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Abstract
This study applied polynomial expressions as displacement and shear deformation functions in the free-vibration
study of thick and moderately thick isotropic rectangular plates. Rectangular plates with two different edge con-
ditions investigated in this work are: one with simple supports at three of its edges and with no support at the
other edge denoted with the acronym (SSFS) and a rectangular plate with simple supports at opposite edges while
the other opposite edges has a fixed support at one edge and no support at the other edge, this is denoted with the
acronym (CSFS). The total potential energy of the plate was derived using the general theory of elasticity. The
general governing equation of the plate was derived by minimizing the total potential energy equation of the plate.
Edge conditions of the SSFS and CSFS plates were met and substituted into the general governing equation to
obtain a linear expression which was solved to generate fundamental natural frequency function for the plates
with various span-depth proportion (m/t) and planar dimensions proportion (n/m). The results obtained from
this research were found to agree favourably with the results of similar problems in the literature upon comparison.

Keywords: thick Plates, natural frequency, shear deformation, polynomial displacement expression, shear
deformation expression, span-depth ratio

1. INTRODUCTION
There are several areas of engineering where

structural plates are used. They include; bridge
decks, jetties, cylindrical tanks, shear walls, re-
taining walls, formwork panels, sea and ocean
vessels, etc., [1, 2]. Structural plates in their ser-
vice life could be subjected to time-varying loads
such as; load due to human beings dancing on the
floor of a dancing hall, load applied on the retain-
ing walls of a sea port by the sea waves, etc. These
loads could lead to vibration of the structure. The
time-varying loads could vibrate at a frequency
that is the same or nearly the same in magnitude
and direction with one of the natural frequencies
of the structure on which the load is applied, at
this point, a phenomenon called resonance takes
place. Resonance results to very high amplitude
vibration than could lead to total collapse of the
structure. The frequency at which resonance oc-
curs is generally called fundamental natural fre-
quency or resonant frequency of the plate [3].
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In order to forestall collapse of structural plates,
there is need to carry out a detailed study on free-
vibration of plates in order to estimate the fre-
quencies that could cause resonance [4]. Kirch-
hoff established the Classical Plate Theory (CPT)
which is extensively used in analysis of plates.
The CPT offers good results when used to ana-
lyze thin plates and inaccurate results when used
for thick and moderately thick plates. This is be-
cause, CPT does not take into consideration the ef-
fects of shear stresses and strains along the plate’s
depth to be negligible [5]. The shear stresses
and strains across the thickness of the plate have
substantial effect in thick and moderately thick
plates, therefore the CPT is not suitable for ana-
lyzing engineering structures that involve the use
of thick and moderately thick plates. According to
[6], the first work on plates that considered the ef-
fect of shear strains and stresses along the plate’s
depth was done by Stephen Timoshenko. The the-
ory is now widely known as Timoshenko beam
theory or First Order Shear Deformation Theory
(FSDT). The FSDT assumes that the displace-
ments have a linear variation across plate’s thick-
ness and hence, a modification factor in terms of
the shear is needed to fulfill the requirements of
the general stress – strain relations for the plate
[7]. As a result of the mentioned weaknesses in
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the use of (CPT) and (FSDT), it becomes need-
ful to provide more refined theory that will have
no need for any modification factor for the shear
stresses and strains and in addition provide an
expression that truly explains the behavior of the
crosswise shear stresses and strains along the
plate’s depth. These refined theories are generally
referred to as ‘Higher Order Shear Deformation
Theories’ (HSDT). These new theories are based
on the principle that; the line straight and at right
angle to the plate’s mid-plane prior to deforma-
tion neither remains straight nor at right angle to
the plate’s mid-plane after deformation [8]. [9] in
their works on thick and moderately thick plates,
used a trigonometric expression to describe the
deformation behavior of the plate structure. [10]
did a study on dynamic analysis of thick plates
using HSDT deformable Plate theories. [11] stud-
ied the behavior of thick plates due to deformation
by making use of trigonometric functions to de-
scribe the how shear stresses and strains varies
within the plate’s thickness. [12] applied Mindlin
Plate Theory in their work to develop equations
for vibration of rectangular thick plates. [13] used
trigonometric expressions as displacement fields
to explain the behavior of the crosswise shear
stresses and strains along the plate’s depth and
derive accurate characteristic equations for plates
of moderate thickness and different edge condi-
tions. [14] derived polynomial and exact expres-
sions as displacement equations for thick plates.
[15] used polynomial displacement equations to
determine the stability properties of rectangular
thick plates with simple supports at all the four
edges. [16] used Navier’s method to compare the
results obtained from plate analysis using Kirch-
hoff’s concept and Ressiner’s concept. [17] ap-
plied ‘Alternative II’ approach in stability and
dynamic study of isotropic and orthotropic thick
plates by making use of polynomial deflection ex-
pression. Galerkin-Vlasov approach was used by
[18] to carry out bending analysis of rectangu-
lar plates that are carrying uniformly distributed
loads. [19] used equilibrium approach to derive
differential equations for isotropic thick plates. In
the works of [20], Kantorvich approach was ap-
plied in the bending analysis of thin rectangu-
lar plates. [19] used polynomial expressions as
displacement and shear deformation functions to
carry out free-vibration study of thick rectangular
plate that has simple supports at its four edges.
The present work used polynomial expressions to
describe the displacement and shear deformation
curve to study the dynamic properties of rectan-
gular thick plate with two different edge condi-
tions (SSFS and CSFS) without the need for a
modification factor in terms of the stresses and
strains.

