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Abstract 
This work aims at developing a dynamic model and estimating the unknown parameters of the first three joints (at the arm) of a 6 

degree of freedom industrial robot manipulator, a finite Fourier series algorithm was used to design an excitation trajectory, a 

mutating particle swarm optimization algorithm was used to optimise the parameters of the Fourier series thereby minimizing the 

condition number of the observation matrix, and a linear least-squares methods was implemented for estimating the unknown 

dynamic parameters of the manipulator. A mutation function was implemented to break the algorithm out of stagnation. Out of the 

thirty unknown parameters at the industrial manipulator arm, twenty were identified independently, two were identifiable in linear 

combinations, and the remaining eight parameters were unidentifiable. The mutating particle swarm optimization algorithm 

dominated other algorithms and was found suitable for robot dynamic analysis.   
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1.0 INTRODUCTION 

The fourth industrial revolution is expected to 

unfold over the twenty-first century and would build its 

momentum around artificial intelligence, robotics, the 

Internet of Things, and machine learning. Robotics is 

expected to be a significant driver of the fourth industrial 

revolution [1], [2]. An industrial robot manipulator is a 

device fixed to a stationary base with limited motion 

within its workspace, it is used to manipulate objects 

without direct human input for automating basic industrial 

processes [3] like welding, cutting, etc. Precision 

agriculture is another important application of robots, 

where robotic technologies, sensors, and artificial 

intelligence have been applied to maximize agricultural 

output [4], while minimizing the input cost of planting, 

fertilizing, weed control, harvesting, etc., thereby giving 

more consistent product yield and maximizing output. 

Other recent applications of robot technology include 

medical surgery, aircraft manufacture, dangerous/ 

hazardous material handling, hostile environment/space 

exploration, etc. [5]. The 6 degrees of freedom (DOF) 

articulated robot remains the most popular industrial robot 

configuration which is still relevant in real-world 

applications [6]. It is regarded as the configuration with 

optimum dexterity capable of completing most jobs in an 

industrial workspace [7], [8].  

 
*Corresponding author (Tel: +86-226-043-8217) 

Email addresses: 201541201002@stu.hebut. 

edu.cn (A. Umar), z_shi@hebut.edu.cn, (Z. Shi), 

201740000010@stu.hebut.edu.cn (A. Khlil) 
zulfiqarbibifarouk@yahoo.co.uk (Z. I. B. Farouk)  

 
Figure 1:  The 6 DOF articulated robot manipulator. 

 

Figure 1 shows a 6DOF industrial manipulator 

and Table 1 presents its D-H parameters. 

A manipulator's trajectory tracking efficiency is 

directly proportional to its performance and depends on 

the robot's dynamic model; the dynamic model is used to 

derive the energy required to actuate the joints [9]. 

Geometric errors, coupling, and non-linearity introduces 

uncertainties in the robotic system, causing the parameters 

to deviate from the nominal values. These errors degrade 

the robot’s performance; therefore, re-calibrating robot 

parameters are necessary for efficient robot analysis and 
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control, which can be achieved through parameter 

estimation. Various techniques have been implemented 

for robot parameter identification including singular value 

decomposition [10] , maximum likelihood 

estimation [11] , Kalman filter [12] , and swarm-based 

algorithms [13], [14]. Generally, robot optimization 

analysis involves tedious and lengthy multistep 

mathematical calculations, and none of the existing 

methods of calculation has been proven without flaws. 

Therefore, it is of great theoretical significance and 

engineering value to study new parameter estimation 

methods. 

