
 

 
* Corresponding author, tel: +234 – 703 – 030 – 5327  

                                                      

AUTOMATIC GENERATION OF ROOT LOCUS PLOTS FOR LINEAR TIME  

INVARIANT SYSTEMS 
 

N. Durutoye1,* and O. Ogunbiyi 2 

1 PEA DEPARTMENT, NIGERIA LIQUIDLY NATURAL GAS, BONY ISLAND, RIVERS STATE. NIGERIA. 
2 ELECTRICAL AND COMPUTER ENGINEERING DEPT, KWARA STATE UNIVERSITY, MALETE, KWARA STATE. NIGERIA. 

E-mail addresses: 1durutonye.nathaniel@yahoo.com, 2 olalekan.ogunbiyi@kwasu.edu.ng  

 

ABSTRACT 

Design and analysis of control systems often become difficult due to the complexity of the system model and the design 

techniques involved. This paper presents the development of a Tools Box in Microsoft Excel for control engineer that uses 

root locus as a time domain technique for system design and analysis. The Tool Box can also serve as a computer-aided 

graphical analytical tool for trainers. The work was done in two phases: the first phase is the development of a 

programmable algorithms for root locus using the angle condition and bisection method while the second phase is the 

implementation of the developed algorithms. The implementation was done using Microsoft Excel (R) Visual Basic 

Application (VBA). Results of simulations for different systems show the potential of the Tool Box as an alternative for 

other software package and the ease of using it on the readily available Microsoft Excel environment. 
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1. INTRODUCTION 

The evolution of Control Engineering practice has 

propelled the performance of any design system to a 

reasonable satisfaction which can always be improve on 

continually basis. Since control system design is 

invariably an iterative process, the computer, combined 

with reliable software remove the tedium of performing 

repetitive calculation and/or analysis [1, 2]. 

The relationship between computer application and 

educational sector has introduced a mechanism that 

facilitates high level of understanding to learning. It 

brings theoretical analysis of a particular topic to 

practical reality. 

An advancement in the study of control theory is the 

development of method for graphically extracting the 

system root in a continuous manner as some parameters 

varies. This method referred to as Root locus techniques 

and was developed by Evans in 1948 [3]. It has become 

well-known and it has survived the innovation in control 

theory, it has equally been applied to classical 

formulation and the more recent state variable 

approaches. Root locus techniques is referred to as a 

method that extract all root of characteristic equation 

using a set of rules derived from general property of the 

transfer functions. It helps the designer to predict the 

effects on the location of the closed-loop poles of varying 

the gain value and adding open-loop poles or open-loop 

zeros. In addition to its capability to describe the effect of 

varying gain upon percent overshoot, settling time, and 

peak time, its real power is its ability to solve problems 

with higher order systems. It provides a graphical 

representation of a system's stability such that the 

designer can clearly see ranges of stability [1, 4]. 

The performance of a feedback control system depends 

greatly on the location of the root of the characteristics 

equation in the s-plane. Root locus technique investigates 

the trajectories of the root of the closed loop system 

characteristics equation (root loci) as a particular 

parameter is being varied. The root locus plot is a 

powerful and reliable tool in the analysis of feedback 

control systems as presented by various authors [3, 5, 6]. 

The plot may become easier to sketch once the 

fundamentals are well understood but it is 

computationally challenging to generate automatically. 

Using Microsoft Excel® VBA (Visual Basic Application) to 

solve root locus in a common application that is readily 

available to every student and instructor (teacher) is 

highly essential [7, 8], it is not expensive in comparison 

with MATLAB or any other control application software. 

An Excel® VBA was developed in this work to generate 

the root locus; this is one of the time domain analysis 

through which a system design and performance can be 

optimized [3]. 
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In designing any system, time always happen to be a 

major constraint, therefore the use of complex graphical 

and mathematical tools which required long hours of 

manual implementation may not be appropriate. Manual 

calculations for higher order system such as four (4) and 

above may be quite unpleasant to solve [5, 9]. 

Another inspiration evolves from experience in that: due 

to the nature of control engineering option in electrical 

field, students are always running away from this option 

owing to the fact that its theorems and principles looked 

somehow abstract in nature. As a result, this computer 

aided application in Excel® VBA will help the students to 

perform a lot of control experiments on easily accessed 

Microsoft office package. 

The problem addressed in this paper is the development 

of an Excel® VBA module that will facilitate the 

generation of the Root Locus plots for teaching and 

design purposes. The objectives are to; develop a suitable 

iterative algorithm for generating Root Loci and realize 

the resulting algorithm using the commonly available 

Excel® VBA software.  The extent of the work done does 

not address either the case of computer controlled 

systems or systems with time delay. In other words, only 

strictly linear time invariant systems were considered. 

