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ABSTRACT 

The aim of this paper is to describe a non-parametric technique as a means of estimating the 

instantaneous force of mortality which serves as the underlying concept in modeling the future 

lifetime. It relies heavily on the analytic properties of life table survival functions 𝒍𝒙+𝒕. The specific 

objective of the study is to estimate the force of mortality using the Taylor series expansion to a 

desired degree of accuracy. The estimation of the continuous death probabilities has aroused keen 

research interest in mortality literature on life assurance practice. However, the estimation of 𝝁𝒙 

involves a model dependent on deep knowledge of differencing and differential equation of first 

order. The suggested method of approximation with limiting optimal properties is the Newton’s 

forward difference model. Initiating Newton’s process is an important level in terms of theoretical 

work which produces parallel results of great impact in the study of mortality functions. The paper 

starts from an assumption that 𝒍𝒙 function follows a polynomial of least degree and hence gives an 

answer to a simple model which overcomes points of singularity. 
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1. INTRODUCTION  

From [1], the theory of age dependent mortality 

models have made noticeable impact where a few 

stochastic mortality models have been evaluated 

permitting demographers and actuarial scientist to 

evaluate risk of uncertainty associated with mortality 

forecasts, a direct application of which actuaries have 

generally observed that mortality rates may likely 

react sharply to any change in demographic and 

socio-economic conditions. Actuaries usually 

experience the problem of estimating curve in the 

mortality tables one of which is force of mortality 

especially in cases where there is a lack of relevant 

data and where the intensity are not easy to compute 

analytically. [1], [2] argues that when lx is graduated 

at differing ages and the underlying mathematical 

formulae are not given, then μx can only be obtained 

by estimation. The problem of estimating death rate 

μx at any given instant occurs most often in life and 

other contingencies. [2] argues further that if lx 

denotes expected number of lives surviving to age x 

and μx is the instantaneous death rate, then it is not 

possible to evaluate the value of μx analytically from 

the first order ordinary differential equation described 

by, 

 μxlx  = −
dlx

dx
 unless lx+t can be functionally re-

expressed as a convergent series polynomial 

function. In this study, we observe that this is an 

analytical framework for studying the relationship 

between the expected number of lives surviving to 

age x and instantaneous rate of death.  

From the foundation of known mortality data as 

viewed by [3], the task is to efficiently estimate μx at 

an instant using Taylor’s series expansion under an 

assumption that lx is a convergent series polynomial 

function by interpolating at the beginning of the 

mortality table. In order to justify the reason for 

invoking instantaneous rate of change, we can 

change time in steps h. Similarly, the actuarial 

determination of the survival function lx at fractional 

age when required cannot be achieved except by 

linear interpolation and unless where mortality table 
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is based on actuarial formula. Therefore, the task is 

to obtain approximate values instead of their real 

analytical values using tools of approximation. μx can 

now be approximated from the numerical point of 

view by invoking limiting processes so that inference 

can be drawn about the probability of death occurring 

in a defined interval of time. The estimation of μx is 

by far an interesting and difficult problem where part 

of the difficulty is the computation of μ0 at integral 

ages if the only information given is  lx. Since  μx can 

vary rapidly in the interval  0 ≤ x ≤ 1,  there may not 

be a universally acceptable measure of μ0. However, 

a major advantage of our model over other numerical 

methods involving 1l  is the flexibility to find a rough 

estimate value for μ0. The model technically avoids 

arriving at 1l  because it has point of singularity, 

although it cannot be grossly concluded that the 

approximating model is markedly inefficient. The 

differential equation applied can also be used to 

calculate transition probabilities in a Markov process 

in a two state decrement model given the transition 

intensities which is what is needed since transition 

intensities are the quantities most easily estimated 

from data. 