  A dynamic model estimation procedure requires 

that firstly, a linearized model of the robot manipulator is 

developed, then a trajectory that excites the robot’s rigid 

body dynamics is developed, afterward input torque and 

output joint configuration data are obtained then finally 

the dynamic parameters are estimated. The accuracy of 

the estimation method is largely dependent on the chosen 

trajectory and measuring accuracy. The actuator torque 

can be measured from input electric currents while optic 

encoders are incorporated for measuring output joint 

angles. The recent improvement in technology has made 

available resolution encoders with high accuracy and 

repeatability, reduction gears that can minimizing gearbox 

backlash. Therefore, carefully selecting an observation 

matrix is a major objective of this work. Observing that 

the Linear Least Square (LLS) estimation method is 

computationally efficient, designing an optimized 

excitation trajectory for monitoring the robot’s joint 

motion and extracting experimental data is hereby 

emphasized, where the LLS would be implemented for 

dynamic model estimation. The particle swarm 

optimization (PSO) has proven to be efficient in analyzing 

complex optimization problems. A Mutating Particle 

swarm optimization algorithm with modified parameters 

was introduced by [15] and was found suitable for robot 

kinematic analysis.  

This work would show that the algorithm is also 

suitable for robot dynamic analysis. This variant of PSO 

shall be implemented here for dynamic model estimation 

of a 6 DOF industrial manipulator, and the results 

compared with other state of the art algorithms. The rest 

of the paper is structured as follows; section 2, 3 and 4 

introduces the PSO algorithm, the dynamic, and 

parameter estimations models respectively. Section 5 

presents the simulation experiment and results, while 

section 6 concludes the findings. 

 

Table 1: D-H Parameters for a 6DOF Industrial robot manipulator 

Joint Link Length a 

(mm) 

Off-set Length d 

(mm) 

Joint Displacement θ (rad) Off-set Displacement α 

(rad) 

1 0 290 Variable (-11π/22 : 11π/22) -pi/2 

2 270 0 Variable (-11pi/18 : 11π/18) 0 

3 70 0 Variable (-11pi/18 : 7π/18) -pi/2 

4 0 302 Variable (-8pi/9 : 8π/9) pi/2 

5 0 0 Variable (-3pi/2 : 3π/2) -pi/2 

6 0 72 Variable (-121π/90 : 121π/90) 0 

2.0  PARTICLE SWARM OPTIMIZATION 

(PSO) ALGORITHM 

The PSO is a stochastic metaheuristic swarm-

based algorithm, it mimics the behaviour of swarm 

animals (birds or fish) to solve complex mathematical 

problems. It is randomly populated with individuals or 

particles sharing information between each other while 

updating their positions and velocity according to (1) and 

(2) until the desired solution is attained. The particle with 

the solution that best minimizes the fitness function is 

referred to as the global best position (Gbest), while each 

particle’s best solution is called its personal best position 

(Pbest). Each particle in the swarm is attracted towards 

the Gbest and its Pbest. 

 

( ) ( ) ( )11 dimdimdim ++=+ iterViterXiterX kkk          (1) 

( ) ( ) ( ) ( )( )
( ) ( )( )iterXiterGbestrc

iterXiterPbestrciterwViterV

k

kkkk

dimdim

22

dimdim

11

dimdim 1

−+

−+=+
      (2) 

Where k = 1, 2, 3…nPop denotes the index of each 

particle, nPop is the swarm size, and dim = 1,2…N 

denotes the dimensionality of the solution space, N is the 

number of harmonics of the Finite Fourier Series (FFS). 

Vk
dim and Xk

dim stand for the position and velocity vectors 

of the kth particle, respectively. Vk
dim = [vk

1, vk
2, . . . , vk

N], 

Xk
dim = [xk

1, xk
2, . . . , xk

N
 ]. w is the inertia weight. c1 and c2 

are cognitive and social learning coefficients. r1 and r2 are 

two uniformly distributed random numbers within the 

range of [0,1]. 

It was established in [15] that the basic parameters 

of PSO are not capable of converging the solutions for 

robot optimization problems especially when the DOF is 

greater than three. The basic parameters of the mutating 

PSO were modified to satisfy the requirement for solving 

robot optimization problems. This was achieved by 

testing the performance of various PSO parameters on 

four popular robot configurations, and a relationship 

between the inertia weight and the social learning 

coefficient was derived. A non-linearly decreasing inertia 
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weight was implemented with values between (2.1 – 0.6), 

the cognitive learning coefficient was set constantly at 

2.24, while the social learning coefficient was non-

linearly increasing between (1.8 – 3.9). The equations for 

updating w and c2 are (3) and (4). 

 
it

initialit nww *= , (3) 

it

initialit mcc /22 = , (4) 

  

Where it is the iteration number, and n and m are 

coefficients. The coefficients n and m can be determined 

by setting it to the maximum value.  

