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Abstract
This paper introduces the Quasi-Moment-Method (QMM) as a novel radiowave propagation pathloss model cali-
bration tool, and evaluates its performance, using field measurement data from different cellular mobile commu-
nication network sites in Benin City, Nigeria. The QMM recognizes the suitability of component parameters of
existing basic models for the definition of ‘expansion’ and ‘testing functions’ in a Galerkin approach, and simula-
tions were carried out with the use of a FORTRANprogramdeveloped by the authors, supported bymatrix inversion
in the MATLAB environment. Computational results reveal that in terms of both Root Mean Square (RMS) and
Mean Prediction (MP) errors, QMM-calibrated models performed much better than an ‘optimum’ model reported
for the NIFOR (Benin City), by a recent publication. As a matter of fact, the QMM-calibrated COST231 (rural
area) model recorded reductions in RMS error of between 31.5% and 71% compared with corresponding metrics
due to the aforementioned ‘optimum’ model. The simulation results also revealed that of the five basic models
(COST231-rural area and sub-urban city, ECC33 (medium and large sized cities), and Ericsson models) utilized
as candidates, the two ECC33 models, whose performances were consistently comparable, represented the best
models for QMM-model calibration in the Benin City environments investigated.
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1. INTRODUCTION
Radiowave propagation pathloss ‘calibration’

(also known as ‘tuning’) may be described as that
empirical process, with which a basic (or nomi-
nal) prediction model is adjusted to fit a profile
prescribed by field measurements. Quite a few
model tuning techniques have been reported in
the open literature, with majority of them uti-
lizing what is commonly referred to as the ‘least
square method’. Examples of these include the
contribution by Chebil et al. [1], who, using mea-
surement data for a sub-urban area in Kuala
Lumpur (Malaysia), calibrated the Lee model,
in a Least Square approach. The focus of the
tuning was on two component parameters of the
Lee model, namely, the pathloss exponent and
the free space attenuation factor. RMSE values
recorded by tuned model varied between 8.78dB
and 9.82dB. Dalela, Prasad, and Dalela [2], de-
veloped a linear iterative approach to the tun-
ing of the COST231-Hata model. For calibration
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purposes, the model focused on the two compo-
nent parameters that are functions of the vari-
able ‘d’- radial distance of measurement point
from transmitting antenna’s location. Model per-
formance evaluation was carried out through a
comparison of predicted pathloss with measure-
ment data fromWiMAX network, and RMSEmet-
rics recorded ranged between 6.6dB and 9.2dB.
The Least Square Algorithm utilized by Diawuo
et al. [3], for the tuning of the Okumura-Hata
model, is essentially a linear regression approach,
in which two component parameters (the free
space attenuation factor and the base station an-
tenna height correction factor) are selected for
‘optimization’. RMSE values in the range be-
tween 4.16dB and 8.6dB were recorded, when
measurement values from a CDMA2000 network
in Greater Accra, Ghana, were utilized for cali-
bration. A Least Square Approximation approach
was presented in the contribution by Deme, Da-
jab and Nyap [4], whose model is a quadratic in
‘d’. According to the authors of [4], the coefficients
of the quadratic expression represent the solu-
tion to an ill-defined system of ‘normal equations’
(Eqs. (3) of [4]); and the COST231-Hata model
subsequently calibrated with measurement data
from GSM900 network in Jos, Nigeria, recorded
5.1dB as its RMSE metric. In addition to cal-
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ibrating the COST231-Hata Model, the publica-
tion by Salami et al. [5], also tuned the Stan-
ford University Interim (SUI) model, using a lin-
ear regression technique with field measurement
data obtained from Networks in Togo. The perfor-
mances of both tuned models were not consistent,
as RMSE values reported by the authors varied
from as low as 1.523dB in one case, to as high
as 20.8009dB in another. Unlike what obtained
with the examples described in the foregoing dis-
cussions, Keawbunsong et al. [6], focused model
calibration attention on a third generation terres-
trial Digital Video broadcasting network. Their
approach is also a least square linear regression
method that incorporated a random error term.
RMSE metrics reported in the paper ranged be-
tween 6.717dB and 7.244dB, and may be regarded
as consistent and satisfactory. Of particular inter-
est to this paper is a recent publication by Omoze
and Edeko [7], in which a least square approach,
similar to that described in [2] was utilized for
the tuning of the basic COST231-Hata model for
rural areas, with field measurements taken from
three GSM1800 networks in the NIFOR (Benin
City) environment. Computational results (in dB)
reported by the authors for (MPE, RMSE) were
given as (1.17, 5.58) for ‘Network A’, (2.20, 7.16),
for ‘Network B’, and (6.21, 10.78), for ‘Network C’.
This paper utilizes the same measurement data
reported in [7] for the QMM-calibration of five
different basic models, including the COST231-
Hata model for rural areas, considered by the au-
thors of [7]. Computational (MPE, RMSE) re-
sults obtained for the QMM-calibrated COST231-
Hata (rural area) emerged as (-0.22dB, 3.80dB),
for ‘Network A’, (0.30dB, 2.67dB), for ‘Network B’,
and (0.77dB, 3.06dB), for ‘Network C’. Although
these metrics are clearly much better than those
recorded by the optimum model of [7], even bet-
ter metrics were obtained for the corresponding
QMM-calibrated ECC-33 models. For example,
in the case of the ECC-33 (medium city model),
(MPE, RMSE) values were obtained as (0.19dB,
1.19dB), (0.03dB, 2.04dB), and (0.12dB, 2.34dB),
for networks ‘A’, ‘B’, and ‘C’, respectively. Results
concerning percentage contributions to net pre-
dicted pathloss by the component parameters of
basic and corresponding QMM-calibrated models
are also presented in the paper, to illustrate the
model calibrating features of the Quasi-Moment-
Method.
Section 2 of the paper describes the generic