According to [3], mortality rates for a general 

population commence at a higher value for the first 

few years of life but progressively decline fast down 

and thereafter rises as the age advances. The rise is 

smoothly gradual but steady and hence becomes a 

monotonically increasing function. Where living 

benefits such as gratuity and pensions are 

underwritten, the computation of the actuarial 

present value needs a defined mortality rate so as to 

avoid underestimation of future pricing. This is 

because mortality trends at high ages simply elicit 

declining annual death probabilities. Mortality 

improvements have clear effects on pricing and 

reserving for life annuities. In order to protect life 

offices from adverse mortality conditions, actuaries 

have resorted to build life tables which are applied to 

project future trends of mortality. Varying techniques 

for developing this have been obtained by actuaries 

and demographers, the emergence of which the 

smoothed mortality curvature is important for the 

purpose of extrapolation. In the view of [3], given 

that the force of mortality increases, the risk of 

ageing will correspondingly escalate and the cause of 

death will either operates at higher degree of 

intensity or even cause severest further ageing. [3] 

observes that, the constant force of mortality which 

is observed from the formula 

n

dy

xn ep 0


and 

equivalent to exponential failure distribution is 

suitable in life contingent risk models provided that 

mortality occurs from deaths related to ageing. It was 

further observed in [3] that, under the constant force 

assumption, the probability of surviving for a period 

of s <  1𝑦𝑒𝑎𝑟 from age x +  t is independent of t 

provided that 1 ts . The assumption of a 

constant force of mortality leads to a step function for 

the force of mortality over successive years of age. 

The assumption produces a constant force of 

mortality over the year of age x to x + 1, whereas one 

would expect the force of mortality to increase for 

most ages. However, if the true force of mortality 

increases slowly over the year of age, the constant 

force of mortality assumption is a reasonable 

distribution which would occur if mortality results only 

from pure accidents unrelated to age [3].  

 

2. THE ANALYTICITY OF EXPECTED NUMBER 

OF SURVIVORS  E(𝐋𝐱) = 𝐥𝐱 

As with other functions, lx possesses differential 

coefficients of all orders at the points at which it is 

defined and hence a Taylor series expansion about a 

regular points of analyticity in time. Therefore, the 

mathematical expectation of the number of survivors 

of a cohort at age x and time t,  lx+t will be analytic 

if it has a Taylor’s series expansion converging to lx. 

The Taylor’s concerns approximation of sufficiently 

smooth function lx by polynomials in a 

neighbourhood of a particular chosen age x. 

Now 

 
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It is apparent that the function  lx of real age x is 

absolutely monotonic in the region [0, ω] where ω  is 

the limit of life.  l(n)
x(t) ≥ 0 for a < t <  b the function  

lx of real value t will be completely monotone at the 

segment [0, ω], if it is infinitely many times 

differentiable for x > 0 for t > 0 

For a life (x), 
)(nl = o(1) where  o(1) is a function lx 

that vanishes at terminal age x = ω.  

For 0 ≤ ω ≤ ∞. That is lx is vanishingly zero as age x 

approaches ω, lx converges to zero since at  ω no life 

exists. In [1], [2], [8], the life table radix l0, may be 

set to 10,000; 100,000 or 1,000,000 although 

100,000 is usually common in practice. For ages 

greater than 0, the number of survivors remaining at 

exact age x is calculated as lx   =   lx−1(1 − qx−1). The 

number of deaths occurring between age x and x +1 

is calculated from the survivor function. dx =  lx − 

lx−1 =  lxqx 

The differential equations governing a few mortality 

functions such as μx are simple linear first order 

ordinary differential equations. These differential 

equations can be solved analytically by integrating 

out both sides or by using integrating factors. As in 

mechanics, an ordinary differential equation 

describes the rate of change of one quantity with 

respect to time. The analogue of force of mortality is 

the intensity of interest which is also governed by a 

first order ordinary differential equations defined as 

X(t, s) δ(t)dt  =  dX(t, s)  where δ(t) is the varying 

force of interest and  

X(0, 0) = 1, X(t, s) is the amount to which x units of 

a fund must be invested at time t will accumulate at 

time s , with s > t defines an ordinary differential 

equation for X(t, s). Let X(t, s) be a function of two 

variables defined on an open set of S ⊂ R2. Then for 

any point  in the ot and os planes, (c, d) ∈ S, one has 

X(t, s) = X(c, d)  +  
1

1!
 [Xt(c, d)(t − c) + (s – d)Xs(c, d) 

]  +  
1

2!
 [Xtt(c, d)(t − c)2  + 2(t – c)(s − d)Xts(c, d)  + 

(s − c)2 Xss(c, d)] + …  

 

Theorem 1:  E(Lx)  = lx  is a non- negative function. 