2. MATHEMATICAL THEORY
In Figs. 1 and 2 are shown two rectangular

plates. The plate’s dimensions in x and y–axes
are denoted with “m” and “n” respectively. The z-
direction is in the inward direction of the plane.
From the diagram, x ranges from 0 to m, y ranges

Figure 1: SSFS.

Figure 2: CSFS.

from 0 to n and z originates from the middle of the
plate and increases downwards to a maximum of
t/2 and decreases upwards to a minimum of -t/2.
The shear deformation parameter f(z) and the

displacement parameters (u, v and w) of this
study are polynomial expressions derived in [21]
and [14] respectively. They are given as:

f (z)= z− 7z3

5t2 (1)

u(x, y, z)=−z
∂w
∂x

+ f (z) ·∅x (2)

u(x, y, z)=−z
∂w
∂x

+ f (z) ·∅y (3)

w = wx ·wy = (m0 +m1R+m2R2 +m3R3 +m4R4)

× (n0 +n1Q+n2Q2 +n3Q3 +n4Q4 +n5Q5) (4a)

Where u,v and w are the planar displacements
and the out-of-plane displacement respectively.
f (z) which is the shear deformation expression,
explains how the transverse shear stresses are
distribution along the plate’s thickness. ∅x and
∅y are the shear rotations in x and y-axis respec-
tively and were derived by [16] as:

∅x = Cx
∂w
∂x

, ∅y = Cy
∂w
∂y

(4b)

Cx, Cy, mi and ni are constants whose values are
subject to the edge conditions of the plate, R and
Q are non-dimensional variables in x and y-axis
correspondingly, they are presented as:

x = mR, y= nQ (4c)
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Such that; 0≤ x ≤ m,0≤ R ≤ 1,0≤ y≤ n,0≤Q ≤ 1
In Elastic theory, strains are related to stresses

as shown in the following equations:

εx = du
dx

=−z
∂2w
∂x2 + f (z) · ∂∅x

∂x
(5)

εy = dv
d y

=−z
∂2w
∂y2 + f (z) · ∂∅x

∂x
(6)

γxy = du
d y

+ dv
dx

=−2z
∂2w
∂x∂y

+ f (z)· ∂∅x

∂y
+ f (z)· ∂∅y

∂x
(7)

γxz = du
dz

+ dw
dx

= f (z) · ∂∅x

∂z
(8)

γyz = dv
dz

+ dw
d y

= f (z) · ∂∅y

∂z
(9)

In Elastic theory, the constitutive equations for a
plate are presented as follows:

σx = E
1−µ2 [εx +µεy] (10)

σy = E
1−µ2 [µεx +εy] (11)

τxy = E(1−µ)
(1−µ2)

γxy (12)

τxz = E(1−µ)
2(1−µ2)

γxz (13)

τyz = E(1−µ)
2(1−µ2)

γyz (14)

where E and µ are the Elastic modulus and the
Poisson’s ratio of the plate correspondingly.

2.1. Strain Energy ‘S’
The Strain energy deposited in plate’s contin-

uum is expressed as:

S = 1
2
γyz

∫
x

∫
y[∫ t

2

− t
2

(
σxεx +σyεy +τxyγxy +τxzγxz +τyzγyz

)
dz

]
dxdy

(15)

Let S1 represent the sum of the components of the
strain energy of the plate.

S1 =σxεx +σyεy +τxyγxy +τxzγxz +τyzγyz (16)

Substituting Eq. 5 to Eq. 13 into Eq. 16 gives;

S1 = E
1−µ2[[

z2
(
∂2w
∂x2

)2

−2z f (z) · ∂∅x

∂x

(
∂2w
∂x2

)
+ f 2(z) ·

(
∂∅x

∂x

)2
]

+
[

2z2
(
∂2w
∂x∂y

)2

−2z f (z) · ∂∅x

∂y
∂2w
∂x∂y

−2z f (z) · ∂∅y

∂x
∂2w
∂x∂y

]
+

[
z2

(
∂2w
∂y2

)2

−2z f (z) · ∂∅y

∂y
∂2w
∂y2

+ f 2(z)
(
∂∅y

∂y

)2
]
+ (1+µ)

[
f 2 · ∂∅y

∂x
∂∅x

∂y

]

+ (1−µ)
2

[
f 2(z)

(
∂∅x

∂y

)2
+ f 2(z)

(
∂∅y

∂x

)2
]

+ (1−µ)
2

·
(

d f (z)
dz

)2
·
[
∅2

x +∅2
y

]]
(17)

Let;β=
∫ t

2

− t
2

z2dz = t3

12
, βA1 =

∫ t
2

− t
2

z2dz,

βA2 =
∫ t

2

− t
2

[z f (z)]dz, βA3 =
∫ t

2

− t
2

[( f (z))2]dz,

β
∝2

m2 A4 =
∫ t

2

− t
2

[
d f (z)

dz

]2
dz,

D = βE
1−µ2 = Et3

2(1−µ2)
(18)

Thus, from Eqs. (1) and (18), Eqs. (19a) – (19d)
are derived.

