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ABSTRACT  

This paper presents the modified and generalized full cubic polynomial Response Surface 

Methodology (RSM) in engineering mixture design. It provided comprehensive parameters 

definitions that enable development of adequate regression of dependent – independent variables 

in mixture design with ease. Necessary equations and useful insights were identified and their 

application outlined. Step-by-step and parameters description necessary in statistical model 

validation and adequacy using the student’s t-test and the fisher test were provided. NULL and 

ALTERNATE hypotheses based on standard statistical values techniques were also elaborated. 

These comprehensive principles and applications in mixture design were based on an extensive 

review of literature. Hence, difficulties usually experienced by numerous researchers in mixture 

models development to third degree would be overcome, while model validations and adequacy 

techniques are made handy. It is believed that this study would motivate vigorous research on 

the applications of non-conventional materials such as vegetable fibers, soil, wastes from 

industry, mining and agriculture, alongside the traditional materials, such as: cement, lime, earth, 

stone, sand and water for engineering applications. 
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1. INTRODUCTION 

This study comes at the time the global world is in 

intense search for alternative and locally produced 

materials that are non-polluting to the environment 

and consume little energy in their production and/or 

utilization, whose renewable application preserve the 

environment. These non-conventional materials such 

as vegetable fibers, soil, wastes from industry, 

mining and agriculture are used alongside their 

counterparts, the traditional materials: cement, lime, 

earth, stone, sand and water for engineering 

applications. Their applications have been employed 

in engineering response optimization, stabilization, 

partial replacement, etc. Some of these applications 

are pursued in areas of cement mortar reinforced 

with vegetable fibres (such as sisal, coconut, 

piassava, curaua, jute, fique, bamboo, palm tree, 

sugar cane bagasse); cements partial replacement 

based on agricultural wastes (such as rice husk ash, 

sugar cane bagasse ash, coconut shell ash, male 

inflorescence of oil palm ash); cements partial 

replacement based on industrial wastes (such as 

blast furnace slag, bauxite slag); cements partial 

replacement based on mining wastes (such as 

mineral coal ash); cementitious composites 

reinforced with pulp of bamboo, eucalyptus, sisal, 

coconut, curaua; composites reinforced with hybrid 

fibres (vegetal and polymer); earth blocks reinforced 

with vegetable fibres (sisal, coconut, bamboo, 

curaua, jute) and hybrids (vegetable fibres and 

polymers) [1].  

The present application of these non-conventional 

materials in engineering usually involves a technique 

known as “Response Surface Methodology”. RSM is a 

collection of mathematical and statistical techniques 

useful for analyzing problems where several 

independent variables influence a dependent variable 

or response. Hence, RSM is used for the design and 

analysis of experiments and it seeks to relate an 
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average response to the value of quantitative 

variables that effect response [2].  

Experiment is a vital part of the scientific (or 

engineering) method, in which something about a 

particular process or system is discovered. Scientific 

experimentation helps to determine the nature of the 

relationship between independent and dependent 

variables of a process [3]. Well – designed 

experiments can often lead to a model of system 

performance [4].  

However, in the words of [5], Scientists build models 

for the same variety of reasons: to replicate systems 

in the real world through simplification, to perform an 

experiment that cannot be done in the real world, or 

to assemble several known ideas into a coherent 

whole to build and test hypotheses.  

Therefore, experiments are used to study the 

performance of processes and systems. The process 

under consideration can be as a combination (or 

mixture) of operations, machines, methods, people, 

materials and other resources that transforms some 

input (often a material) into an output that has one 

or more observable response variables. Some of the 

process variables and material properties X1, X2,  .  . . 

Xq are controllable, whereas other variables Y1, Y2, . . 

. Yq are uncontrollable (although they may be 

controllable for purposes of a test) [6]. 