Proof 

Consider the age vectors  x  = ( x1, x2, x3,…, xω)  with 

(xi+1  > xi), the subsequence lx1
>  lx2

>  lx3
 > ⋯   >  

lxω
   =  0  converges to 0 ⇒  lx is bounded since a 

convergent sequence is bounded ⇒   lx1
>  0  ,   lx2

> 

0 ,   lx3
>  0 ,  …. lxω

>  0, hence is non-negative.  

 A life table does not show values of lx for non-integer 

numbers, it is assumed that the values of lx listed in 

a life table are produced by a continuous and 

differentiable lx so that  lx can be defined for any 

nonnegative real number and not just integers. 

 

3. MEASURES OF MORTALITY AND 

NUMERICAL METHODS 

According to [3-5], the purpose of measuring 

mortality is for us to draw inference about the 

probability of death occurring in an interval of time 

regarding a cohort. Slud [3] observes that the basic 

unit of measurement is therefore instantaneous in a 

defined interval of time. The risk of dying either 

functionally depends on longevity that is, living more 

than expected or age x ε 𝐑 and sex. First, μxδx is 

approximately, the probability that the lifetime 

expires between x and x + δx, where δx is 

infinitesimally small given that it has not yet expired 

by time x that is δxμx describes the probability that a 

life (x) will end in a 
-(X),N  neighbourhood, of 

some observed age given that (x) has not yet 

expired.  lx a fundamental function upon which μx 

depends possesses the following properties.  

(i) lx is a step function where jumps denotes 

death. 

(ii) lx can be determined at fractional unit of 

time using the basic properties of convexity. 

(iii) lx  is a continuous and differentiable function 

(iv) lx has at least two points of inflexion [2] 

The numerical methods employed in the ordinary 

differential equation are algorithms which enable us 

to determine the appropriate values of μx at the 

points t =  t0 + p. From [2], we assume the existence 

of a continuous survival function lx whose values at 

integral points of t are equal to the number living at 

exact age x. Furthermore, we assume the existence 

of a continuous function dx whose values at integral 

values of x are equal to the number of deaths from x 

to x + 1. Since instantaneous death rate is involved, 

it usually takes the form of a derivative and limiting 

process. A deterministic approach would be 

considered to obtain μx before the approximation. By 

the deterministic approach,  

It is clear that  μx=   −
1

lx

dlx

dx
 .  

If X is the random lifetime, we have 
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In view of [2], unless we have a formula expressing 

lx and μx in terms of mathematical function, it is 

difficult to determine μx from above equation since 

we have lx at the integral values of age x in the 

estimation of μx. Therefore, μx can be estimated by 

means of numerical procedures under the following 

basis: 

(i) lx is continuous at the points in which it 

is defined and that the random function 

lx is absolutely continuous since lx = 

∫ lx+t 
∞

0
μx+tdt.  

(ii) lx  can be approximated by a polynomials 

of degree n ≤ 4 

(iii) lx  has derivative of all orders at the 

points for which it is defined, For 

convenience  lx+t can be written as 

𝑙(𝑥 + 𝑡) which is then expanded by 

Taylor’s expansion 

Slud [3] observes that the force of mortality is defined 

only for absolutely continuous random variables 

taking the variables to be positive. Slud [3] argues 

further that, since the dimensionless function μxδx is 

interpreted as the probability of death within the 

interval x and (x + δx), μx can be measured in inverse 

units of time−1 which is in tandem with rate. From 

From [3], a rate may not necessarily be lower or 

exceed 1 but should be a real number provided it is 

greater than zero however [2] argues that since μx is 

not a probability its value is permitted to exceed 1 at 

the beginning and end of a life table. 

It is observed in [6-8] that actuarial literature has 

favour the use of deterministic models in mortality 

modeling using best estimated curve. However, from 

[9-11] we observe that this technique depends 

mostly on expert’s sense of judgement and cannot 

quantify the uncertainty around future mortality 

rates. Stochastic technique aptly captures the 

uncertainty around mortality improvements and 

provides distribution of possible outcomes which 

helps life office in insurance pricing decision.  Slud [3] 

argues that age effect describes the relationship 

between age and mortality rates so that the 

probability of dying increases as a life approaches 

advanced ages. 

