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ABSTRACT

This work presents dynamic response of large strain deformed subsea flowlines and jumpers
conveying two-phase fluid. Large strain deformation theory is used to analyze the effects of high
pressure-high temperature two-phase flow on critical velocity in flexible pipes. Starting with
natural frequency of simply supported flexible pipes, corresponding nonlinear transport equations
are derived and subsequently expanded using the method of multiple scales perturbation.
Frequency response obtained from the linearized leading order equations established that
buckling and flutter-like instabilities attend critical velocities. Furthermore, the buckling velocity
of transverse pipe decreases with increasing temperature, pressure or tension. Clearly, the
transverse buckling velocity is higher in large strain deformation model compared with small
strain model. In addition; whereas the critical velocity in the longitudinal direction is independent
of temperature, pressure and tension for small strain models; these variables determine the path

to failure in large strain deformed pipes.
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1. INTRODUCTION

Flow lines and jumpers belong to a class of flexible
pipes that are widely deployed for offshore deep
water exploration and production [1]. Often, these
flexible pipes undergo large strain deformations than
small strain deformations.

Stability of pipes conveying fluid is a subject of
utmost concern to research and development
scientists as well as field design engineers. Most
existing works modelled deformation resulting from
fluid/solid pipe interaction with small strain theory.
For example, [2] used the small strain deformation
theory to report that a simply supported straight pipe
conveying fluid would lose stability first by buckling.
Later, it will undergo a coupled-mode flutter.
Similarly, Lee and Chung [3] modeled a straight pipe
with large strains conveying single phase fluid and
obtained the natural frequencies and responses of
the pipe. However, some interesting physics due to

the large strain deformation were omitted because
the effects of temperature, tension and pressure
were neglected.

This work derived the model of a large strain
deformed straight pipe conveying two-phase flow,
under the effects of thermal strains, pressurization
and tension. Adopting the direct method of multiple
time scale perturbation, the nonlinear equations
were expanded. Subsequently, the linear natural
frequencies were obtained numerically. This
provided a basis for the analysis of the effects of
large strain deformation compared to small strain
deformation on transverse and longitudinal critical
velocities of fluid flow in the pipe.

2. THEORECTICAL BACKGROUND

Consider a pipe conveying two-phase fluids that is
deformed with large strains. Adopting linear stresses
and nonlinear strains as introduced by [3] for a
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straight pipe with the thermal strains, pressurization
and tension. The strains of the pipe due to the elastic
large deformation is given by:

1
gt =T+ (@?+ w?) - y1 +a@)w"

+ % V2wt — af + TOE;P
L . - Ty—P
sx—u—yw—a6+EA 2
Where % and w are the longitudinal and transverse
displacements of the pipe,d is the temperature
change of the pipe conveying fluid, « is coefficient of
thermal expansion, T, is tension in the pipe, P is
pressurization. Yt is the nonlinear strain of the pipe
and &k is the linearized strain of the pipe. However,
the pipe is assumed not to have yielded when
subjected to linear stress given by:
= Ee; (3)

€y

Thus, the strain energy of the pipe conveying fluid
due to large elastic deformation is given by:

1
szfa,fsfc“ dv 4)

For two phase flow, the kinetic energy is the sum of
the kinetic energy of the pipe and the kinetic
energies of the two fluids. It is given by:

+ %mfl f ((a + T (1+ a'))2
+ (W + ﬁflw’)z) dx
+ %mfz f ((a + T (1 + a'))2
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Using the energy method, the Lagrangian £, of the
system is given by:
L=T -V (6)

Applying the Hamiltonian principle to minimize the

Lagrangian of the system as stated in equation (6):
t2 t2

1) Ldt +
t1 t1
Where T and V are the total kinetic and potential

energies of the pipe. The §W is the virtual work due
to non-conservative forces imposed on the pipe, [4].
Substituting Equations (1) — (6) into Equation (7),
the nonlinear vibration in the longitudinal direction
could be derived as (u-equation):

SWdt =0 (7)
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In addition, the nonlinear vibration in the transverse direction could be described by (w-equation):
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Hence, the nonlinear coupled equations for the transverse and longitudinal vibrations in the dimensionless forms

are as presented in Equations (10a) and (10b):
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The boundary conditions representing the physics of the problem are expressed in Equation (11):
B d*w B d*w _ _ (11)
w(0) = 7 (0) = W(L) = = (L) = &(0) = &(l) = 0
To arrive at Equations (10a), (10b) and (11), the following dimensionless parameters were derived:
L .
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In these equations, u and w are the dimensionless
displacements in the longitudinal and transverse
directions respectively, (vy;) is the flow velocities of
the constituent phases/components used in the
analysis of the dynamics of the system, () is the
mass ratio which relates the mass of a fluid phase to
the total mass of the fluids and the pipe as derived
by [4] for a single phase fluid, ( ;) is the mass ratio
which relates the mass of a fluid phase to the total
fluid mass, and n index the pipe flexibility, 7eis the
dimensionless Tension, while Pr is dimensionless
pressurization.