 

1.1 Mixture Designs 

When a product is formed by mixing together two or 

more ingredients, the product is called a mixture, and 

the ingredients are called mixture components. In a 

general mixture problem, the measured response is 

assumed to depend only on the proportions of the 

ingredients in the mixture, not the amount of the 

mixture. For example, the taste of a fruit punch 

recipe (i.e., the response) may depend on the 

proportions of watermelon, pineapple and orange 

juice in the mixture. The taste of a small cup of fruit 

punch recipe will obviously be the same as a big cup.  

Thus, mixture design may be defined as the process 

of selecting suitable mix ingredients (or components) 

and their relative proportions with the aim of 

producing desired mixture responses and 

characteristics. There are several different types of 

mixture designs. The most common ones are simplex 

lattice, simplex centroid, simplex axial and extreme 

vertex designs, each of which is used for a different 

purpose. If the number of components is not large, 

but a high order polynomial equation is needed in 

order to accurately describe the response surface, 

then a simplex lattice design can be used [7]. 

Simplex lattice mixture design gives better 

understanding of the shape of the response surface 

when the natural choice for design points are spread 

evenly over the whole simplex. Such an ordered 

arrangement consisting of a uniformly spaced 

distribution of points on a simplex is known as a 

lattice [3]. 

 

1.2 Simplex Designs and Pseudo - Components 

  A simplex design is a mixture design in which 

the design points are arranged in a uniform way (or 

lattice) on a simplex. The coordinate system used for 

the value of each ingredient, Xi, (i = 1, 2, …, q) is 

called a simplex coordinate system. q is the number 

of ingredients in each experimental run. the simplex 

coordinate system, Xi was defined by [3] as: 

    ,
 

m
,
 

m
, ,                                        ( a) 

They claimed that the design space consists of all the 

reasonable combinations of all the values for each 

factor, where, m is the degree of the lattice (or 

dimensional space). Therefore, for a full cubic 

mixture design model, m = 3; and the simplex lattice 

coordinate from Equation (1b) is given as: 

    ,
 

 
,
 

 
, ,         ,

 

 
,
 

 
,                          ( b) 

In this simplex coordinate, it means that the 

proportions of each of the mixture variable to be 

used to formulate the mixture model can only be 0 

(0%), ⅓ (33.33%), ⅔ (66.66%), and 1 (100%) of 

the total mixture at any design point; and must sum 

to 1 (100%). Each combination of these variables is 

used in one run of the experiment and is referred to 

as space point and denoted as Ai or Aij or Aijk for (i ≠ 

j ≠ k =1, 2, 3, …, q).  

According to [3], [8] stated that (q – 1) 

space or dimensions are used to define the 

boundary, where q components are interacting in a 

mixture. That is, the dimension of any space lattice is 

determined by the expression: 

 Dimension of Lattice, D  q                           ( ) 

whereas, the number of design space points, A i or Aij 

or Aijk for (i ≠ j ≠ k =1, 2, 3, …, q) in a (q, m) 

simplex lattice design, N, [3] opined, is given as: 

  
(     ) 

  (   ) 
                                           ( ) 

Figure 1 and Table 1 show the number of design 

space points and dimension of {4, 3} space lattice 

obtained using Equations (1), (2) and (3). 
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Figure 1: 3D {4, 3} space lattice design 

 
Table 1: Pseudo-components for {4.3} Simplex 

Lattice 
No. of Space 

point, N 

Space 

point, A 
X1 X2 X3 X4 

1.  A1 1 0 0 0 
2.  A2 0 1 0 0 

3.  A3 0 0 1 0 
4.  A4 0 0 0 1 

5.  A12 ⅔ ⅓ 0 0 

6.  A13 ⅔ 0 ⅓ 0 
7.  A14 ⅔ 0 0 ⅓ 

8.  A23 0 ⅔ ⅓ 0 
9.  A24 0 ⅔ 0 ⅓ 

10.  A34 0 0 ⅔ ⅓ 

11.  A21 ⅓ ⅔ 0 0 

12.  A31 ⅓ 0 ⅔ 0 

13.  A41 ⅓ 0 0 ⅔ 

14.  A32 0 ⅓ ⅔ 0 

15.  A42 0 ⅓ 0 ⅔ 

16.  A43 0 0 ⅓ ⅔ 

17.  A123 ⅓ ⅓ ⅓ 0 

18.  A124 ⅓ ⅓ 0 ⅓ 

19.  A134 ⅓ 0 ⅓ ⅓ 

20.  A234 0 ⅓ ⅓ ⅓ 

 