Different algorithms were used in the past [5, 6, 9] but 

some become intractable in some situation. This work 

uses a search algorithm technique, which can be 

embedded in most software. 

 

2. SYSTEM DESIGN 

The objective of this research is the development and 

implementation of a computer program for the automatic 

generation of root loci using Microsoft Excel® VBA 

(Visual Basic Application). The algorithm employed for 

this purpose, the organization and documentation of the 

resultant program are discussed in this section. 

Given a feedback control system shown in Figure 1, the 

closed-loop transfer function  ( )of the system is given 

as: 

 ( )   
 ( )

 ( )
  

 ( )

   ( ) ( )
                         ( ) 

 
Figure   Feedback system with open loop transfer function 

 ( ) ( ) 

 

The characteristic equation Q(s) for this closed-loop 

system is obtained by setting the denominator of the 

right-hand side of equation 1 to zero. 

 ( )     ( ) ( )                                (2) 

Considering a variable K in the open loop transfer 

function  ( ) ( ) such that.  

 ( ) ( )  
  ( )

 ( )
                                        ( ) 

Where,  ( ) are the zeros and  ( ) are poles of the open 

loop system and are polynomials of orders   and   

respectively, equation 2 can be rewritten as 

  
  ( )

 ( )
                                                    ( a) 

 ( )    ( )                                                 ( b) 

The characteristic equation of a typical linear time 

invariant system can be expressed as shown in equation 

(5). 

    ( )     
∏ (𝑠 − 𝑧𝑗)
𝑚
𝑗=1

𝑠𝑞 ∏ (𝑠 − 𝑝𝑖)
𝑛
𝑖=1

         (5) 

In (5),   is the root locus gain;  ( ) is the open loop 

transfer function 𝑧𝑗 , 𝑗    , 2,   . . .  , is the set of finite 

open loop zeros and 𝑝𝑖 , 𝑖    , 2,   . . .  , is the set of finite 

open loop poles. Available algorithms for sketching this 

root locus can be categorized as follows: 

i. Direct Methods: These are the algorithms in which 

various numerical schemes are used to determine 

the roots of the polynomial as K is varied in some 

prescribed manner. Since this algorithm is limited to 

polynomials, they cannot handle systems with dead 

time such as time delay systems. 

ii Area Search Algorithms: These classes of algorithms 

generate the root loci by grid-search techniques over 

a specified area of the complex frequency - plane (s-

plane). The grid search method, in effect is used to 

determine the points sanctifying the necessary and 

sufficient conditions for root locus points. Any of the 

angle or magnitude condition equation can serve as 

the search criterion. 

iii. Branch Following Algorithm: This method was first 

presented by R.H. Ash and G.R. Ash in 1968. The 

algorithm in this case often presume “a prior” 

knowledge of a point on the locus of interest and use 

the geometric and trigonometric asymptotes 

properties of the locus at the given point to predict a 

new point on the locus. An algorithm employed in 

this research is based on Branch Following 

Algorithm.  

 

2.1 Sketching the Root Locus  

Plot of root locus of a system in Excel VBA® was carried 

out by following the algorithm below: 

(i) Determination of the number of poles ( )and the 

number of zeros ( ) of  ( ) ( ). 

(ii) Determination of the location of the poles and the 

number of zeros of  ( ) ( ). 

𝐺(𝑠) 

𝐺(𝑠) 

𝑈(𝑠) 𝐶(𝑠) 

- 

+ 
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(iii) Determination of the number of branches. The 

root locus will have a total of branches equal to the 

number of poles in the open loop transfer function. 

(iv) Loci of the real axis: The sections of the root locus 

on the real axis of the complex plane are 

determined by counting the total number of finite 

poles and zeros of  ( ) ( ). to the right of the 

points in question.  For values of    , points of 

the root locus on the real axis lie to the left of an 

odd number of finite poles and zeros. 

(v) Determination of the asymptotes of the root loci. 

For large distances from the origin in the s-plane, 

the branches of a root locus approach a set of 

asymptotes.  These asymptotes emanate from a 

point in the complex plane on the real axis called 

the center of asymptotes    given by 

    − 
∑ 𝑝𝑖
𝑛
𝑖=1  −  ∑ 𝑧𝑗

𝑚
𝑗=1

 −   
                                      ( ) 

The angle of the asymptotes are determined as  

𝜃  ± 
 8 0(2𝑘   )𝜋

 − 
,   𝑘   , ,2, , …                 ( ) 

Where 𝑝𝑖are the poles, 𝑧𝑗  are the zeros,   is the number 

of poles and   the number of zeros.  