The mutation function is an artificial perturbation 

of the system used to push the algorithm out of stagnation. 

If the algorithm stagnates in a local minimal solution 

(false minimum), new swarm particles are generated 

through mutation to replace the previous swarm. Suppose 

any solution from the previous iteration should remain. In 

that case, that solution shall be the global best solution for 

the next iteration, causing the entire swarm to converge on 

that solution and a recurring stagnating cycle results; 

therefore, the mutation probability was set at 100%. Four 

variables and two end conditions were introduced to train 

the algorithm to identify a stagnating solution. The 

abandonment threshold (E) is the global minimum 

solution set at 1e-8. The Fitness error (e) is the difference 

between the current Fitness and the previous Fitness as 

elaborated in (5), the abandonment counter (q) monitors 

the second differential of Fitness error, and the 

abandonment limit Q is the upper limit for q. When the 

second differential of the Fitness error becomes smaller 

than E then the algorithm is assumed to have slowed 

down. Therefore, the condition in (6) states that when the 

difference in e is less than E, q begins to count 

consecutively through every iteration. If the condition in 

(6) is broken, then counter in q is reset to zero.  
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( ) ititmutate XsizerandomXX ==~ ,                  
 

(8)         

 

The two end conditions in (7) state that when q is 

equal to or greater than the abandonment limit (Q) and 

Fitness is less than E, then the algorithm has found the 

global minimum solution and should be terminated. Still, 

when the first condition is met and Fitness is greater than 

1e-3, then this signifies that the algorithm has run into 

stagnation and should be mutated according to (8), where 

new particles are generated. Q should be large enough so 

as not to prematurely terminate a promising solution, 

allowing the algorithm to break out of stagnation without 

mutation but must also not be too large to allow a failed 

solution to continue. 

 

3.0  ROBOT DYNAMICS 

Implementing the Linear-least-square (LLS) 

method for dynamic parameter estimation of the robot 

manipulator requires that the Newton-Euler equations are 

linear with respect to dynamic parameters and it is 

sensitive to noise in the measured data. [16] observed that 

the actuator forces of an industrial manipulator are linear 

functions of dynamic parameters, [17] inferred that 

reformulating the Newton-Euler dynamic model such that 

the link inertia tensors are expressed about the link 

coordinate frames instead of the center of the links' mass, 

would result in a linearized Newton-Euler formulation. It 

involves two sets of recursive computations; the forward 

and the backward computations. As shown by equations 

(9) – (14), the forward recursive computation transforms 

the kinematic variables into individual joint forces and 

moments acting on the links, starting at base through the 

end effector such that the index i=0,1,2,…,dof-1. Where 

the variable R is the rotation matrix, the angular velocity 

and acceleration at the base is zero (i.e. ω0=ώ0=0), the unit 

vector Ẑ=[0, 0, 1]T, θ and its integrals signify joint 

position, velocity and acceleration; Pc is the position of 

center of mass, P is the position of the end-effector, the 

linear acceleration of the base is  ύ0=[0, 0, gr], and gravity 

gr=9.8ms-1. The backward recursive computations 

presented in (15) and (16) transforms the forces and 

moments generated in the forward computations into the 

net joint forces and torques, starting at the end-effector 

back to the base such that i=dof,dof-1,…,1. Where I is the 

inertia tensor, Fr is the force acting on the link, Nm is the 

moment acting on the link, fr and nm are the net force, and 

net moments (torque) acting on the joint due to the motion 

of the links. 
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i
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From the torque model presented in (16), it would 