1.3 Pseudo - Components in Mixture Design 

In mixture design, Pseudo – components are referred 

to as imaginary or coded variables used to simplify 

design construction and model fitting, thereby 

reducing the correlation between component bounds 

in constrained designs. This reduction in the 

correlations between the coefficients is achieved 

through the transformation of the “actual 

components, S” to the pseudo-components, X”. 

Pseudo-components, in effect, rescale the 

constrained data area so that the minimum amount 

allowed (the lower bound) of each component is zero 

in mixture designs as in Scheffe’s model [3]. 

 

 

2. SCHEFFE’S MODELS IN MIXTURE DESIGN  

Scheffe’s Models are most times referred to as the 

mixture models. They differ from the usual 

regression model due to the correlation between all 

the components in the mixture designs. Another 

difference is that the intercept term in the model is 

not usually included in the regression model [3].  

In mixture experiments, the levels of individual 

components of the mixture are not independent [9]. 

Assuming the mixture to be a unit quantity, then the 

sum of all proportions of the component must be 

unity. That is, 

                              (or     )   ( a) 

∑ x 

 

   

                 (or     )                  ( b) 

Thus, Equation (4) implies that Xi component of the 

mixture is within the limits: 

                                                ( ) 

The standard form of the full cubic mixture model is 

given as [9]: 

 (y)  ∑     

 

   

 ∑ ∑       

 

   

 ∑∑       (     )

 

   

 

 ∑∑ ∑           

 

     

                     ( ) 

where,    = linear blending portion due to the pure 

blend,    = 1 and    = 0;      ;  ( )   Expected 

response.     represents the quadratic nonlinear 

blending between component pairs, whose 

parameters may be either synergistic or antagonistic 

blending.      represents the full cubic nonlinear 

blending among component sets of 3, whose 

parameters may be either synergistic or antagonistic 

blending. 

The use of higher order terms according to [4] are 

frequently necessary in mixture models because (a) 

the phenomena studied may be complex and (b) the 

experimental region is frequently the entire 

operability region and are therefore large, requiring 

an elaborate model. Therefore, in full cubic degree 

mixture model design, Equation (6), which is a “full 

cubic model” is most suited for it. 
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2.1 Relationship between the Pseudo and 

Actual Components 

In Scheffe’s mixture design, the Pseudo – 

components, Xi have relationship with actual 

components, Si. The relationship between X and S as 

expressed by [9] is given as: 

  A  S   A  
 

S
 or A  S      S  

 

A
   A  

 S                                                     ( ) 

where: A    ; A is the actual – pseudo 

proportionality coefficient. 

Equation (7) is used to determine actual component 

of the mixture when the Pseudo components are 

known, and vice versa. 

For q components, and in keeping with the principle 

of absolute volume, the sum of the actual 

components mixture in a given factor space is giving 

as [9]: 

S  ∑ S 

 

   

 S   S  S        S      S          ( ) 

Dividing Equation (8) by the sum of the actual 

component mixture gives: 
 

 
 

                         

 

 
  

 
 

  

 
 

  

 
     

    

 
   

  

 
 

                                      ( ) 

Where, 

S 

S
     

S 

S
    

S 

S
    

S   

S
       

S 

S
 S  

Thus, the general form of ith factor space is: 

   
S 

S
              (i    ,  ,    , q)        (  ) 

Equation (10) is the proportion of the ith constituent 

component of any considered mixture design.  

As in a general mixture problem, the measured 

response is assumed to depend only on the 

proportions of the ingredients in the mixture, and not 

the amount of the mixture. Therefore, modelling, 

consequent on experimentation can be based on the 

actual and pseudo components. Thus, the 

transformation of the actual components, Si into 

actual ratio components, Zi is jettisoned [3].  

