015 13th International Conference on Engineering

of Modern Electric Systems (EMES), (2015),1-6. doi:

10.1109/EMES.2015.7158433.

[21] Manoj, V. "Comparative study of nosql document,

column store databases and evaluation of

cassandra." International Journal of Database

Management Systems, 6(4), (2014), 11–26. doi:

10.5121/ijdms.2014.6402.

[22] Oracle, “What Is a Database | Oracle,” Oracle In-
Page Database Topics, 2020.

https://www.oracle.com/database/what-is-

database.html.

[23] Ponniah, P. "Data Warehousing Fundamentals for it

Professionals", 2nd ed. John Wiley & Sons, Inc,

(2010).

[24] Microsoft, “Non-relational data and NoSQL - Azure

Architecture Center | Microsoft Docs,” Microsoft In-
Page, (2020). https://docs.microsoft.com/en-

us/azure/architecture/data-guide/big-data/non-

relational-data.

[25] Nashat, D. and Amer, A.A. "A comprehensive

taxonomy of fragmentation and allocation techniques

in distributed database design". ACM Computing

Surveys (CSUR), 51(1), (2008), 1-25. doi:

10.1145/3150223.

[26] Login Radius Inc, “RDBMS vs NoSQL · LoginRadius

Engineering,” 2020.

https://www.loginradius.com/engineering/blog/relatio

nal-database-management-system-rdbms-vs-nosql.

[27] Microsoft Corporation, “Relational vs. NoSQL data.

Microsoft Docs.” https://bit.ly/3oy5fYQ.

[28] DigitalOcean, “Pricing.” https://do.co/3wkgdUs.

[29] Hardy, W. C. "QoS: measurement and evaluation of

telecommunications quality of service". 1st ed. John

Wiley & Sons, Inc, (2001).

[30] “PostgreSQL: Documentation: 9.4: JSON Types.”

https://www.postgresql.org/docs/9.4/datatype-

json.html (accessed May 07, 2021).

[31] Solid IT gmbh, “Method of calculating the scores of

the DB-Engines Ranking,” (2020). https://db-

engines.com/en/ranking_definition (accessed Oct. 20,

2020).

727 F. M. Dahunsi, A. J. Joseph, O. A. Sarumi and O. O. Obe

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 4, July 2021.

[32] MongoDB, “Introduction to MongoDB Realm for

Mobile Developers — MongoDB Realm,” (2020).

https://docs.mongodb.com/realm/get-

started/introduction-mobile/

[33] Puneet, M. Kaur, J. and Pallavi, M. “DataMining

Techniques for Software Defect Prediction,”

International Journal of Software and Web Science,

3(1), (2013), 54–57.

[34] Rex, H. "A Practical Guide to Database Design". 2nd

Edition. Routledge, (2018).

[35] Kedar, S. "Database Management Systems". First
Edition. Technical Publications, (2009).

[36] Ports, D.R., Clements, A.T., Zhang, I., Madden, S.

and Liskov, B. "Transactional Consistency and

Automatic Management in an Application Data

Cache". Proceeding 9th USENIX Symposium. Oper.
Syst. Des. Implementation, OSDI, (2010), 279–292.

[37] Firestore, “FirestoreAdminClient - Documentation.”

https://googleapis.dev/nodejs/firestore/latest/v1.Firest

oreAdminClient.html#exportDocuments.

[38] Google, “What is BigQuery Data Transfer Service?

Google Cloud.” https://cloud.google.com/bigquery-

transfer/docs/introduction (accessed Oct. 30, 2020).

[39] Firebase, “Firebase Realtime Database,” (2020).

https://firebase.google.com/docs/database

[40] Firestore, “Cloud Firestore Data model | Firebase,”

(2020).

https://firebase.google.com/docs/firestore/data-model

(accessed Oct. 30, 2020).

[41] Firebase, “Choose a database: Cloud Firestore or

Realtime Database | Firebase,” 2020.

https://firebase.google.com/docs/firestore/rtdb-vs-

firestore (accessed Oct. 10, 2020).