Quasi-Moment-Method problem formulation, and
establishes equivalence between the Method of
Moments as utilized for solution of electromag-
netic field problems, and the QMM, as formulated
here. Thereafter, the generic process is special-
ized for use with basic pathloss model calibra-
tion, using the basic models utilized in the paper
as candidate examples. In section 3, the QMM-
model-calibration process is validated through a
comparative evaluation of its performance with
the optimized model reported in [7], for the NI-
FOR environment in Benin City. Further model
evaluation is provided in the paper’s section 4,

where outcomes of calibration with measurement
data obtained by the authors for other areas of
Benin City, are comprehensively discussed. In the
paper’s concluding remarks, it is noted that one
key implication of the investigations reported here
is that the fact that the performance of one ba-
sic (uncalibrated) model (in particular, the ECC33
model) is inferior to that of another should not
form the basis for the choice of basic model to be
optimized. Possible directions of future research
are also identified, including the possibility of tak-
ing advantage of the inherent symmetry of the
‘model-calibration matrix’, to formulate and solve
a pathloss eigenvalue problem.

2. FORMULATION
The formal approximation problem addressed

by the Quasi-Moment-Method as utilized in this
paper may be described as follows. Given a set
{Plmea (dk)}N

k−1 of field measurement data, deter-
mine a function PIQ (dk), such that weighted Eu-
clidean semi-norm of the error function defined as

|| ε ||=|| Plmea −PlQ ||=[
N∑

k=1

(
wk | Plmea(dk)−PlQ(dk) |2)] 1

2

(1)

assumes its smallest possible value. In the for-
malism of the approximation problem so defined
[8], the first step towards a solution to this prob-
lem is to prescribe the desired approximation
function as a linear combination of known ‘basis’
or ‘expansion’ functions, according to

PlQ = c0Pl0 + c1Pl1 +·· · cMPlM , (2)

in which the set {Plm}M
m=0 is a set of known func-

tions, and the set {cm}M
m=0 is a set of unknown coef-

ficients (referred to in this paper as ‘model calibra-
tion coefficients’) to be determined. As described
by Dahlquist and Bjork [8], the solution to this ap-
proximation problem begins with the definition of
an inner (or scalar) product quantity for two func-
tions g1(dk) and g2(dk) as

〈g1, g2〉 =
N∑

k=1
wk g1(dk)g2(dk) (3)

The function wk, which appears in Eqns. (1) and
(3) is a weighting function set equal to 1 every-
where in this paper. Next, a set, {Pt}M

t=0 , of ‘test-
ing functions’ is chosen as being identical to set
of ‘basis’ functions, and the inner product of each
testing function and both sides of the equation