 

Theorem 2  

The force of mortality is the sum of sub-intensities 

corresponding to n independent causes. 

Proof 

Let  x1, x2, x3, x4 … xn−1, xn be a sequence of risk 

factors causing death for the life time x. 

Then x= {xi} , i = 1,2,3,……n.  Because death can 

occur as a result of one or two or a linear combination 

of x1,         

 

Let {X1, X2, X3,  X4, …  Xn−2, Xn−1 , Xn} = lub{x1, x2, x3, x4 … xn−1, xn} ⇒ Xi >  𝑥 for some x 

SX(x) = e− ∫ μy
x

0 dy  

SXi
(x) = Pr(Xi >  𝑥 ) =   e− ∫ μi(y)

x
0 dy

 

SXi
(x) = Pr(Xi >  𝑥 ) = Pr(lub{xi} >  𝑥) , i = 1,2,3,……n  

Now Pr(Xi >  𝑥 ) = Pr (X1 >  𝑥 , X2 >  𝑥, X3 >  𝑥, X4 >  𝑥, … , Xn−1 > Xn >  𝑥) , then since  

X1, X2, X3, X4 … Xn−1, Xn are independent, we have 

Pr(X1 >  𝑥,X2 >  𝑥, X3 >  𝑥, X4 >  𝑥 … Xn−1> 𝑥, Xn >  𝑥)= Pr(X1 >  𝑥)*Pr(X2 > 𝑥 ) ∗ Pr(X3 >  𝑥) ∗ Pr (X4 >  𝑥) ∗ … ∗

Pr (Xn−1> 𝑥) ∗ Pr (Xn >  𝑥). 

SX(x) =e− ∫ μ1(y)
x

0 dy*e− ∫ μ2(y) 
x

0 dy*e− ∫ μ3(y)
x

0 dy*e− ∫ μ4(y)
x

0 dy*…*e− ∫ μ(k−1)(y)
x

0 dy ∗ e− ∫ μk
x

0  (y)dy 

=  ∏ e− ∫ μj(y)
x

0 dyk
j=1 =  ∏ eδ ∫ μj(y)

x
0 dyn

1  

SX(x) = e− ∫ μ1(y)
x

0 dy −∫ μ2(y)
x

0 dy − ∫ μ3(y)
x

0 dy −∫ μ4(y)
x

0 dy−⋯−∫ μ(n−1)(y)
x

0 dy −∫ μn(y) 
x

0 dy 
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SX(x) = e−[∫ μ1(y)
x

0 dy+∫ μ2(y)
x

0 dy+ ∫ μ3(y)
x

0 dy+∫ μ4(y)
x

0 dy+⋯+∫ μ(n−1)(y)
x

0 dy+∫ μn(y)
x

0 dy]
 

e− ∫ μy
x

0 dy=  e− ∫ {μ1(y) + μ2(y) + μ3(y) + μ4(y) +⋯+ μ(n−1)(y) +  μn(y)}
x

0 dy) 

− ∫ μy
x

0
dy  = − ∫ {μ1(y)  +  μ2(y)  +  μ3(y)  +  μ4(y)  + ⋯ +  μ(n−1)(y)  +   μn(y)}

x

0
dy) 

∫ μy
x

0
dy  = ∫ {μ1(y)  +  μ2(y)  + μ3(y)  + μ4(y)  + ⋯ + μ(n−1)(y)  +   μn(y)}

x

0
dy 

μy=  {μ1(y)  +  μ2(y)  +  μ3(y)  +  μ4(y)  + ⋯ +  μ(n−1)(y)  +   μn(y)}.  

 

μy = ∑ μi(y)n
1 . If  μi(y)  =  μ a real constant, then μy  

=  nμ. The mortality profile of a nation which includes 

the causes of death pattern in varying age-groups 

along with gender, gives a basis for policy making 

which could result in decrease in unwanted deaths. 

This force of mortality describes a useful tool for 

evaluating mortality level for the population which is 

an instantaneous measure of probability of death 

occurring in a defined instant given survival up to that 

time.  