∫ t
2

− t
2

(z2)dz =
[

z3

3

] t
2

− t
2

=
(

1
3

)[
t3

8
− t3

8

]
= 2

(
1
3

)
·
(

t3

8

)
= t3

12
(19a)

( f (z))2 = z2 − 14z4

5t2 + 49z6

25t4 ,∫ t
2

− t
2

( f (z))2dz =[
z3

3
− 14z5

3
+ 7z7

25h4

t
2

− t
2

= 253t3

4800

)
·
(

t3

8

)
= t3

12
(19b)

z f (z)= z2 − 7z4

5t2 ,
∫ t

2

− t
2

z f (z)dz = t3

12
− 7z3

400
= 79t3

1200
(19c)
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d f (z)

dz

)2
= 1− 42z2

5t2 + 441z4

25t4 ,∫ t
2

− t
2

(
d f (z)

dz

)2
dz

=
[

z− 14z3

5t2 + 441z5

125t4

] t
2

− t
2

= 1041t
2000

(19d)

Substituting Eqs. (19a) – (19d) into Eq. (18) yields:

A1 =
t3

12

β
= t3

12
× 12

t3 = 1, A2 =
79t3

1200

β
= 79t3

1200
× 12

t3 = 0.79

(20a)

A3 =
253t3

4800

β
= 253t3

4800
× 12

t3 = 0.6325, (20b)

∝2

m2 A4 =
1041t
2000

β
= 1041t

2000
× 12

t3 = 6.246
t2 ,

A4 = 6.246
t2 × m2

∝2 × m2

1
× t2

m2 = 6.246 (20c)

D is the plate’s flexural rigidity, and ∝= m/t is the
span-thickness proportion.
Substituting Eq. (18) into Eq. (17) and integrat-

ing yields:

∫ t
2

− t
2

(S1)dz = Eβ
1−µ2

[[
A1

(
∂2w
∂x2

)2

−2A2 · ∂∅x

∂x

(
∂2w
∂x2

)

+A3 ·
(
∂∅x

∂x

)2]
+

[
2A1

(
∂2w
∂x∂y

)2

−2A2 · ∂∅x

∂y
∂2w
∂x∂y

−2A2 ·
∂∅y

∂x
∂2w
∂x∂y

]
+

[
A1

(
∂2w
∂y2

)2

−2A2 ·
∂∅y

∂y
∂2w
∂y2

+A3

(
∂∅y

∂y

)2
]
+ (1+µ)

[
A3 ·

∂∅y

∂x
∂∅x

∂y

]

+ (1−µ)
2

[
A3

(
∂∅x

∂y

)2
+ A3

(
∂∅y

∂x

)2
]

+ (1−µ)
2

· ∝
2

m2 A4

[
∅2

x +∅2
y

]]
(21)

Substituting Eq. (21) into Eq. (15) yields:

S = 1
2

∫
x

∫
y

[∫ t
2

− t
2

(S1)dz

]
dxdy

= D
2

∫
x

∫
y

[[
A1

(
∂2w
∂x2

)2

−2A2 · ∂∅x

∂x

(
∂2w
∂x2

)

+A3 ·
(
∂∅x

∂x

)2]
+

[
2A1

(
∂2w
∂x∂y

)2

−2A2 · ∂∅x

∂y
∂2w
∂x∂y

−2A2 ·
∂∅y

∂x
∂2w
∂x∂y

]
+

[
A1

(
∂2w
∂y2

)2

−2A2 ·
∂∅y

∂y
∂2w
∂y2

+A3

(
∂∅y

∂y

)2
]
+ (1+µ)

[
A3 ·

∂∅y

∂x
∂∅x

∂y

]

+ (1−µ)
2

[
A3

(
∂∅x

∂y

)2
+ A3

(
∂∅y

∂x

)2
]

+ (1−µ)
2

· ∝
2

m2 A4[∅2
x +∅2

y]
]

dxdy (22)

The average total work done by agitation on the
plate is as shown in . (23).

Tw =−a
2
·λ2

∫
s

∫
y
(w2)∂x∂y (23)

Where: a is the mass of the plate, and λ is the
frequency of the cyclic motion.

2.2. Total Potential Energy ‘TP ’ of the Plate
This is given as the sum of strain energy, U and

the external work, Tw.