For the two phase flow the Chisolm empirical
relations [5] were adopted as follows;

Voild fraction aq

a, =1 - (1 —x(1—pp—;)>

1 -1
21 —xpg vy
X PV

(13a)
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Slip Ratio, § = 2 = /1 —x(1 -2y (13b)
VU2 Pg

Mixture velocity, V;, = a,v; + (1 —ay)v, (13c)
Where p, and p, are the densities of the liquid and
gaseous phases respectively, x is the mixture quality.

v, and v, are the superficial flow velocities of the
gaseous and liquid phases respectively.

3. METHOD OF SOLUTION

Approximate solutions are obtained with direct

multiple scale perturbation technique in the form:

w(x, Ty, Ty, Ty) = ewy (x,To, Ty, To) + €2wy(x, Ty, Ty, T,)
+ e3w;(x, Ty, Ty, To); (14a)

u(x, Ty, Ty, ) = €u (%, Ty, Ty, T2) + €2uy(x, Ty, Ty, Tz)
+ €3uz(x, Ty, Ty, T,) (14b)

The time derivatives operators can be written as:

a:D0+6D1+"'
2 (1432)
Froi Do® + 2eDyD; + -+
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Performing the derivative operation and equating the coefficients of €!,i = 1,2,3. successively to zero gave;
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3.1 Linear Vibration Analysis ¢n(x) = Re[H,,. e"wX] (17a)
The leading order problem is a linear problem and W (x) = Re[Hu_eiku x] (17b)

a solution of the leading order problem gives the

natural frequencies and mode shapes of the system.

The homogenous solution of the leading order

equations (15a) and (15b) can be expressed as:
wy = elTo®n 4, (Ty) ¢ (x)

+e7 o0, (x) A (Ty) (16a)

uy = e B, (T, (x)

+e o, (x) Bo(Ty)  (16b)
Where ¢,(x) and ¢, (x) are the eigenfunctions of
the linear vibration of a simply supported pipe
conveying fluid, [1]. w, and «,, are the transverse
vibration and longitudinal vibration natural
frequencies respectively. And assuming trial
solutions of the form:
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Where k, and k, are wave constants in the
transverse and longitudinal directions respectively
and H,, and H, are constants.

3.2 Transverse and Longitudinal natural

frequencies:

Substituting the homogenous solutions (16b) and
(17b) into Equation (15b), the dispersion relation
for the longitudinal vibration is obtained as:

(77 —Te + Pr + 6th + ﬁflv,gl + ,szvfzz) ks

—2(\@1}1
+ \/ﬁZTﬁv2>aku+a2

=0 (18a)
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Substituting the homogenous solutions (16a) and
(17a) into Equation (15a); the dispersion relation

for the transverse vibration is obtained as:
4

ki

(2Te — Pr — 6th) Y
— (Pr+60th —Te + Bryvé
+ ,szvfz)kfv

-2 (\/ﬁ1ﬁf1771 + Jﬁzﬁfz Vz) w ky,

- w?=0 (18b)
Following the procedure of [2] for a simply
supported pipe conveying fluid, the transverse and
the longitudinal natural frequencies were obtained
numerically.

4. RESULTS

The linear vibration results are obtained by
analyzing the leading order problems of the three
time scale expansion.

4.1 Validation of Model:

The linear vibration of a pipe conveying single phase
fluid but undergoing small strain deformation was
elucidated by [6], as shown in Figure la. They
reported that divergence in the first mode occurred
at a dimensionless velocity of 3.146 and
subsequently at a dimensionless velocity of 6.2833.
The same pattern is observed for a pipe conveying
fluid and undergoing large strain deformation when
the effects of temperature, pressure and tension are
negligible.

For a pipe conveying two-phase fluid the variation
of the longitudinal frequencies with flow velocity is
shown in Figure 1c. It is notable that when the
effects of temperature, pressure and tension are
negligible, the same behavior is observed when a
pipe conveying fluid undergoes large strain
deformation and also when it undergoes small strain
deformation. Similar results were obtained in the
work of [7], however, they were obtained for
cantilevered pipes.