 

Numerical model for estimating force of 

mortality using newton’s forward difference 

Let  t  = t0  +   ph , where  t0 = 0 , the initial age; h 

= 1, the unit interval of age, p = t 

 

l0+t =  
Δ0l0

∫
(lnx)0

x2
∞

1  dx
  +   

pΔ1l0

∫
(lnx)1

x2
∞

1  dx
  +  

p(p−1)Δ2l0

∫
(lnx)2

x2
∞

1  dx
   +

p(p−1)(p−2)Δ3l0

∫
(lnx)3

x2
∞

1  dx
   

               + 
p(p−1)(p−2)(p−3)Δ4l0

∫
(lnx)4

x2
∞

1  dx
  + …  +    

p(p−1)(p−2)(p−3)(p−4)….(p−x+1)Δxl0

∫
(lnx)x

x2
∞

1  dx
 

setting p = t and replace 0 by x above, we have  

lx+t=  
Δ0lx

∫
(lnx)0

x2
∞

1  dx
  +   

tΔ1lx

∫
(lnx)1

x2
∞

1  dx
   +  

t(t−1)Δ2lx

∫
(lnx)2

x2
∞

1  dx
   +   

t(t−1)(t−2)Δ3lx

∫
(lnx)3

x2
∞

1  dx
   

            +
t(t−1)(t−2)(t−3)Δ4lx

∫
(lnx)4

x2
∞

1  dx
  + .…  +    

t(t−1)(t−2)(t−3)(t−4)….(t−x+1)Δxlx

∫
(lnx)x

x2
∞

1  dx
 

lx+t  =   
Δ0lx

0!
  + 

tΔ1lx

1!
   +  

t(t−1)Δ2lx

2!
   + 

t(t−1)(t−2)Δ3lx

3!
    

              +
t(t−1)(t−2)(t−3)Δ4lx

4!
  + …  +    

t(t−1)(t−2)(t−3)(t−4)…(t−x+1)Δxlx

x!
 

Differentiating lx+t  with respect to t up to degree 4,  

we have 
dlx+t

dt
  =  Δ1lx  +  

(2t−1)Δ2lx

∫
(lnx)2

x2
∞

1  dx
  +

(3t2−6t+2)Δ3lx

∫
(lnx)3

x2
∞

1  dx
+  

(4t3− 18t2+22t−6)Δ4lx

∫
(lnx)4

x2
∞

1  dx
,  

We follow [12], and substitute n! =  ∫
(lnx)n

x2

∞

1
 dx , the equation becomes 

(4.1)    
dlx+t

dt
≅ Δ1lx  +  

(2t−1)Δ2lx

2!
+   

(3t2−6t+2)Δ3lx

3!
+  

(4t3− 18t2+22t−6)Δ4lx

4!
,  

Δnlx=   ∑ (−1)kn
k=0

n! lx+(n−k)

(n−k)! ∫
(lnu)r

u2
∞

1  du
 , r =  0, 1, 2, 3, …  

Δ1lx=    ∑ (−1)k1
k=0

1! lx+(1−k)

(1−k)! ∫
(lnx)k

x2
∞

1  dx
 

⇒ Δ1 lx  =    ∑ (−1)k1
k=0  

1! lx+(1−k)

k!(1−k)!
 

i.e Δ1lx =  lx+1 − lx  

Δ2lx=    ∑ (−1)k2
k=0

2! lx+(2−k)

(2−k)! ∫
(lnx)k

x2
∞

1  dx
 ⇒Δ2lx  =    ∑ (−1)k2

k=0

2! lx+(2−k)

(2−k)!k!
 ,   
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Δ2lx  = lx+2 − 2 lx+1 + lx   

Δ3lx=    ∑ (−1)k3
k=0

3! lx+(3−k)

(3−k)! ∫
(lnx)k

x2
∞

1  dx
⇒Δ3lx  =    ∑ (−1)k3

k=0

3! lx+(3−k)

(3−k)!k!
 

Δ3lx  =  lx+3 − 3 lx+2 +  3lx+1 − lx  

Δ4lx  =    ∑ (−1)k4
k=0

4! lx+(4−k)

(4−k)! ∫
(lnx)k

x2
∞

1  dx
 ⇒ Δ4lx  =    ∑ (−1)k4

k=0

4! lx+(4−k)

(4−k)!k!
 