Tp = S+Tw = 1
2

∫
x

∫
y

[[
A1

(
∂2w
∂x2

)2

−2A2 · ∂∅x

∂x

(
∂2w
∂x2

)

+A3 ·
(
∂∅x

∂x

)2]
+

[
2A1

(
∂2w
∂x∂y

)2

−2A2 · ∂∅x

∂y
∂2w
∂x∂y

−2A2 ·
∂∅y

∂x
∂2w
∂x∂y

]
+

[
A1

(
∂2w
∂y2

)2

−2A2 ·
∂∅y

∂y
∂2w
∂y2

+A3

(
∂∅y

∂y

)2
]
+ (1+µ)

[
A3 ·

∂∅y

∂x
∂∅x

∂y

]

+ (1−µ)
2

[
A3

(
∂∅x

∂y

)2
+ A3

(
∂∅y

∂x

)2
]

+ (1−µ)
2

· ∝
2

m2 A4[∅2
x +∅2

y]
]

dxdy

− a
2
·λ2

∫
x

∫
y
(w2)∂x∂y (24)

Let the out-of-plane displacement w be defined as:

w = M1h (25a)
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Substituting Eq. (25a) into Eq. (4b) gives;

∅x = Ca ·M1
∂h
∂x

= M2
∂h
∂x

, ∅y = Cb ·M1
∂h
∂y

= M3
∂h
∂y
(25b)

Where M2 = Ca · M1, M3 = Cb · M1, M1, M2, M3 are
constants and ‘h’ represents the deflection expres-
sion for the plate.
Substituting Eq. (25a) and (25b) into Eq. (24),

multiplying each term in the resulting equation
by m4

m4 yields:

Tp = Dmn
2m4

∫ 1

0

∫ 1

0

[(
M2

1 A1 −2M1M2 A2 +M2
2 A3

)
(

d2h
dR2

)2

+ (M2
1 A1 −2M1M3 A2 +M2

3 A3)
1
p4

(
d2h
dQ2

)2

+ (2M2
1 A1 −2M1M2 A2 −2M1M3 A2) · 1

p2

(
d2h
dR2 · d2h

dQ2

)
+ (1+µ)M2M3 A3 · 1

p2

(
d2h
dR2 · d2h

dQ2

)
+

[(
1−µ

2

)(
M2

2 A3 +M2
3 A3

)] · 1
p2

(
d2h
dR2 · d2h

dQ2

)
+∝2

(
1−µ

2

)
· (M2

2 A4)
(

dh
dR

)2

+ ∝2

p2

(
1−µ

2

)(
M2

3 A4
)( dh

dQ

)2]
dRdQ

− mnM2
1

2

∫ 1

0

∫ 1

0

[
aλ2 (

h2)]
∂R∂Q (26)

Where ‘P ’ is the planar dimensions proportion
presented as; P = m/n.

3. GENERAL GOVERNING EQUATIONS
Minimizing the total energy equation yields:

dTp

dM1
= 0,

dTp

dM2
= 0,

dTp

dM3
= 0 (27)

Evaluating Eq. (27) yields;

D
m4

[(
B1 A1 + B3

P4 A1 + 2B2

P2 A1

)
M1

+
(
−B1 A2 + B2

P2 A2

)
M2 +

(
−B3

P4 A2 − B2

P2 A2

)
M3

]
= (aλ2B6)M1 (28a)

D
m4

[(
−B1 A2 − B2

P2 A2

)
M1 +

(
B1 A3 +

(
1−µ
2P2

)
B2 A3

+
(

1−µ
2

)
∝2 B4 A4

)
M2 +

((
1+µ
2P2

)
B2 A3

)
M3

]
= 0

(28b)

D
m4

[(
−B3

P4 A2 − B2

P2 A2

)
M1 +

((
1+µ
2P2

)
B2 A3

)
M2

+
(

B3

P4 A3 +
(

1−µ
2P2

)
B2 A3 +

(
1−µ
2P2

)
∝2 B5 A4

)
M3

]
= 0

(28c)

Where:

B1 =
∫ 1

0

∫ 1

0

(
∂2h
∂R2

)2

∂R∂Q,

B2 =
∫ 1

0

∫ 1

0

(
∂2h
∂R2 · ∂2

∂Q2

)
∂R∂Q,

B3 =
∫ 1

0

∫ 1

0

(
∂2h
∂Q2

)2

∂R∂Q,

B4 =
∫ 1

0

∫ 1

0

(
∂h
∂R

)2
∂R∂Q,

B5 =
∫ 1

0

∫ 1

0

(
∂h
∂Q

)2
∂R∂Q,

B6 =
∫ 1

0

∫ 1

0
(h)2∂R∂Q, (29)

The matrix form of Eqs. (28a) – (28c) is as shown
in Eq. (30a).[K11 K12 K13

K21 K22 K23
K31 K32 K33

]{M1
M2
M3

}
= m4

D

[
aλ2B6

0
0

]{M1
M2
M3

}
(30a)

Eq. (30a) is the general governing Equation.
Where:

K11 = A1

(
B1 + 2B2

P2 + B3

P4

)
, K12 =−A2

(
B1 + B2

P2

)
,

K13 =−A2

(
B2

P2 + B3

P4

)
, K21 = K12,

K22 = B1 A3 +
(

1−µ
2P2

)
B2 A3 +

(
1−µ

2

)
∝2 B4 A4,

K23 =
(

1+µ
2P2

)
B2 A3, K31 = K13, K32 = K23,

K33 =
(

1−µ
2P2

)
B2 A3 + B3

P4 A3 +
(

1−µ
2P2

)
∝2 B5 A4

(30b)

Eq. (30a) can be rewritten as:

[U11 U12 U13
U21 U22 U23
U31 U32 U33

]{M1
M2
M3

}
= am4λ2

D

[1
0
0

]{M1
M2
M3

}
(31a)

Where: Ui j = K i j × 1
B6

(31b)
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Solving Eq. (31a) using substitution method
yields:

M2 =
[
−U23 ·U31 +U33 ·U21

U2
32 −U33 ·U22

]
M1,

M3 =
[
−U23 ·U21 +U22 ·U31

U2
32 −U33 ·U22

]
M1 (31c)

Putting Eq. (31c) into the first equation in the ma-
trix of Eq.. (31a) yields:

U11 +U12 ·
[
−U23 ·U31 +U33 ·U21

U2
32 −U33 ·U22

]

+U13 ·
[
−U23 ·U21 +U22 ·U31

U2
32 −U33 ·U22

]
= am4λ2

D
=Λ2 (31d)

Where λ2 is a non-dimensional natural frequency
parameter given as:

Λ2 = am4λ2

D
(31e)

Λ=
√
Λ2

√
am4λ2

D
(31f )

3.1. Boundary Conditions
Three major edge conditions were examined.

They are; simple support, free support and
Clamped support denoted by (S), (F) and (C) re-
spectively. A beam is made up of any two of these
support conditions, resulting to three different
beams in total. They are shown in Figs. 3, 4 and
5. In the Figure, the range of R is; 0≤ R ≤ 1.

Figure 3: S - S Beam.

Figs. 3, 4 and 5 represent a beam that has sim-
ple supports at both ends (S - S beam), a beam
whose one edge has simple support and the other
edge has no support (S - F beam) and a beam
whose one edge is fixed and the other edge has

Figure 4: S - F Beam.

Figure 5: C - F Beam.

no support (C - F beam) respectively. A rectan-
gular plate is made up of a series beams arranged
at right angle to one another. Looking at Eq. (4a),
one can observe that it is a product of two beams
that are at right angles to each other. The out-
of-plane displacement, w for the two independent
beams are presented in Eqs. (32a) and (32b).

wx = (m0 +m1R+m2R2 +m3R3 +m4R4) (32a)

wy = (n0 +n1Q+n2Q2 +n3Q3 +n4Q4 +n5Q5) (32b)
Differentiating Eq. (32a) and (32b) yields:

∂wx

∂R
= (m1 +m22R+m33R2 +m44R3) (33a)

∂2wx

∂R
= (2m2 +m36R+m412R2) (33b)

∂wy

∂Q
= (n1 +2n2Q+3n3Q2 +4n4Q3 +5n5Q4) (34a)

∂2wy

∂Q2 = (2n2 +6n3Q+12n4Q2 +20n5Q3) (34b)

∂3wy

∂Q3 = (6n3 +24n4Q+60n5Q2) (34c)

From the works of [22], when one edge has no
support and the other edge has a simple support
(S-F beam), the magnitude of the slope at the
free edge is equivalent to negative two-third (-
2/3) of the deflection coefficient. Also [22] stated
that when one edge has no support and the other
edge is clamped, (C-F beam), the magnitude of the
slope at the free edge is equivalent to negative
one-fifth (-1/5) of the deflection coefficient.
3.1.1. S – S beam
For the beam whose two edges have simple sup-

port, the edge conditions are given as:

(i) At R= 0; wx = 0, (ii) At R= 0;
∂2wx

∂R2 = 0

(iii) At R= 1;wx = 0,(iv) At R= 1,
∂2wx

∂R2 = 0 (35)

Putting conditions (i), (ii), (iii), and (iv) into
Eqs. (32a), (33b) and solving yields:
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m0 = 0; m2 = 0, m1 = m4, m3 =−2m4 (36)

Putting Eqs. (36) into Eq. (32a), yields the de-
flection for the beam having simple supports at
both ends. This is presented in Eq. (37).

wx = m4(R−2R3 +R4 (37)
3.1.2. S – F beam
For the beam whose one edge has simple sup-

port and the other edge has no support, presented
in Fig. 4, the edge conditions are given as:

(i) At Q= 0; wy = 0, (ii) At Q= 0;
∂2wy

∂Q2 = 0 (38a)

(iii) At Q= 1;
∂2wy

∂Q2 = 0, (iv) At Q= 1;
∂3wy

∂Q3 = 0,

(v) At Q= 1,
∂wy

∂Q
=−2ns

3
, (38b)