PlQ = c0 pl0 + c1 pl1 +·· · cM plM = Plmea (4)

is taken to yield the system of equations given as
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〈pl0, pl0〉c0 +〈pl0, pl1〉c1 +·· ·〈pl0, plM〉cm =
〈pl0, plmea〉
...
〈plM , pl0〉c0 +〈plM , pl1〉c1 +·· ·〈plM , plM〉cm =
〈plM , plmea〉 (5)

Clearly, Eq. (5) admits the matrix description
given as

[Φ](C)= (Π), (6)
in which entries into the column vector symbol-
ized by (C) are the unknown coefficients, to be de-
termined. Because entries into the matrix [Φ] are
sums of products of the known ‘basis’ and ‘testing’
functions, and since the column vector (Π) is pop-
ulated by products of known field measurement
data and ‘testing’ functions, the desired ‘model
calibration coefficients’ are obtained as the solu-
tion to the approximation problem, through the
matrix operations of inversion andmultiplication,
according to

(C)= [Φ]−1(Π). (7)
The process described here for the model-

calibration technique is similar to the circuit-
geometric Method of Moments (MoM), originally
developed by Harrington [9, 10], for the solution
of electromagnetic field problems.
There are two major requirements for the suc-

cessful use of the method of moments (MoM); and
these are [10]:

(i) choosing expansion functions that are lin-
early independent, and which are such that
a linear combination of the type specified by
Eq. (2) can be expected to provide a reason-
able approximation, and

(ii) choice of linearly independent ‘testing’ func-
tions in a manner that ensures that the inner
product quantities on the right-hand-side of
Eq. (5) depend only on the relatively indepen-
dent properties of ‘ Plmea’, in the case of inter-
est here.

The particular choice of identical ‘expansion’
and ‘testing’ functions is referred to as the
‘Galerkin’ approach [10], which has been rigor-
ously shown [11], to represent an equivalent of the
Rayleigh-Ritz variational technique. In terms of
linear spaces, the particular case of the Galerkin
method represents some projection of the approx-
imate solution on the desired solution in an error-
minimizing process, [9]. Furthermore, because
the error and projection are orthogonal functions,
the process is a second order. The foregoing dis-
cussions concerning the MoM have their equiva-
lents in the QMM. In particular, the linear in-
dependence of both the ‘expansion’ and ‘testing’
functions is also a requirement, though in this
case, the purpose is to ensure the uniqueness of

the solution[8]. As also noted in [8], the use of
Euclidean semi-norm admits the physical inter-
pretation that the solution to the approximation
problem may be regarded as a generalization of
the well-known fact of two-and three-dimensional
geometry, that the shortest distance between a
point and a linear subspace is the length of the
vector connecting the point to a point located on
the subspace, along a perpendicular. And hence,
as is the case with MoM, the error in QMM is or-
thogonal to the subspace spanned by the expan-
sion functions [8].
Since the basic pathloss models were particu-

larly developed for the purposes of pathloss pre-
diction, and because their component parameters
are inherently linearly independent (as formally
shown in section 2.1), the component parame-
ters are recognized here as representing natu-
ral choices for ‘expansion’ (and ‘testing’) functions.
This observation forms the basis of the specializa-
tion process described in the following section.
2.1. Specialization to Basic Pathloss Model

Calibration
The specialization of the QMM technique as for-

mulated in § 2, to the basic pathloss model cali-
bration of interest here is essentially that of pre-
scribing ‘basis’ and ‘testing’ functions according to
Eq. (2). These ‘basis’ and ‘testing’ functions, for
the five candidate models utilized in this paper
are identified by the following expressions.
For the basic Ericsson pathloss model, [12], the

desired equation is

PlQ−Eric = c0(36.2)+ c1(30.2log10 d)
+c2(−12log10 hte)
+c3(0.1log10 d log10 hte)

+c4(−3.2log10(11.75hre)2)
+c5(g( f )) (8)

whereas, they are given by

G f rQ = c0(92.4)+ c1(20log10 d)+ c2(20log10 f ) (9a)

GbmQ = c3(20.41)+ c4(9.83log10 d)
+c5([7.894+9.56log10 f ] log10 f ) (9b)

G teQ = c6

(
13.958log10

(
hte

200

))
+

c7(5.8log10

(
hte

200

)(
log10 d)2)

(9c)

for both ECC33 large and medium city models,
provided that it is understood that the associated
basic models are given by, [7],

PlB−ECC =G f r +Gbm −Ghte −Ghre (9d)