Then, expressing the actual – pseudo proportionality 

coefficient expression (Equation (7)) in matrix form 

is;  

[A]  
[ ]

[S]
 [S]  [ ]                                 (  ) 

In [3] this expression was developed to mean the 

inverse or transpose matrix of the actual components 

corresponding to the pure blend Pseudo – 

components of space points as follows: 

[A]  [S]   [S]                                (  ) 

[A] is defined in (13) below this page. 

 

2.2 Determination of Actual Components of the 

Nonlinear Blending Mixture, S’
N,q 

In [3] the expression given for the other actual 

components of the binary mixture, S’
N,q for the 

remaining N – q factor points was: 

[
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 [  ,      ,      ,                  ,   ]
 
 

[S , 
 ]  [A]  [  , ]

 
 [S]  [  , ]

 
                   (  ) 

These derived actual components corresponding to 

the remaining N – q lattice points of the pseudo – 

components mixture proportions are used as other 

mixture proportions in the experimentation so as to 

obtain their corresponding responses. 

 

3. Formulation of the Modified and Generalized 

Full Cubic Polynomial Mixture Model and 

Design Response Coefficients 

Scheffe’s full cubic polynomial in Equation (6) 

possesses some characteristics which do not agree to 

mixture design expressions in Equations (1) and (3). 

These characteristics limit the application of the 

model in mixture design. Among these, the 

drawbacks identified are as follows: 
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(i) It does not make provision for instances when 

          in the second and third terms of 

the equation, which would be the case in full 

cubic polynomial. 

(ii) In a third – degree space lattice, the lattice 

coordinates, pseudo – components, Xi are 

defined in Equation (1) as:  

    ,
 

 
,
 

 
, ,      ,

 

 
,
 

 
,   

Hence, the Scheffe’s model in Equation (6) does not 

clarify the fact that   ,           are equal for full 

cubic polynomial at the centroid of the lattice body 

within I, j, k coordinate. 

That is, 

           
 

 
  (i,   and    , , ,  , q  i   )   (  ) 

Thus, Equation (6) is modified to take into 

consideration these drawbacks as follows: 

  (y)  ∑    
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      (        )        (  ) 

Rearranging Equation (16) further gives: 

 (y)  ∑    

 

   

 ∑ ∑        

 

     

 

   

 ∑ ∑        (     )

 

     

 

   

 

 ∑ ∑        

 

     

 

   

 ∑ ∑        (     )
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         (        )       (  ) 

Expanding the Equation (17) gives: 

 (y)                x           

  (   ),  (   )          (     ) 

   (   ),  (   )  ( (   )    )           

   ,(   ) (   )          (     ) 

     ,(   ) (   )  ( (   )    )             

    (   )(   ),  (   ) (   )                         (  ) 

In a pure mixture response at ith point on the factor 

space, yi, component Xi =1 and components Xj, Xk . . 

.  Xq are all equal to zero. Then, Equations (17) or 

(18) becomes: 

 (y )  y                              (  ) 

Thus, in pure mixture point, it can be generalized 

that: 

y                 (i   , , ,  , q )           (  ) 

y      y                 (  ) 

For the binary mixture space point, say, Aij, 

lying on the borderline i – j of two components Xi and 

Xj, when Xi > Xj, that is, when Xi = ⅔ and Xj = ⅓, 

while other components are zeros. The response at 

this point is yij. Then, Equations (17) or (18) 

becomes: 

 (y)  y      
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              (  ) 

For the binary mixture space point, say, Aji, lying on 

the borderline i – j of two components Xi and Xj, 

when Xj > Xi, that is, when Xj = ⅓ and Xi = ⅔, while 

other components are zeros. The response at this 

point is yij. Then, Equations (17) and (18) becomes: 
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For the thrice mixture space points, say, Aijk, lying on 

the body of components Xi, Xj and Xk, that is, when Xi 

= Xj = Xk = ⅓, while other components are zeros at 

any space point, the response at this point is yijk. 