Putting conditions (i), (ii), (iii), (iv) and (v) into
Eqs. (32b), (34b) and (34c) and solving yields:

n0 = 0; n1 = −7ns

3
, n0 = 0, n3 = 10

3
n3, n4 = −10

3
ns

(39)

Substituting Eq. 39 into Eq. 32b yields:

wy =
(
0− 7ns

3
Q+0+ 10

3
n3Q3 − 10

3
nsQ4 +nsQ5

)
(40)

Factorizing Eq. (40) the deflection for the (S-F)
beam becomes as presented in Eq. (41).

wy =−n5

(
7
3

Q− 7
3

Q3 + 7
3

Q4 −Q5
)

(41)

3.1.3. C – F beam
For the beam whose one edge is fixed and the

other edge has no support, presented in Fig. 5, the
edge conditions are given as:

(i) At Q= 0; wy = 0, (ii) At Q= 0;
∂2wy

∂Q
= 0 (42a)

(iii) At Q= 1;
∂2wy

∂Q2 = 0, (iv) At Q= 1;
∂3wy

∂Q3 = 0,

(v) At Q= 1,
∂wy

∂Q
=−n5

5
, (42b)

Substituting conditions (i), (ii), (iii), (iv) and (v)
into Eqs. (32b), (34a), (34c) and (33a) and solving
yields:

n0 = 0; n1 = 0, n3 = 5.2ns, n4 =−3.8ns, n2 =−2.8ns
(43)

Substituting Eq. (43) into Eq. (32b) yields:

wy =−n5(2.8Q2 −5.2Q3 +3.8Q4 −Q5) (44a)

Evaluating Eq. (44a) the deflection for the (C-F)
beam becomes as shown in

wy =−n5

(
14
5

Q2 − 26
5

Q3 + 19
5

Q4 −Q5
)

(44b)

3.2. Free-Vibration Analysis of SSFS Plate
Figure 1 shows SSFS plate which is formed by

multiplying one S-S beam in the horizontal direc-
tion (x(R) - axis) with one S-F beam in the verti-
cal direction (y(Q) – axis). Hence, the deflection
expression becomes the product of Eq. (37) and
Eq. (41). This is shown as Eq. (45).

w = m4(R−2R3 +R4) ·−n5

(
7
3

Q− 10
3

Q3 + 10
3

Q4 −Q5
)

(45)

Factorizing Eq. (45), Eq. (46) was obtained.

w = Bh1 = B(R−2R3 +R4) ·
(

7
3

Q− 10
3

Q3 + 10
3

Q4 −Q5
)

(46)

where:

h1 = (R−2R3 +R4) ·
(

7
3

Q− 10
3

Q3 + 10
3

Q4 −Q5
)

(47a)

B =−m4n5 is the amplitude and ‘h’ represents the
deflection function for the SSFS thick plate.
Putting Eq. (47a) into Eq. (29) and solving,

yields the stiffness coefficients (Bi) values for the
SSFS plate

B1 = 4.025782; B2 = 0.601361; B3 = 0.187453;
B4 = 0.407371; B5 = 0.104661; B6 = 0.041270 (47b)

Putting the ‘Bi’ and ‘Ai’ values of Eqs. (20a), (20b),
(20c) and (47b) into Eq. (30b), the K i j values are
obtained and shown in Eq. (47c).

K11 = 5.4160,K12 = K21 =−3.6554,
K13 = K31 =−0.6232,K22 = 91.7348,
K23 = K32 = 0.2472,K33 = 23.1316 (47c)

Putting the K i j values into Eq. (31b), the Ui j
values are generated as given in Eq. (48).
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U11 = 131.2323,U12 =U21 −88.5739,
U13 =U31 =−15.0997,U22 = 2222.7960,
U23 =U32 = 5.9907,U33 = 560.4951 (48)

Putting the Ui j values into Eq. (31d), the values
of Λ2 and Λ at n/m = 1.0 and m/t = 10, are obtained
and presented in Eq. (49).

Λ2 = 127.3088; Λ=
p

127.3088= 11.2831 (49)

Table 1 gives values of ’Λ’ of the SSFS plate at var-
ious values of P = n/m,m/t and at µ = 0.3 derived
from the present research. A comparison between
the results from this work and the works of [13]
at various values of P,m/t and at µ = 0.3 are pre-
sented on Table 2.
3.3. Free-Vibration Analysis of CSFS Plate
Figure 2 shows CSFS plate which is formed by

multiplying one S-S beam in the horizontal direc-
tion (x(R) - axis) with one C-F beam in the verti-
cal direction (y(Q) – axis). Hence, the deflection
expression becomes the product of Eq. (37) and
Eq. (44b) and is presented as Eq. (50).

w = m4(R−2R3 +R4) ·−ns

(
14
5

Q2 − 26
5

Q3

+ 19
5

Q4 −Q5
)

(50)

Factorizing Eq. (50), Eq. (51) is obtained.

w = Bh2 = B(R−2R3 +R4) ·
(

14
5

Q2 − 26
5

Q3

+19
5

Q4 −Q5
)

(51)

where

h2 = (R−2R3 +R4) ·
(

14
5

Q2 − 26
5

Q3 + 19
5

Q4 −Q5
)

(52a)

B =−m4n5 is the amplitude and ‘h’ represents the
deflection expression for the CSFS thick plate.
Substituting Eq. (52a) into Eq. (29) and evalu-

ating, the Bi values for the CSFS plate are derived
and presented as Eq. (52b).