The terms on the right-hand member of Eq. (9d)
as component parameters of the basic ECC-33
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pathloss models, represent ‘free space attenua-
tion’, ‘basic median pathloss’, ‘transmitter an-
tenna height correction factor’, and ‘receiver an-
tenna height correction factor’, respectively. And
as suggested by Eqs. (9a), (9b), and (9c), the first
three terms are common to the large-city and
medium citymodels. The ‘receiver antenna height
correction factor’ however, has different expres-
sions for the aforementionedmodels; thus, we find
that [7],

GhreQ = c8(42.57(log10 hre −0.585))
+c9(13.7log10 f (log10 hre
−0.585)) (10a)

in the case of medium cities; and

GhreQ = c8(0.759hre)+ c9(−1.862) (10b)

for large cities. Expressions for the calibrated
COST231-Hata models will, for terms common to
both ‘rural area’ and ‘sub-urban city’, [7], assume
the form

PlQ−C231 = c0(46.33)+ c1(33.9log10 f )
+c2(−13.82log10 hte)
+c3(44.9log10 d)
+c4hte(−6.55log10 d) (11)

Terms additional to Eq. (11) represent correction
factors for mobile station antenna height, and are
given by, [7, 10],

α(hre)Q = c5(hre(0.7−1.1log10 f ))+c6(1.56log10 f−0.8)
(12a)

in the case of ‘rural areas’, and by

α(hre)Q = c5(−3.2log10(11.75hre)2 +4.97) (12b)

for sub-urban cities.
It is matter of interest to now formally demon-

strate that the expansion and testing functions
prescribed by the candidate models do indeed,
meet the requirements of being linearly indepen-
dent. In that connection, and as shown by Bostan
and Dumas, [13], the functions will be linearly in-
dependent, if theWronskian associatedwith them
is non-zero. The Ericsson and COST231-Hata
models, for given antenna heights and operating
frequencies, essentially, as functions of ‘d’, reduce,
to forms given as

f1(d)= k1 +k2 log10 d (13a)

in which k1 and k2 are constants, and whose
Wronskian is readily evaluated as

W( f1)= det

([ k1 k2 log10 d

0 k2/d loge 10

])
= 2k1k2k3

(d loge 10)3

(13b)

and is clearly a non-zero quantity, for all finite val-
ues of ‘d’. Similarly, the ECC-33 models, for given
antenna heights and operating frequency, can be
written as

f2(d)= k1 +k2 log10 d+k1 +k3(log10 d)2 (14a)
so that

W( f2)=

det




k1 k2 log10 d k3(log10 d)2

0 k2/d loge 10 2k3 log10 d/d loge 10

0 −2k2/d2 loge 10 2k3
(d loge 10)2

((loge 10)(log10 d)−1)




= 2k2k3

(d loge 10)3 (14b)

which is also non-zero, for finite values of ‘d’.
3. MODEL VALIDATION
In order to establish the validity and efficiency

of QMM-model calibration approach, the tech-
nique is utilized for the calibration of the five can-
didate models, as described in § 2, using mea-
surement data available (through the commer-
cial graph digitizer ‘GETDATA’- https://getdata-
graph-digitizr.com) from Figs. 6, 7, and 8, of [7],
for the networks identified as ‘A’, ‘B’, and ‘C’, re-
spectively, by that publication.
3.1. Comparative Performance Evaluation
Solutions to the approximation problem associ-

ated with the calibration of the candidate mod-
els with the use of measurement data extracted
from Fig. 6 of [7], are given, in terms of their cor-
responding ‘model calibration coefficients’ as fol-
lows:

(C)COST−RUR = (1.6409 −0.6559 −1.5139
4.4043 17.3453 −25.4938
2.1919)T (15a)

(C)COST−SUB = (3.2873 −0.3792 −21619
4.0415 15.7930
21.6062)T (15b)

(C)ECC−L = (0.8619 0.4874 3.5312
1.1453 1.4294 3.7657

3.4214 3.1813 10.0741
2.4656)T (15c)

(C)ECC−M = (1.5674 0.4560 9.1059
1.4591 1.4918 −5.1626
−3.2022 3.1808 −1.3590b
3.4806)T (15d)
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Figure 1: Profiles of predicted and measured pathloss for ‘Network A’ of [7].