be observed that the Newton-Euler model is linear in 
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inertia tensors I and nonlinear in center of mass vectors Pc 

and kinematic parameter vectors P. Therefore, making the 

formulation linear in dynamic parameter Pc, would result 

in the entire dynamic model become linear in all dynamic 

parameters. Therefore, linearized Newton-Euler 

formulation, the equation (17) presents the parallel axis 

theorem, transforming the classical inertia tensor from the 

center of mass of link i to the origin of the link, where eye 

is a 3x3 identity matrix. Equation (18) is obtained by 

substituting (12) – (14) into (16), then implementing the 

parallel axis theorem in (17) gives the expression in (19). 

The vector identities in (20) and (21) are introduced to 

further simplify the dynamic formulation, (22) is obtained 

by substituting the vector identities in (20) and (21) into 

(19), where viA and viB are 3x1 vectors. Eliminating the 

similar terms in (22) results in the simplified NE dynamic 

model that is linear in dynamic parameters as expressed in 

(23).  
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The inertia tensor matrix is a 3x3 symmetric 

matrix, therefore, only six out of the nine values are 

unique as shown in (24). The notation in (25) and (26) 

presents a simplification of the cross and dot 

multiplications of kinematic parameters as demonstrated 

in (27) and (28). They are introduced to simplify the 

implementation of the dynamic model algorithm, 

especially for higher DOF robots. 
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The formulation for the forward recursive 

computations can be summarized as (29) – (31). where wr 

is a 6-element wrench vector, ζ is a 6x10 observation 

matrix of joint parameters, and ϕ is a 10-element vector of 

unknown dynamic parameters for each link that needs to 

be identified, it includes link mass m, first moments [mcx 

mcy mcz]T along the x-y-z axis, and six inertia tensor Iij. 

Suppose wrii represents the wrench acting on ith joint due 

to the net forces and torques generated by the ith link only, 

then wrij represents the net forces and torques acting on ith 

joint due to the net forces and torques generated by the jth 

link only, and a wrench transformation matrix Rw would 

be required to transform the wrech from the jth frame to 

the ith frame as described in (32). Equation (33) presents a 

6x6 pseudo-rotation matrix for transforming the wrench 

along frames, where the R is a rotation matrix, and [Px] is 

the cross-product matrix of the joint position P as derived 

from (25).  

Cascading the linearized dynamic expressions in 

(34) – (37) results to (38), where U is also a 6x10 matrix. 

Each wr in the left-hand side of (38) is a full force-torque 

vector of a joint. Since only the torque about the joint axis 

is usually measured, (38) is reduced to (39) where 

τij=[0,0,0,0,0,1]wrij, and Kij=[0,0,0,0,0,1]Uij. In the new 

expression, each τij is a single variable; each Kij would be 

a 1x10 vector; therefore, the compound observation 

matrix would be a 6x10*DOF matrix, this results to an ill 

conditioned matrix due to loss of rank. 
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4.0  PARAMETER ESTIMATION MODEL 

4.1  Fitness Function 

Let the compound torque (Γ) for the manipulator 

be a vector of individual joint torques τ, the compound 

observation matrix (Ω) comprise of individual joint 

vectors K(q, q̇, q̈ ), while the compound vector of 

unknown parameters Փ comprise of individual vector of 

unknown robot parameters ϕ in every link as shown in 

(40). Substituting (40) in (39) gives (41). 

The observation matrix is a function of the joint 

position, velocity, and acceleration only and its 

components are computed directly from the measured 

kinematic parameters, and together with the known torque 

vector, the unknown dynamic parameters can be estimated 

using the LLS method as elaborated in (42) and (43). The 

expression in (43) has six equations and ten unknowns, 

therefore, the wrench has to be sampled in at least two 

locations to produce a system of more equations than 

unknowns. More sampling data points are desirable to 

account for noise, also implementing the Finite Fourier 

series (FFS) as an excitation trajectory increases the 

signal-to-noise ratio. Unfortunately, the observation 

matrix, cannot be inverted due to loss of rank, this 

problem can be resolved by removing the unidentifiable 

parameters from the dynamic model.  
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The fitness function would be as described by the 

expression in (44). The intelligent swarm-based algorithm 

would be required to optimize the parameters of the FFS, 

and also minimize the condition number of the 

observation matrix while maximizing its smallest singular 

value and minimizing its largest singular value. Where 

φmax and φmin represent the maximum and minimum 

singular values of the observation matrix respectively, and 

y is a weighting factor. 