Then, Equations (17) or (18) becomes: 
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Solving Equations (22) and (23) simultaneously for 

    and    : 
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Substituting the expression     in Equation (25) into 

Equation (23) gives     as follows: 
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       y       y       y              (    y )         (  ) 

Substituting Equations (25) and (26) into (24) gives 

     as follows: 
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       y        y      y   y      y  

     y                                                  (  ) 

Equations (17) and (18) are the generalized mixture 

design model for the full cubic polynomial of q 

variables mixture lattice. The term, yi, yij, yji and yijk 

correspond to the mixture response at the respective 

space points i, (ij, ji) and ijk of the actual pure blend, 

Si for i = 1, 2, 3, …, q (principal points); derived 

actual binary blends, Sij and Sji; and derived actual 

thrice blend, Sijk respectively, which are obtained 

from the laboratory experiments. The coefficients, 

  ,   ,    ,              are defined in Equations (25), 

(26) and (27).  

 

4. SCHEFFE’S MODEL AND CONTROLLED 

EXPERIMENT 

The new set of pseudo – components are also 

systematically selected in the control mixture design 

proportions; while their actual interacting component 

mixture, Si corresponding to the control pseudo – 

component are determined in the similar manner the 

inter - component mixture proportions are 

determined in the main experiments. The pseudo – 

components can be of any degree and must conform 

to Equation (4).  

In a controlled experiment, the number of new sets 

of factor space points should be greater or equal to N 

space points of the original factor space. This number 

is required to confirm the adequacy of the model 

developed in Equations (17) or (18). 

Just as in the model experiment, two (or more) 

parallel and simultaneous experiments are carried out 

(replication principle) in control experiments. The 

average response of the replication of each 

experiment gives a valid and more reliable estimate 

which is possible with one observation only. This set 

of mixture proportion can be denoted as: C1, C2, C3, 

C4, C5, . CN-1, CN and CN+d. 

 

5. SCHEFFE’S MODEL VALIDATION AND 

ADEQUACY 

The results of the developed model in Equations (17) 

or (18) is tested for adequacy in relation to the 

experimental results in the control tests. These 

experiments which are replicated at least in three 

places for each design point in the main and control 

tests are evaluated for adequacy at each level 

(parallel test) and over the entire experiment 

(vertical test).  

Replicate test run is necessary due to human 

inconsistency, variation in test tools or equipment 

and environmental factors such as change in 

humidity, temperature pressure, etc, which usually 

affect the experimental results. The mean response 

of the replication of each experiment gives a valid 

and more reliable estimate than which is possible 

with one observation only. The variance of the 

replicate response at each design point is evaluated. 

The NULL HYPOTHESIS, Ho and the ALTERNATE 

HYPOTHESIS, HA are tested at a specified significance 

level, α, which represents the maximum tolerable risk 

of incorrectly rejecting the null hypothesis, Ho. 

Among the tests used to check the significant levels 

of difference between model and experimental 

responses include t – test, F – test, Z – statistics and 

X2 – statistics. 

[10] gave the expression for the replication variance, 

  
  at each design point as: 

S 
  

 

   
∑(    ) 

 

   

           (     )     (  ) 

where Yi is the individual replicate responses at each 

control point; n is the number of parallel observations 

at every design point; n − 1 is the degree of freedom 
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for the replicate responses at each control point and 

v; and Y  is the mean of the responses for each 

control point. That is: 

  
 

 
∑  

 

   

                 (     )         (  ) 

Then, the replication variance across all the points of 

observation, S 
   will be the sum of the individual 

replicate variances, S 
  for each design point divided 

by the degree of freedom of the whole points of 

observation, Ve. That is, 

S 
  

 

  
∑S 

 

 

   

 
 

   
∑S 

 

 

   

       (     )         (  ) 

Therefore, the random error or standard deviation or 

replication error value becomes: 

   √S 
  √(

 

  
∑S 

 

 

   

)  √(
 

   
∑S 

 

 

   

)            (  ) 

 

5.1 Student t – Test Method 

The t test (also called Student’s t – Test) compares 

two “means” and tells if they are different from each 

other. The t – test also defines how significant the 

differences are. In other words, it reveals if those 

differences could have happened by chance [3].  