Δ4lx  =  lx+4 − 4 lx+3+ 6lx+2 −  4lx+1+lx    

Setting t = 0 and substitute for the various expressions in 
dlx+t

dt
 above, 

− 
dlx+t

dt

lx
  =  {(−1)

lx+1− lx  +  lx+1 −  
1

2 
lx − 

1

2 
lx+2 +  

1

3 
lx+3− lx+2 + lx+1− 

1

3 
lx + lx+3 +lx+1 − 

1

4
lx+4− 

3

2 
lx+2− 

1

4
lx 

lx
} 

   
− 

dlx+t
dt

lx
  = {

3 lx+4 + 36 lx+2+ 25 lx  −16 lx+3 − 48 lx+1 

12 lx
} 

μx = {
3 lx+4   +   36 lx+2   +  25 lx    −16 lx+3   −    48 lx+1 

12 lx
},  

This is the main result when the cause of death is 

only due to ageing. Given the functional values of lx 

at differing ages x from infancy, then one can 

compute μx, so that the probability that a life aged x 

will survive to the next (x + n) years is described by

dsμdtμ
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xt

x

s

t
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eeP
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but by the theorem 2 above, we see that, 











 







txy

xy
y

dsμ

μExpe
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The above result is tested using the population life 

table: English life table no 12 males published in [2]. 

Our results are shown in Figures 1 to 3 as well as 

Table 1 below. With our model, we observe negligible 

difference between approximated value and 

tabulated values which to certain extent can be 

ignored. Since μx is not a probability on its own, the 

numerical values of the intensities can be somewhat 

greater than 1 at the beginning and ending of a 

mortality table. However in this computations, the 

intensity is lower than 1 at the beginning of the table 

but higher than 1 at the end of the table.  

The cases where the value of μx <  0 simply suggests 

to us that the distribution of the random variable is 

heavy tailed. All these can be apparently seen in the 

figures below. 

 

 

 
Figure 1: The graph of survivor function at a given age 
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Figure 2: Graph of intensity at a given age 

 

 
Figure 3: Curve of death 

 

As age increases, survival values decreases and 

approaches zero at ω, the limit of life. This figure has 

heavy tailed distribution with survival   lx   =   

100000SX(x). The intensities progressively increases 

as a live advances in age 

The curve of death has asymptotes with points of 

inflexion. The cases where the value of μx < 0, simply 

suggests that the distribution of the random variable 

is heavy tailed.  

 

4. CONCLUSION 

A noticeable problem in actuarial literature is the 

intensity of mortality which describes instantaneous 

rate of mortality at a particular age measured on 

yearly basis. The real force of mortality curve is 

usually unknown as one can only model this true 

curve from mortality data. In this paper, we evaluate 

techniques to generate the estimated force of 

mortality and survival models from non-parametric 

perspectives. The objective is to adapt this 

numerically stable polynomial technique that will not 

require a deep knowledge of optimalization. More 

importantly the local polynomial technique only 

requires sound knowledge of the unknown actuarial 

mortality curve and the expected survival function. 

For the data and results of analysis on the modelling 

of the estimated force of mortality, we use life tables 

published in [2]. Mortality models are tools used to 

forecast future mortality for the purposes of pricing 

life, pension and other insurance products and for 
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computing technical provisions, hence the mortality 

model should correctly fit relatively well into 

empirically observed mortality and moreover take 

into accounts future trends in mortalities. The 

mortality intensity estimated is at large chosen as an 

adequate measure of mortality risk associated with 

ageing. The theoretical foundation behind this 

particular definition of mortality risk includes 

asymptotic assumptions. It is observed from our 

results that the approximated force intensities at 

observed age interval (5-73years) exactly agree with 

the tabulated values. Thus given same conditions 

under which two actuaries work, they are not 

probable to arrive exactly at same results. The 

conditions under which the tabulated values were 

derived is not exactly same as ours but it is expected 

that the degree of variability is minimal. A rough 

estimate for μ0= 0.04896 has been suggested by our 

model, though mortality varies at very early stages of 

life between 0 and 1. Past literature cited such as [2] 

avoided the computation of μ0 because of this 

variability. At the tail end of the tabulated mortality 

values, considerations were not made for intensities 

at ages 104 and 105. The reason we suspect why 

μ104 < 0, that is μ104 =−𝟎. 𝟐𝟔𝟒𝟏𝟖, the survival 

distribution is heavy tailed which we have noticed. 