 

4.2  Excitation Trajectory 

It was observed by [18] that the excitation 

trajectory can be optimized by minimizing the condition 

number of the observation matrix, an optimized excitation 

trajectory improves the estimation accuracy. The 

condition number of the observation matrix is a measure 

of noise immunity, a value closer to unity results in a 

better signal-to-noise ratio (SNR).  

The FFS has computational advantages when 

implemented for designing an excitation trajectory, it 

inhibits noise interference. If the identification experiment 

is repeated several times, averaging the measured data in 

the time domain improves SNR. Reference [19], used the 

periodic FFS to formulate an excitation trajectory at the 

joint space of the manipulator. Reference [20] proposed 

an improved Fourier series and [21] implemented the FFS 

on a circular trajectory in the Cartesian space. The 

equation of motion is given in (45) – (47), the MuPSO 

algorithm was used to optimize the parameters of the 

Fourier series thereby minimizing the condition number 

of the observation matrix. 
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The variable Q describes the coordinates of the 

excitation trajectory in Cartesian space, the variable P is 

the polynomial, the variables c0 and b0 are the coefficients 

of the FFS, a0 is the radius.  freq is the fundamental 

frequency and tym is the period. To achieve continuity 

along the tool-path, the boundary conditions for this 

analysis is such that for every coordinate of Q in the 

Cartesian coordinate frame, Q=[q1,q2,…,qn]
T, and q must 

not exceed the robot’s work space. Where the initial and 

final values for q are 0 and 2π; likewise, the initial and 

final values for the velocity and acceleration of joints is 

zero as detailed in (48). 

 

5.0  Simulation Experiments and Results 

An experiment was first performed to find the 

optimal swarm size for minimizing the condition number 

of the observation matrix using PSO. the algorithm was 

run for 200 iterations and 30 generations. The experiment 

was performed with MATLAB R2016a installed on a 

Windows 7 (64bit) operating system, i5-7400 CPU 

running at 3GHz and 8GB of ram. Figure 2.0 shows the 

best solutions obtained for various swarm sizes and the 

required computational time. The Best-cost of 4.6 was 

achieved with a swarm size of 70, and a Best-Cost of 5.2 

was obtained when the swarm size was 50, while the 

increase in swarm size from 50 to 70 resulted to an 

increase in the average computational time per generation 

from 1.12e4 seconds to 1.57e4 seconds. It can be 

summarized that a 13% decrease in best cost was achieved 

at 70 particles with a 40% increase in computation time 

therefore, the optimal swarm size was taken as 50 particles 

owing to its computational advantage.  
 

 
Figure 2: Comparing the computation time and minimum solution for various populations 
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Table 2: Initial parameters for metaheuristic algorithms. 

Algorithm Parameter Value 

SPSO Inertia weight/Velocity coefficient(c2 and c2) 0.72/1.45 

WOA Velocity coefficient (a) 2 - 0 

GWO Velocity coefficient (a) 2 - 0 

GOA Exploration Coefficient (cMax)/Exploitation Coefficient (cMin) 1/4e-5 

DE Inertia weight (F)/Cross-over Probability (CR) 0.85/1 
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Figure 3: Minimizing the condition number of observation matrix 
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Table 3: Minimized condition number of optimization matrix for various metaheuristics. 