B1 = 0.328478; B2 = 0.053043; B3 = 0.128668;
B4 = 0.033239; B5 = 0.009310; B6 = 0.003367 (52b)

Substituting the A i and Bi values of Eqs. (20a),
(20b), (20c) and (52b) into Eq. (30b), the values of
A i j are obtained and presented as Eq.(52c).;

K11 = 0.5632, K12 = K21 −0.3014,
K13 = K31 =−0.1436, K22 = 7.4859,
K23 = K32 = 0.0218, K33 = 2.1284 (52c)

Substituting the K i j values into Eq. (31b), the val-
ues ofUi j are obtained and presented in Eq. (52d).

U11 = 167.2801, U12 =U21 −89.5164,
U13 =U31=−42.6349, U22 = 2223.3090,
U23 =U32 = 6.4768, U33 = 632.1307 (52d)

Substituting the values ofUi j into Eq. (31d), the
value of the non-dimensional fundamental natu-
ral frequency parametersΛ andΛ at n/m = 1.0 and
m/t = 10 are obtained and presented as Eq. (53).

Λ2 = 160.8353; Λ=
p

160.8353= 12.6821 (53)
The value of ’Λ’ for the CSFS plate at various val-
ues of P,a/t and at µ = 0.3 obtained from this work
were compared with the results of [13] in Table 4.
Presented on Table 3 are the values of value of ’Λ’
for the CSFS plate at various values of P,a/t and
at µ = 0.3 obtained from this work.
4. RESULTS AND DISCUSSION
From Table 1, it is inferred that, at a constant

value of planar dimension ratio (P = n/m), there
is an increase in the values of Λ when (m/t) in-
creases. The implication of this is that the im-
pact created by vibratory load on the plate rises as
∝ (= m/t) rises. Also, at a given ∝ (= m/t), there is
a decrease in the values of Λ as P(= n/m) increases
having its highest value at P = 1 (Square plates).
This implies that the ability of the plate to with-
stand vibration decreases as P(= n/m) increases,
with the square plate having the highest capacity
to resist vibration.
A close look at Table 2 reveals that upon com-

parison of the results from this work with the
works of [13] for SSFS plates, the percentage dif-
ference ranges from 0.05 to 1.93. These differ-
ences are quite negligible and thus, the results ob-
tained are of high accuracy. This indicates that
the present study is an efficient and a reliable
technique for free-vibration study of SSFS thick
plates.
From Table 3, it is inferred that, at a constant

value of planar dimension ratio P(= n/m), there is
an increase in the values of Λ when ∝ (= m/t), in-
creases. The implication of this is that the impact
created by vibratory load on the plate rises as the
span – depth ratio rises. Also, at a given value of
∝ (= m/t), there is a decrease in the values of Λ as
P(= n/m) increases, its highest value occurring at
P = 1.0 (Square plates). This implies that the abil-
ity of the plate to withstand vibration decrease as
P(= n/m) increases, with the square plate having
the highest capacity to resist vibration.
A close look at Table 4 reveals that upon com-

parison of the results from this work with the
works of [13] for CSFS plates, the percentage dif-
ference ranges from 0.09 to 5.16. These differ-
ences are quite negligible and thus, the results ob-
tained are of high accuracy. This indicates that
the present study is an efficient and a reliable
method for free-vibration study of the SSFS and
CSFS thick plates.
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Table 1: Non–dimensional natural frequencies of SSFS thick plate.

∝=m/t
n/m = 1.0 n/m = 1.2 n/m = 1.5 n/m = 1.6 n/m = 1.8 n/m = 2.0 n/m = 2.2 n/m = 2.5

λ= Λ
m2

√
D
a

Λ
5 10.8099 10.3513 9.9860 9.9087 9.7918 9.7090 9.6481 9.5831
10 11.2831 10.7928 10.4031 10.3207 10.1962 10.1080 10.0432 9.9741
15 11.3780 10.8811 10.4864 10.4029 10.2769 10.1876 10.1220 10.0520
20 11.4118 10.9125 10.5160 10.4322 10.3056 10.2159 10.1500 10.0797
25 11.4275 10.9272 10.5298 10.4458 10.3190 10.2291 10.1631 10.0926
30 11.4361 10.9351 10.5373 10.4532 10.3262 10.2363 10.1702 10.0996
40 11.4446 10.9431 10.5448 10.4606 10.3335 10.2434 10.1773 10.1066
50 11.4486 10.9468 10.5483 10.4641 10.3369 10.2468 10.1805 10.1099
60 11.4508 10.9488 10.5502 10.4659 10.3387 10.2486 10.1823 10.1116
70 11.4521 10.9500 10.5513 10.4670 10.3398 10.2496 10.1834 10.1127
80 11.4529 10.9508 10.5521 10.4678 10.3405 10.2503 10.1841 10.1134
90 11.4535 10.9513 10.5526 10.4683 10.3410 10.2508 10.1846 10.1139
100 11.4539 10.9517 10.5529 10.4686 10.3414 10.2512 10.1849 10.1142