(C)ERIC = (−2.3455 0.5594 −11.0931
−7.1912 −21.0952 −1.2996)T(15e)

Figure 1 displays the predicted pathloss profiles
due to QMM calibrated models prescribed by the
solutions of Eq. (15), comparedwithmeasurement
and simulation from Fig. 6 of [7].
Corresponding results for ‘Network B’ of [7]

emerge as

(C)COST−RUR = (1.6409 −0.6559 −1.5139
4.404317.3453−25.4938
2.1919)T (16a)

(C)COST−SUB = (3.2873 −0.3792 −21619
4.0415 15.7930
21.6062)T (16b)

(C)ECC−L = (0.8619 0.4874 3.5312
1.1453 1.4294 3.7657
3.4214 3.1813 10.0741
2.4656)T (16c)

(C)ECC−M = (1.5674 0.4560 9.1059
1.4591 1.4918 −5.1626
−3.2022 3.1808 −1.3590b
3.4806)T (16d)

(C)ERIC = (−2.3455 0.5594 −11.0931
−7.1912−21.0952
−1.2996)T (16e)

With these results as solutions to the QMM-
model calibration problem concerning Fig. 7 of
[7], the pathloss profiles predicted by the five cali-
brated basic candidate models, as compared with
measurement and simulations results available
for ‘Network B’ of [7] are as shown in Fig. 2.

Finally, the five candidate basic models were
calibrated with the use of measurement results
extracted from Fig. 8 of [7], to give the model cali-
bration coefficients of Eq. (17) and the correspond-
ing pathloss profiles of Fig. 3.

The pathloss profiles of Figs. 1, 2, and 3, as well
as the associated statistical performance metrics
of MPE and RMSE displayed in Table 1 very
clearly reveal that all QMM-calibrated models
recorded much better performances than the ‘op-
timum’ model utilized in [7]. Accordingly, the va-
lidity of the QMM as a basic pathloss calibration
tool is firmly established, and the efficiency of the
remarkably easy to implement algorithm is also
demonstrated by these results.

3.2. Model Prediction Characteristics
As mentioned earlier, and according to theo-

rem 4.2.5 of Dahlquist and Bjorck, [8], the solu-
tion to the QMM-calibration problem is unique,
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Figure 2: Profiles of predicted and measured pathloss for ‘Network B’ of [7].

Figure 3: Profiles of predicted and measured pathloss for ‘Network C’ of [7].
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Table 1: Statistical performance metrics for the pathloss profiles.

Model/Metric
Locations

Network A [7] Network B [7] Network C [7]
RMSE MPE RMSE MPE RMSE MPE

COST231(RUR) [7] 5.58 1.17 7.16 2.26 10.78 6.21
COST231(RUR)-QMM 3.80 -0.22 2.67 0.30 3.06 0.77
COST231 (S-URB) QMM 3.80 -0.22 2.65 -0.09 2.99 -0.41
ECC (MEDIUM)-QMM 1.91 0.19 2.04 0.03 2.34 -0.12
ECC (LARGE) –QMM 1.89 0.03 2.04 0.01 2.33 -0.08
ERICSSON QMM 3.80 0.29 2.66 0.24 2.98 0.30

provided that the ‘basis’ functions of Eq. (2) are
linearly independent. It is of interest therefore,
to examine how these basis functions contribute
to net pathloss, before, and after QMM calibra-
tion. Using computational data for the COST-231
Hata models calibrated with measurement data
for ‘Network B’ of [7] as an illustrative example,
the profiles of Fig. 4 describe contributions (as per-
centages of the net) to net predicted pathloss by
component parameters of the basic and calibrated
models.

(C)COST−RUR = (2.1103 −0.9122 −2.7253
0.6476 1.8688 −11.9619
9.6920)T (17a)

(C)COST−SUB = (10.8556n −3.2603 −0.4109
−43.4135 −186.6616
113.7860)T (17b)

(C)ECC−L = (1.2660 2.8945 1.4465
0.8011 −4.0447 0.5429
0.6835 3.4068 6.5999
5.3496)T (17c)

(C)ECC−M = (1.8213 1.0653 4.6704
1.3425 −0.3122 −4.6266
−4.2952 3.4063 −1.1069
3.6607)T (17d)

(C)ERIC = (−2.5083 0.2963 −6.7771
3.2076 −8.2343
0.4551)T (17e)