However we also notice that the intensity at age 105, 

that is μ105= 2.08333 is more than 1 because force 

of mortality is not a probability and hence it is 

expected that its value will exceed 1 at the ending of 

the mortality table. Establishing a rate of intensity 

from first order initial value differential equation and 

employing the Taylor’s expansion, we have provided 

a concise estimate of an important result in both 

theory and practice of actuarial literature.  
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APPENDIX: Table 1: Population Life Table - English Life Table No 12 Males 

AGE SURVIVAL VALUE TABULATED
)( tx 

 ESTIMATED
)( tx 

 DIFFERENCE 

0 l(x+0) 100000 0.00000 0.04896 -0.04896 

1 l(x+1) 97551 0.00210 0.00197 0.00013 

2 l(x+2) 97398 0.00134 0.00126 0.00008 
3 l(x+3) 97302 0.00079 0.00073 0.00006 

4 l(x+4) 97235 0.00063 0.00065 -0.00002 

5 l(x+5) 97175 0.00059 0.00059 0.00000 
6 l(x+6) 97120 0.00054 0.00054 0.00000 

7 l(x+7) 97069 0.00050 0.00051 -0.00001 
8 l(x+8) 97022 0.00046 0.00046 0.00000 

9 l(x+9) 96979 0.00043 0.00043 0.00000 
10 l(x+10) 96939 0.00040 0.00040 0.00000 

11 l(x+11) 96901 0.00039 0.00039 0.00000 

12 l(x+12) 96864 0.00038 0.00036 0.00002 
13 l(x+13) 96827 0.00039 0.00041 -0.00002 

14 l(x+14) 96787 0.00043 0.00043 0.00000 
15 l(x+15) 96742 0.00052 0.00054 -0.00002 

16 l(x+16) 96685 0.00067 0.00063 0.00004 

17 l(x+17) 96610 0.00089 0.00090 -0.00001 
18 l(x+18) 96514 0.00107 0.00109 -0.00002 

19 l(x+19) 96406 0.00115 0.00114 0.00001 

20 l(x+20) 96293 0.00119 0.00121 -0.00002 

21 l(x+21) 96178 0.00119 0.00117 0.00002 

22 l(x+22) 96065 0.00116 0.00117 -0.00001 

23 l(x+23) 95955 0.00112 0.00113 -0.00001 

24 l(x+24) 95851 0.00105 0.00104 0.00001 

25 l(x+25) 95753 0.00100 0.00101 -0.00001 

26 l(x+26) 95658 0.00098 0.00097 0.00001 

27 l(x+27) 95564 0.00099 0.00100 -0.00001 

28 l(x+28) 95468 0.00102 0.00102 0.00000 

29 l(x+29) 95369 0.00106 0.00105 0.00001 

30 l(x+30) 95265 0.00112 0.00114 -0.00002 

31 l(x+31) 95155 0.00118 0.00117 0.00001 

32 l(x+32) 95040 0.00125 0.00125 0.00000 

33 l(x+33) 94918 0.00132 0.00133 -0.00001 

34 l(x+34) 94789 0.00140 0.00139 0.00001 

35 l(x+35) 94652 0.00150 0.00150 0.00000 

36 l(x+36) 94505 0.00161 0.00160 0.00001 

37 l(x+37) 94347 0.00174 0.00174 0.00000 

38 l(x+38) 94176 0.00189 0.00189 0.00000 

39 l(x+39) 93991 0.00205 0.00205 0.00000 

40 l(x+40) 93790 0.00224 0.00225 -0.00001 

41 l(x+41) 93570 0.00246 0.00246 0.00000 

42 l(x+42) 93328 0.00273 0.00273 0.00000 

43 l(x+43) 93060 0.00303 0.00304 -0.00001 

44 l(x+44) 92763 0.00337 0.00335 0.00002 

45 l(x+45) 92433 0.00377 0.00379 -0.00002 

46 l(x+46) 92064 0.00423 0.00422 0.00001 

47 l(x+47) 91652 0.00476 0.00476 0.00000 

48 l(x+48) 91189 0.00538 0.00538 0.00000 
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AGE SURVIVAL VALUE TABULATED
)( tx 