Table 2: Comparison of the Present Study’s results with the results of [13] for SSFS Thick Plates.

n
m

m
t

λ= Λ
m2

√
D
a % DIfference (P.S - H.A.)×100

P.SΛ
Present Study (P.S) [13]

1

100 11.4539 11.6746 -1.93
20 11.4118 11.5877 -1.54
10 11.2831 11.3810 -0.87
6.67 11.0786 11.0843 -0.05
5 10.8099 10.7218 0.81

1.5

100 10.5529 10.6655 -1.07
20 10.5160 10.6028 -0.83
10 10.4031 10.4404 , -0.36
6.67 10.2232 10.1988 0.24
5 9.9860 9.8972 0.89

2

100 10.2512 10.2948 -0.43
20 10.2159 10.2402 -0.24
10 10.1080 10.0929 0.15
6.67 9.9360 9.8705 0.66
5 9.7090 9.5902 1.22

2.5

100 10.1142 10.1222 -0.08
20 10.0797 10.0713 0.08
10 9.9741 9.9310 0.43
6.67 9.8056 9.7173 0.90
5 9.5831 9.4470 1.42

Table 3: Non–dimensional natural frequencies of CSFS thick plate.

∝=m/t
n/m = 1.0 n/m = 1.2 n/m = 1.5 n/m = 1.6 n/m = 1.8 n/m = 2.0 n/m = 2.2 n/m = 2.5

λ= Λ
m2

√
D
a

Λ
5 12.0129 11.0190 10.3011 10.1616 9.9610 9.8273 9.7340 9.6394
10 12.6821 11.5473 10.7502 10.5976 10.3799 10.2357 10.1355 10.0343
15 12.8199 11.6540 10.8401 10.6849 10.4636 10.3172 10.2155 10.1130
20 12.8693 11.6921 10.8722 10.7159 10.4933 10.3462 10.2440 10.1410
25 12.8923 11.7099 10.8871 10.7304 10.5072 10.3597 10.2573 10.1540
30 12.9049 11.7196 10.8952 10.7383 10.5148 10.3670 10.2645 10.1611
40 12.9175 11.7292 10.9033 10.7461 10.5223 10.3744 10.2717 10.1682
50 12.9233 11.7337 10.9071 10.7498 10.5258 10.3778 10.2751 10.1715
60 12.9265 11.7362 10.9091 10.7517 10.5277 10.3796 10.2769 10.1732
70 12.9284 11.7376 10.9103 10.7529 10.5288 10.3807 10.2780 10.1743
80 12.9296 11.7386 10.9111 10.7537 10.5296 10.3814 10.2787 10.1750
90 12.9305 11.7392 10.9117 10.7542 10.5301 10.3819 10.2792 10.1755
100 12.9311 11.7397 10.9121 10.7546 10.5304 10.3823 10.2795 10.1758
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Table 4: Comparison of the Present Study’s results with the results of [13] for CSFS Thick Plates.

n
m

m
t

λ= Λ
m2

√
D
a % DIfference (P.S−[13])∗100

P.S
Λ

Present Study (P.S) [13]

1

100 12.9311 12.6728 2.00
20 12.8693 12.5482 2.49
10 12.6821 12.2606 3.32
6.6667 12.3889 11.8620 4.25
5 12.0129 11.3931 5.16

1.5

100 10.9121 10.9682 -0.51
20 10.8722 10.8951 -0.21
10 10.7502 10.7099 0.37
6.6667 10.5559 10.4390 1.11
5 10.3011 10.1060 1.89

2

100 10.3823 10.4206 -0.37
20 10.3462 10.3618 -0.15
10 10.2357 10.2054 0.30
6.6667 10.0593 9.9712 0.88
5 9.8273 9.6782 1.52

2.5

100 10.1758 10.1848 -0.09
20 10.1410 10.1319 0.09
10 10.0343 9.9871 0.47
6.6667 9.8638 9.7676 0.98
5 9.6394 9.4910 1.54

5. CONCLUSION
From the present study, one could conclude

that:

(i) The use polynomial expressions as the dis-
placement and shear deformation expres-
sions makes the mathematical formulations
easy to manipulate. It also provides for easy
satisfaction of the boundary conditions.

(ii) The simple linear equation formulated and
applied herein, yields fast and reliable re-
sults for free-vibration study of thick SSFS
and CSFS plates at various span-thickness
ratios and planar dimensions ratios.

(iii) The results gotten from the present work are
in close agreement with the results of previ-
ous researchers and therefore are very consis-
tent.
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