Computational results, from which the profiles
of Fig. 4 derive are shown in Tables 2 and 3 below.
It is evident from the graphical illustrations and
the numerical results that QMM-calibration in-
formed by field measurements, considerably mod-
ifies contributions to net pathloss, by the compo-
nent parameters of the models.
Two examples should suffice to illustrate this

observation. In the basic model for rural areas,
component parameter with log10 f as a factor
contributed about 46.5% of the net predicted

pathloss, close to the transmitter, and the con-
tributions changed steadily to get to 8.04% at
the far end. After calibration, this component
parameter’s contributions ranged from -142.07%
at the near end to 31.2% at the far end. On the
other hand, contributions to this basic model’s
predicted pathloss by the parameter with log10 d
as a factor varied from between 111% and 76%
, and this, after QMM-calibration changed to
between-51% and -44.68%, as can be seen from
Fig. 4 and Table 2. These same parameters, as
seen from Table 3 for the sub-urban city case,
recorded values of
({76.77%,58.8%} − basic vs({−29.4%,25.77%} −
QMM)′ and
({−31.8%,0.14%} − basic vs({−130.04%,26.67%} −
QMM)′ for the parameters including log10 f and
log10 d as factors, respectively. It should be re-
marked that these contributions are moderated
by those from other component parameters, to
give the net predicted pathloss.

4. FURTHER MODEL PERFORMANCE EVAL-
UATION
In furtherance of the paper’s main objective

of characterizing QMM-pathloss model calibra-
tion performance in Benin City, the five candi-
date basic models earlier defined in Section 2,
were subjected to QMM-calibration; in this case,
using measurement results acquired in the field
by the authors, [14]. Details of the measure-
ment procedures (including design, instrumenta-
tion, and post-measurement processing) are avail-
able in [14]. In this section, outcomes of theQMM-
calibration due to the four representative trans-
mitters identified by the relevant site details of
Table 4, are presented.
For the computational results described in this

section, receiver height (hre) is set at the default
value of 1.5m, whilst hte = 45m for the 1800MHz
and 900MHz transmitters, respectively.
The pathloss profiles of Figs. 5 and 6 are for the

two 1800MHz transmitters, whilst those of Figs. 7
and 8 are for the two 900MHz transmitters listed
in Table 4, respectively. Statistical performance
metrics for the calibrated models are displayed in
Table 5.
From Table 5, it is readily seen that the best

performing calibrated models are the ECC-33
models, whose statistical performance metrics
are comparable. In the case of the 900MHz
networks, for example, both calibrated models
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Figure 4: Percentage contributions to net pathloss by component parameters of basic and QMM-Calibrated
COST231-Hata Models (Calibration with Fig. 7 of [7])

Figure 5: Comparison of pathloss predicted by QMM-models with measured data (ED0068).
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Table 2: Percentage contributions to net predicted pathloss by component parameters of the COST231-Hata
(rural area) basic and QMM-calibrated models.

Model Component Parameters
a0(46.33) 33.9log10 f -13.82log10 hte 44.9log10d -6.55log10dlog10hte (1.1log10f -0.7)hte 1.56log10f -0.8