 ESTIMATED
)( tx 

 DIFFERENCE 

49 l(x+49) 90669 0.00607 0.00607 0.00000 

50 l(x+50) 90085 0.00687 0.00687 0.00000 

51 l(x+51) 89429 0.00777 0.00777 0.00000 

52 l(x+52) 88693 0.00878 0.00878 0.00000 

53 l(x+53) 87868 0.00993 0.00994 -0.00001 

54 l(x+54) 86945 0.01121 0.01119 0.00002 

55 l(x+55) 85916 0.01263 0.01264 -0.00001 

56 l(x+56) 84772 0.01420 0.01419 0.00001 

57 l(x+57) 83507 0.01590 0.01591 -0.00001 

58 l(x+58) 82114 0.01776 0.01776 0.00000 

59 l(x+59) 80588 0.01978 0.01978 0.00000 

60 l(x+60) 78924 0.02197 0.02197 0.00000 

61 l(x+61) 77119 0.02433 0.02433 0.00000 

62 l(x+62) 75172 0.02684 0.02685 -0.00001 

63 l(x+63) 73084 0.02953 0.02953 0.00000 

64 l(x+64) 70856 0.03243 0.03242 0.00001 

65 l(x+65) 68490 0.03553 0.03555 -0.00002 

66 l(x+66) 65991 0.03884 0.03882 0.00002 

67 l(x+67) 63366 0.04239 0.04241 -0.00002 

68 l(x+68) 60621 0.04622 0.04621 0.00001 

69 l(x+69) 57765 0.05036 0.05036 0.00000 

70 l(x+70) 54806 0.05487 0.05488 -0.00001 

71 l(x+71) 51755 0.05976 0.05974 0.00002 

72 l(x+72) 48625 0.06509 0.06511 -0.00002 

73 l(x+73) 45430 0.07092 0.07092 0.00000 

74 l(x+74) 42187 0.07730 0.07728 0.00002 

75 l(x+75) 38914 0.08432 0.08436 -0.00004 

76 l(x+76) 35632 0.09200 0.09195 0.00005 

77 l(x+77) 32366 0.10042 0.10046 -0.00004 

78 l(x+78) 29141 0.10962 0.10958 0.00004 

79 l(x+79) 25987 0.11964 0.11965 -0.00001 

80 l(x+80) 22933 0.13053 0.13052 0.00001 

81 l(x+81) 20010 0.14231 0.14227 0.00004 

82 l(x+82) 17247 0.15503 0.15507 -0.00004 

83 l(x+83) 14671 0.16863 0.16857 0.00006 

84 l(x+84) 12306 0.18311 0.18315 -0.00004 

85 l(x+85) 10169 0.19849 0.19848 0.00001 

86 l(x+86) 8271.6 0.21468 0.21472 -0.00004 

88 l(x+88) 5203.4 0.24928 0.24936 -0.00008 

87 l(x+87) 6617.5 0.23165 0.23168 -0.00003 

89 l(x+89) 4018.8 0.26748 0.26751 -0.00003 

90 l(x+90) 3047.2 0.28616 0.28629 -0.00013 

91 l(x+91) 2267.3 0.30518 0.30521 -0.00003 

92 l(x+92) 1655.1 0.32429 0.32449 -0.00020 

93 l(x+93) 1185.1 0.34372 0.34376 -0.00004 

94 l(x+94) 832.37 0.36294 0.36292 0.00002 
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AGE SURVIVAL VALUE TABULATED
)( tx 

 ESTIMATED
)( tx 

 DIFFERENCE 

95 l(x+95) 573.54 0.38197 0.38188 0.00009 

96 l(x+96) 387.8 0.40066 0.40050 0.00016 

97 l(x+97) 257.41 0.41886 0.41849 0.00037 

98 l(x+98) 167.82 0.43651 0.43611 0.00040 

99 l(x+99) 107.52 0.45354 0.45288 0.00066 

100 l(x+100) 67.749 0.46972 0.46889 0.00083 

101 l(x+101) 42.016 0.48512 0.48408 0.00104 

102 l(x+102) 25.667 0.49967 0.46794 0.03173 

103 l(x+103) 15.458 0.51335 0.75259 -0.23924 

104 l(x+104) 9.1859  -0.26418 0.26418 

105 l(x+105) 5.391  2.08333 -2.08333 
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