[42] MongoDB, “MongoDB Atlas FAQ | MongoDB,”

2020. https://www.mongodb.com/cloud/atlas/faq

(accessed Oct. 30, 2020).

[43] Firebase, “Export and import data | Firebase.”

https://firebase.google.com/docs/firestore/manage-

data/export-import (accessed Oct. 20, 2020).

[44] Firebase, “Retrieving Data | Firebase,” 2020.

https://firebase.google.com/docs/database/rest/retriev

e-data (accessed Oct. 30, 2020).

[45] mongoDB, “Create a Realm App (Realm UI) —

MongoDB Realm,” 2020.

https://docs.mongodb.com/realm/get-started/create-

realm-app/ (accessed Oct. 30, 2020).

[46] Firestore, “Get started with Cloud Firestore |

Firebase,” 2020.

https://firebase.google.com/docs/firestore/quickstart

(accessed Oct. 30, 2020).

[47] Firebase, “Installation & Setup on Android | Firebase

Realtime Database,” 2020.

https://firebase.google.com/docs/database/android/sta

rt (accessed Oct. 30, 2020).

[48] Firebase, “Firebase Pricing,” 2020.

https://firebase.google.com/pricing (accessed Oct. 30,

2020).

[49] MongoB, “MongoDB Limits and Thresholds —

MongoDB Manual,” 2020.

https://docs.mongodb.com/manual/reference/limits/

[50] MongoDB, “Pricing | MongoDB,” 2020.

https://www.mongodb.com/pricing

[51] PostgreSQL, “PostgreSQL: Documentation: 9.5: Data

Types.”

https://www.postgresql.org/docs/9.5/datatype.html

[52] Redis, “Data types.” https://redis.io/topics/data-types

(accessed May 07, 2021).

[53] Neo4j, “Values and types - Neo4j Cypher Manual.”

https://neo4j.com/docs/cypher-

manual/current/syntax/values/

[54] PostgreSQL, “PostgreSQL: Documentation: 12:

Appendix K. PostgreSQL Limits.”

https://www.postgresql.org/docs/12/limits.html

[55] “Hosted Redis Database on the Kubernetes Cloud

Platform - RClusters.” https://bit.ly/3v3eFOl

[56] mongoDB, “mongoexport — MongoDB Manual,”

2020.

https://github.com/mongodb/docs/blob/v4.0/source/re

ference/program/mongoexport.txt or

https://docs.mongodb.com/manual/reference/program

/mongoexport/ (accessed Oct. 30, 2020).

[57] “PostgreSQL: Documentation: 9.1: SQL Dump.”

https://www.postgresql.org/docs/9.1/backup-

dump.html.

[58] “PostgreSQL - How to copy a database to another

server? | TablePlus.”

https://tableplus.com/blog/2018/04/postgresql-how-

to-copy-database-to-other-server.html (accessed May

07, 2021).

[59] Redis Labs Documentation Center, “Export data from

a database.”

https://docs.redislabs.com/latest/rs/administering/imp

ort-export/exporting-data/ (accessed Apr. 27, 2021).

[60] Redis Labs Documentation Center, “Export-APOC

Documentation.”

https://neo4j.com/labs/apoc/4.1/export/ (accessed

Apr. 27, 2021).

[61] Ubuntu, “Install Ubuntu Server | Ubuntu,” 2020.

https://ubuntu.com/tutorials/install-ubuntu-server#1-

overview (accessed Dec. 15, 2020).

[62] Boicea, A., Radulescu, F. and Agapin, L.I.,

“MongoDB vs Oracle - Database comparison,”

MongoDB vs Oracle--database comparison. In 2012

third international conference on emerging intelligent

data and web technologies 330–335, 2012, doi:

10.1109/EIDWT.2012.32.

[63] S. C. Satapathy, V. K. Prasad, and S. K. Udgata,

Proceedings of the First International Conference on

Computational Intelligence and and Informatics.

2016.