As cited by [11] and [12] the expression for t – test 

variance in replicate experimental response is given 

as follows: 

t  
  √ 

  √   
                                   (  ) 

where, n is the number of parallel observations at 

every point, Sy is the replication error of the entire N 

design points in the control experiments, t is the t – 

statistics and   is the estimated standard deviation or 

error. 

The method of obtaining the t – variance using 

Equation (32) is cumbersome. Hence, [3] gave an 

advanced and simpler expression for obtaining the t 

– test variance in replicate experimental response. 

Their equation gives exactly the same value obtained 

using Equation (32). The equation is given as follows 

[3]: 

t  
∑(     )

√
 

(   )
( ∑(     )
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Ye and Ym are the average experimental and model 

responses respectively. 

N is total design points in the control experiments, t 

is the variance from the t – statistics. 

The t – value obtained in Equations (32) and (33) are 

usually the same. They are compared with the one 

from the standard statistical table according to [13] 

at enhanced (  ⁄ ) significant level and degree of 

freedom, Ve. That is,  (   )(  ). When the t – value 

from the standard statistical table,  (   )(  ) is 

greater than those of the t-values obtained in either 

Equations (32) and (33), the Null hypothesis is 

accepted and the model is adequate. Otherwise, the 

Null hypothesis is rejected, the Alternate hypothesis 

is accepted and the model is not adequate. 

 

5.2 F – Statistics (Fisher) Test Method 

This test compares the variance from the model 

response, Si with that from the experimental 

responses. The equation for Fisher test is given as 

[11]:  
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Se
2 and Sm

2 are variances from the experimental and 

model responses 

S1
2 is the greater of Se

2 and Sm
2; S2

2 is smaller of the Se
2  

and  Sm
2 

Ye and Ym are experimental and model responses;  
 
 

and   
 
 are mean values of experimental and model 

responses; N is the sample group or total control space 

points. 

           (Degree of freedom of design points) (  ) 

 

Fisher’s tests the adequacy of the model by 

comparing the responses of the experimental and 

model results in the control sample group. The Null 

Hypothesis is accepted and Alternative Hypothesis 

rejected if and only if: 
 

  (  ,  )
     (  ,  )                              (  ) 

where, [13] gave critical values of the   (  ,  ) 

distribution in which   and   have their usual 

meaning;    and    are the number of degrees of 

freedom defined in Equation (37). 

 

6. CONCLUSIONS AND RECOMMENDATIONS 

The Scheffe’s full cubic mixture model was identified 

to possess some characteristics limiting its application 
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in the third-degree mixture design model. Among 

these limitations are: (a) It does not make provision 

for instances when Xi < or > Xj in the second and 

third terms of the equation, which would be the case 

in full cubic polynomial, (b) it does not clarify the fact 

that Xi, Xj  and Xk are equal for full cubic polynomial 

at the centroid of the lattice body within any i, j, k 

design space point. These characteristics negate the 

principle of dependency of the individual components 

of any design mixture space. 

The present work further modified the cubic mixture 

polynomial, taking into account the deficiency of the 

Scheffe’s full cubic mixture models. Consequent upon 

this, a generalized third-degree mixture model was 

developed for Nth components mixture design. Test 

for mixture model adequacy which can be developed 

from the generalized equation herein are outlined, 

while the procedure for accepting Null or Alternate 

hypotheses is discussed and presented. 

Based on the new model formulated, the following 

recommendations are made: 

(a) The present third-degree Scheffe’s model 

developed in this study should be adopted by 

researchers and practicing engineers for use in 

larger variable space engineering mixture design 

model formulation. 

(b) The systematic and procedural approach to 

mixture design for Null and Alternate hypotheses 

selection criteria outlined in this study is 

convenient for use in experimental or empirical 

studies. 

(c) The adequacy test methods (Student t – test and 

Fisher’s F – test) in response surface 

methodology outlined in this work is very 

convenient for use in experimental or empirical 

studies. 
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