Function Evolutionary Algorithms 

MuPSO SPSO WOA GWO GOA DE 

Condition 

Number for 

Excitation 

trajectory 

Minimum 4.73 6.27 6.05 5.19 6.72 10.0 

Average 7.16 7.33 23.8 7.56 45.5 31.6 

St. Dev. 1.17 0.911 12.5 3.09 63.6 17.2 

Time (s) 7.15e3 7.43e3 1.09e4 1.46e4 6.78e3 1.36e4 

 
A swarm of 50 particles was generated to run for 

only 30 iterations. The fitness function for this swarm is 

evaluated according to (44). The abandonment limit (Q) 

was set at 10, so that the swarm is mutated at 10 iterations 

after stagnation (i.e. Q=10). 

The results presented in Table 3 show that the 

MuPSO best minimized the problem and produced better 

averages compared to other algorithms. Figure 3 shows 

the average performance of all metaheuristics. Observe 

that the mutating PSO algorithm was mutated at the 10th 

iteration and the best solution was obtained before 

mutation.  

The optimized coefficients of the FFS for the 

excitation trajectory obtained from the MuPSO are; a = [-

0.3392, 1.1738, -0.20492]T, b = [0.3305, -0.26181, -

0.9965]T and c = 2.0328. A minimized condition number 

of 7.3531 was obtained for the observation matrix. Figure 

4 shows the resultant trajectory in Cartesian space, while 

Figure 5 shows the velocity and acceleration of the joints. 

The solution from the MuPSO and LLS was implemented 

for dynamic parameter estimation, it was observed that 20 

parameters were independently identifiable, 2 were 

identifiable in linear combinations while 8 were 

unidentifiable.  

 

Figure 4: Optimized excitation Trajectory in Cartesian space. 

 

 
Figure 5: Optimized excitation Trajectory in joint space. 

 Joint 01   Joint 02   Joint 03 
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The 22 identified parameters include mcy1, Iyy1, 

mm2, mcx2, mcy2, mcz2, Iyy2, Izz2, Ixz2, Iyz2, mm3, 

mcx3, mcy3, mcz3, Ixx3, Iyy3, Izz3, Ixy3, Ixz3, Iyz3, Ixz1, 

and Ixx2. Table 4 presents the identified dynamic 

parameters against their corresponding ideal values.  

 

6.0 CONCLUSION  

The parameter identification problem of robot 

manipulators is generally computationally demanding, 

therefore finding a fast, computationally efficient, and 

accurate solution is important for which swarm-based 

algorithms are suitable. 

 
Table 4: Dynamic parameter estimation for an Industrial robot. 

Dynamic 

Variables 

Ideal 

Values 

Identified 

Values 

Dynamic 

Variables 

Ideal 

Values 

Identified 

Values 

Dynamic 

Variables 

Ideal 

Values 

Identified 

Values 

my1 0 -1.08E-06 Ixz2 0 -4.86E-07 Izz3 7360 7360 

Iyy1 13651 13651 Iyz2 0 0.000491 Ixy3 0 -3.22E-05 

m2 4 4 m3 3 3 Ixz3 0 -1.24E-06 

mx2 350 350 mx3 60 60 Iyz3 0 -3.24E-05 

my2 0 -6.83E-09 my3 0 1.77E-09 Ixz1 0 -0.00079 

mz2 0 -5.64E-08 mz3 0 -4.72E-08 Ixx2 103901 103901 

Iyy2 79173 79173 Ixx3 9855 9855 
   

Izz2 30809 30809 Iyy3 9759 9759 
   

 
A mutation PSO algorithm with enhanced 

parameters (MuPSO) was shown to be capable of 

analysing the dynamic problems of robot manipulators, 

performing better than other algorithms in minimizing the 

condition number of the observation matrix achieving 

between (2 – 500) % gain in the minimum solution against 

other algorithms, and requiring the second least 

computational time with a 5.46% increase in 

computational time against the GWO algorithm and 

between (3 – 90) % reduction in computational time 

against the other algorithms.  

Observing from the average convergence plots 

presented in Figure 3 that the best solution of the MuPSO 

algorithm was obtained early in the run signifies that the 

algorithm permits the swarms to be populated with less 

particles thereby reducing the number of computations. 
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