d Basic QMM Basic QMM Basic QMM Basic QMM Basic QMM Basic QMM Basic QMM
(km) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
0.10 46.60 53.58 111.00 -51.01 -22.27 23.62 -46.05 -142.10 10.76 130.79 -4.35 78.51 4.30 6.61
0.20 41.90 51.71 99.79 -49.24 -20.02 22.80 -28.23 93.51 6.60 86.07 -3.91 75.79 3.87 6.38
0.30 39.81 50.80 94.82 -48.37 -19.02 22.40 -20.32 -69.60 4.75 64.06 -3.71 74.44 3.68 6.27
0.40 38.37 50.13 91.40 -47.73 -18.34 22.10 -14.87 -52.14 3.48 47.99 -3.58 73.46 3.54 6.18
0.50 37.33 49.62 88.91 -47.25 -17.84 21.88 -10.92 -38.96 2.55 35.86 -3.48 72.72 3.45 6.12
0.60 36.52 49.22 86.98 -46.86 -17.45 21.70 -7.85 -28.40 1.84 26.14 -3.41 72.13 3.37 6.07
0.70 35.86 48.88 85.42 -46.54 -17.14 21.55 -5.36 -19.63 1.25 18.07 -3.34 71.64 3.31 6.03
0.80 35.34 48.61 84.18 -46.28 -16.89 21.43 -3.39 -12.50 0.79 11.50 -3.30 71.24 3.26 6.00
0.90 34.84 48.35 82.99 -46.03 -16.65 21.32 -1.50 -5.59 0.35 5.15 -3.25 70.85 3.22 5.96
1.00 34.45 48.14 82.06 -45.83 -16.46 21.22 -0.03 -0.10 0.01 0.09 -3.21 70.54 3.18 5.94
1.10 34.09 47.94 81.19 -45.64 -16.29 21.14 1.36 5.12 0.32 -4.71 -3.18 70.25 3.15 5.91
1.20 33.76 47.76 80.42 -45.47 -16.13 21.06 2.59 9.84 0.61 -9.05 -3.15 69.98 3.12 5.89
1.30 33.47 47.59 79.72 -45.31 -15.99 20.98 3.71 14.14 0.87 13.02 -3.12 69.74 3.09 5.87
1.40 33.20 47.44 79.08 -45.17 -15.87 20.92 4.72 18.10 1.10 16.66 -3.10 69.52 3.07 5.85
1.50 32.95 47.30 78.50 -45.03 -15.75 20.85 5.65 21.76 1.32 20.03 -3.07 69.31 3.04 5.83
1.60 32.74 47.17 77.98 -44.91 -15.65 20.80 6.46 24.99 1.51 23.00 -3.05 69.13 3.02 5.82
1.70 32.53 47.05 77.48 -44.80 -15.55 20.75 7.26 28.18 1.70 25.94 -3.03 68.95 3.00 5.80
1.80 32.32 46.93 76.99 -44.68 -15.45 20.69 8.04 31.32 1.88 28.83 -3.01 68.78 2.98 5.79

Table 3: Percentage contributions to net predicted pathloss by component parameters of the COST231-Hata
(sub-urban city) basic and QMM-calibrated models.

Model Component Parameters
a0(46.33) 33.9log10 f -13.82log10 hte 44.9log10d -6.55log10dlog10hte -3.2(log1011.75h)

d Basic QMM Basic QMM Basic QMM Basic QMM Basic QMM Basic QMM
(km) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
0.10 32.23 107.03 76.77 -29.41 15.40 33.64 -31.85 -130.04 7.44 118.76 0.0006 0.01
0.20 29.91 103.33 71.24 -28.39 14.29 32.47 -20.15 -85.58 4.71 78.16 0.0006 0.01
0.30 28.83 101.50 68.67 -27.89 13.78 31.90 -14.72 -63.70 3.44 58.18 0.0006 0.01
0.40 28.07 100.17 66.85 -27.52 13.41 31.48 -10.88 -47.72 2.54 43.58 0.0006 0.01
0.50 27.51 99.16 65.51 -27.25 13.14 31.16 -8.04 -35.66 1.88 32.56 0.0005 0.01
0.60 27.06 98.35 64.46 -27.02 12.93 30.91 -5.82 -26.00 1.36 23.74 0.0005 0.01
0.70 26.70 97.68 63.60 -26.84 12.76 30.70 -3.99 -17.97 0.93 16.41 0.0005 0.01
0.80 26.41 97.14 62.91 -26.69 12.62 30.53 -2.53 -11.44 0.59 10.45 0.0005 0.01
0.90 26.13 96.61 62.24 -26.55 12.49 30.36 -1.13 -5.12 0.26 4.68 0.0005 0.01
1.00 25.91 96.19 61.72 -26.43 12.38 30.23 -0.02 -0.09 0.00 0.08 0.0005 0.01
1.10 25.71 95.80 61.23 -26.32 12.28 30.11 1.02 4.68 -0.24 -4.28 0.0005 0.01
1.20 25.52 95.43 60.78 -26.22 12.20 29.99 1.96 9.00 -0.46 -8.22 0.0005 0.01
1.30 25.35 95.11 60.38 -26.13 12.11 29.89 2.81 12.95 -0.66 -11.82 0.0005 0.01
1.40 25.20 94.80 60.02 -26.05 12.04 29.80 3.58 16.57 -0.84 -15.13 0.0005 0.01
1.50 25.06 94.52 59.68 -25.97 11.97 29.71 4.29 19.92 -1.00 -18.19 0.0005 0.01
1.60 24.93 94.28 59.38 -25.90 11.91 29.63 4.92 22.87 -1.15 -20.89 0.0005 0.01
1.70 24.81 94.03 59.09 -25.84 11.86 29.55 5.54 25.79 -1.29 -23.56 0.0005 0.01
1.80 24.69 93.79 58.81 -25.77 11.7987 29.48 6.14 28.67 -1.43 -26.18 0.0005 0.01

Table 4: Identities of example transmitters for Benin City (Source [14]).