4.2 Effects of Temperature on Transverse
and Axial Vibration:

The effects of temperature variation on the large
strain deformation model against the small strain
deformation model for the transverse and
longitudinal vibrations are shown in Figures 2a and
2b respectively. These results were obtained for a
pipe conveying two phase flows at a void fraction of
0.3 and mixture quality of 0.00037088. . Clearly, the

Nigerian Journal of Technology,

critical velocities of the pipe reduce with increasing
temperature. This is similar to the results of [8] for
a cantilevered pipe conveying single phase flow
modeled with small strain deformation.
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Figure 1a: Transverse Natural Frequencies for
small strain deformation [6]
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Figure 1b. Transverse Natural Frequencies for
large strain deformation (neglecting the effect of
temperature, pressure and tension)
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Figure 1c: Longitudinal Natural frequency
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Apparently, the critical velocities of pipes modeled
with large strain deformation theory are higher than
their outcomes in pipes modelled with small strain
deformation theory. This realization is pronounced
at elevated temperatures.

Meanwhile, longitudinal vibration of pipes with small
strain deformation is independent of temperature.
However, longitudinal critical velocity of pipes with
large strain deformation reduces with increasing
temperature.

4.3 Effects of Pressure on Transverse and
Axial Vibration:

The effects of pressure on large strain deformation
model as compared with small strain deformation
model for transverse and longitudinal vibrations are
shown in Figures 3a and 3b. Results were obtained
for a pipe conveying two phase flows with a void
fraction of 0.3 and mixture quality of 0.00037088.

n
o

critical velocity, v¢,
[ -
o (6]

— Large Strain
—— Small Strain

o
o

0.0

0 5 10 15 20

Temperature , 6th
Figure 2a: Transverse critical velocities Vs
temperature at void fraction=0.3, mixture quality
= 0.00037088; Te=0.1;Pr=0.05;

critical velocity, vgr
P -
o (6]

o
o

0.0

0 2 4 6 8
pressure, Pr

Figure 3a: Transverse ctritical velocities vs
pressure at void fraction=0.3 , mixture quality =
0.00037088; 6th=1.2;Te=0.1;
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critical velocity, v,

Clearly, the critical buckling velocity of the pipe
persistently reduces with increasing pressure.
Longitudinal vibration of pipe modeled with small
strain deformation theory does not respond to
changes in pressure. On the other hand, the
longitudinal critical velocity of pipe modeled with
large strain deformation approach reduces with
increasing pressure.

4.4 Effects of Tension Transverse and Axial
Vibration

In contrast to small strain deformation models, the
response of transverse and longitudinal vibrations
to the effects of tension on pipe modeled with large
strain deformation theory are shown in Figures 4a
and 4b. Results were obtained for pipe conveying
two phase flows with void fraction of 0.3 and
mixture quality of 0.00037088. Clearly, the critical
velocities of the pipe decreases with increasing
tension.
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10000 15000
Temperature , 6th
Figure 2b: Longitudinal critical velocities Vs
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Figure 3b: Longitudinal critical velocities vs

pressure at void fraction=0.3 , mixture quality =

0.00037088; 6th=1.2,Te=0.1

901

Vol 38, No. 4, October 2019



DYNAMIC ANALYSIS OF LARGE STRAIN DEFORMATION OF FLEXIBLE PIPES CONVEYING TWO-PHASE FLUIDS,....., A. T. Adebusoye, et. al

3.0

NG N
o &

critical velocity, Vg
P
(6]

1.0
05
0.0
0 2 4 6 8
Tension , Te

Figure 4a: Transverse critical velocities vs tension
at void fraction=0.3 , mixture quality =
0.00037088; 6th=1.2;Pr=0.05;

5. CONCLUSION AND RECOMMENDATIONS:
In summary, this study examined the free vibration
of a simply supported pipe conveying pressurized
two phase flow modeled using the elastic large
strain deformation theory. Nonlinear equations of
motion and boundary conditions were obtained
using Hamilton’s principle. Approximate solutions of
the dynamic system were obtained using the
method multiple scale perturbation technique and
natural frequencies of the dynamic system were
derived from solutions of the leading order
equation.

Clearly, buckling and flutter instabilities characterize
large strain deformation model of flexible pipe
conveying hot pressurized two phase fluids. This is
consistent with the known response of small strain
deformation models. However, in large strain
model, the buckling velocity is sensitive to changes
in temperature, pressure and tension. For pipes
modeled with large strain model, it is evident that
the critical velocity of the transverse vibration are
higher compared with when small strain
deformation theory is used.

To investigate the post buckling behavior of pipe
with large strain deformation conveying two-phase
fluid, it is recommended that this linear analysis
dynamic behaviour pipe with large strain
deformation conveying two-phase fluid extended as
a basis for the nonlinear analysis.
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