Site ID City/District Operating Frequency Longitude Latitude BSC
ED0014 Benin 900MHz 5.6083918 6.3985011 EEDBS03
ED0019 Benin 900MHz 5.6579429 6.2879423 EEDBS01
ED0068 Ugbowo 1800MHz 5.6116694 6.3819425 EEDBS03
ED0096 Ugbowo 1800MHz 5.6219203 6.4072237 EEDBS03
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Table 5: RMSE andMPEmetrics for QMMmodels calibrated with measurements from the transmitters of Table
4.

Model/Metric
Locations

ED0014 ED0019 ED0068 ED0096
RMSE MPE RMSE MPE RMSE MPE RMSE MPE

COST231(RUR)-QMM 1.824 0.339 3.058 -0.353 2.867 -0.054 2.554 -0.049
COST231 (S-URB) QMM 1.804 -0.212 3.045 -0.217 3.561 2.112 3.164 1.884
ECC (MEDIUM)-QMM 0.770 -0.022 0.993 -0.021 1.460 0.055 0.631 -0.048
ECC (LARGE) –QMM 0.770 -0.038 0.933 -0.039 1.464 0.123 0.640 0.117
ERICSSON QMM 3.860 3.477 4.633 3.498 2.867 -0.054 2.554 -0.047

Figure 6: Comparison of pathloss predicted by QMM-models with measured data (ED0096).
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Figure 7: Comparison of pathloss predicted by QMM-models with measured data (ED0014).

Figure 8: Comparison of pathloss predicted by QMM-models with measured data (ED0019).
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recordedRMSEvalues of 0.77dB, though theMPE
of -0.022dB recorded by the medium city model
is slightly better than the -0.038dB for the large
city model. This pattern is closely followed by
the metrics for the 1800MHz network with re-
spective RMSE values of 1.460dB and 1.464dB
for the medium and large cities, for which MPE
was recorded as 0.055dB and 0.123dB, respec-
tively. Both calibrated COST231 models per-
formed significantly better than the calibrated Er-
icsson model, with the calibrated model for rural
areas being the better of the two COST231 mod-
els.
5. CONCLUDING REMARKS
An evaluation of the Quasi-Moment-Method

(QMM) as a radiowave propagation pathloss mod-
eling tool for use with the Benin City environ-
ment, has been undertaken in this paper. A brief
description of the characterizing features of the
QMM was followed by model validation, through
prediction performance comparisons with results
available in a recent publication in the open litera-
ture. The comparisons reveal that all the five can-
didate models, after QMM-calibration, performed
better than the ‘optimum’ model reported by the
publication alluded to in the foregoing. Results of
QMM-calibration using field measurement data
acquired for certain representative areas of Benin
City by authors, confirmed the suggestion by the
results of the validation exercise, that for Benin
City, QMM-calibrated ECC-33 models are best
suited for pathloss prediction.
One important conclusion arising from the

investigations reported in this paper is that
whereas results reported in the open literature
suggest that the basic COST231-Hata prediction
model, which typically provides the error met-
rics in most outdoor radiowave propagation en-
vironments [7, 15, 16], is consequently the best
candidate for model performance optimization
schemes, QMM calibration has shown that this is
not necessarily the case. Indeed, the results in
this paper reveal that the basic ECC-33 with the
worst error metrics compared to the other basic
models, performs best, after QMM-calibration.
It is readily verified that in all cases, QMM’s

‘model-calibration matrix’ is a square, symmetric
matrix, characterized by a dominant eigenvalue.
This suggest the possibility of the formulation of
an eigenvalue problem, through which character-
istic modes can be specified, and possibly, insight-
ful physical interpretations obtained: that possi-
bility is under investigations.
Finally, it is apparent that the QMM, as com-

prehensively described and utilized in this pa-
per, represents an excellent candidate for in-
vestigations concerning the ‘cross-application’ of
pathloss prediction models, as proposed by Zhang
et al. [17].
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