(vi) Break-away and Break-in Points: The conventional 

breakaway/break-in points are defined as the 

points on the real-axis at which a root locus 

branches leave (break away from) or enter (break 

into) the real axis.   The location of the breakaway 

point can be determined by solving the following 

equation for   . 

∑
 

(   𝑝𝑖)

𝑛

𝑖=1

    ∑
 

(   𝑧𝑗)

𝑚

𝑗=1

                               (8) 

A breakaway or break -in point exists if and only if two 

singularities odd and even are of the same type or if such 

a pair is complemented by a branch emanating from its 

opposite kind from infinity. This clue paves a way to 

logically program and greatly simplify the algorithm. 

A logical procedure was incorporated into the algorithm 

such that for every pair of singularities that exist a break 

point, an 𝜀   . 2 is assigned to y-axis value and the 

procedure iterate horizontally. If it converges, the point 

on the x-axis at which it converges is taken as break-

away or break-in point, otherwise there is no break-away 

or break-in point at that segment of the root locus. 

(vii) Departure and Arrival Angles:  

The departure angle of the root locus from a complex 

pole is: 

𝜃   8 
0                                      ( a) 

and the arrival angle is: 

𝜃   8 
0 −                                   ( b) 

(viii) Plotting and calibration of the root locus using the 

angle condition and bisection method. 

(a) Angle Condition: In this work, the technique used for 

plotting the locus was based on the angle condition 

expressed from the characteristic equation (5).From 

the concepts of complex variables, the angle 

condition can be expressed as equation (  ). 

∑ 𝑟𝑔(𝑠 − 𝑧𝑚)   𝑟𝑔(𝑠 − 𝑝𝑛) −
𝑞𝜋

2
− (2𝑟   )𝜋       (  ) 

Where 𝑟   ,  , 2,   . . . ( −  −  ) and 𝑞  is the system 

type order. 

The algorithm works in such a way that points in the s-

plane must be determined such that they satisfy the 

angle condition. For an arbitrary point s in the complex 

plane, let  𝑟𝑔{ ( )}be an angle function defined relative 

to the gain normalized open loop transfer function such: 

∑ 𝑟𝑔{ ( )}  (2𝑟   )𝜋  
𝑞𝜋

2
                                         (  ) 

 𝑟𝑔{ ( )}  ∑  𝑟𝑔(𝑠 − 𝑧𝑚)

𝑀

𝑚=1

 ∑ 𝑟𝑔(𝑠 − 𝑝𝑛)

𝑁

𝑛=1

   ( 2) 

Let exploratory point (test point)𝑠  𝑥  𝑗𝑦 

 ( )   (𝑥  𝑗𝑦)                                                    (  ) 

Therefore, equation  2can be rewritten as; 

 𝑟𝑔{ ( )}  ∑ 𝑡𝑎 −1 (
𝑦 − 𝑦𝑚
𝑥 − 𝑥𝑚

)

𝑀

𝑚=1

−∑𝑡𝑎 −1 (
𝑦 − 𝑦𝑛
𝑥 − 𝑥𝑛

)   𝜃

𝑁

𝑛=1

           (  ) 

Where 𝑧𝑚  𝑥𝑚  𝑗𝑦𝑚 , 𝑓𝑜𝑟    ,2, ,𝑀  is the set of 

finite open loop zeros. 

𝑝𝑚  𝑥𝑛  𝑗𝑦𝑛  𝑓𝑜𝑟    ,2, ,⋯𝑁   is the set of finite 

open loop poles. 

Hence, a point𝑆0 lies on the root locus if and only if it 

satisfies the angle condition (equation   ). 

 ( 0)  {∑ 𝑡𝑎 −1 (
𝑦 − 𝑦𝑚
𝑥 − 𝑥𝑚

)

𝑀

𝑚=1

−∑𝑡𝑎 −1 (
𝑦 − 𝑦𝑛
𝑥 − 𝑥𝑛

) 

𝑁

𝑛=1

}            

− (2𝑟   )𝜋  𝜃                                 ( 5) 

Equation ( 5) indicates that the calculation of legitimate 

root loci points can be achieved by finding the zeros of 

the angle function - a transcendental equation.  

Many techniques may be used but the need to calculate 

derivatives could limit the complexity of systems that can 

be solved, so a derivative-free method is usually 

preferred. As a result, in this work, the bisection method 

was used. 

A simple scheme for achieving the iterative process can 

start with some 𝜃0   and then determine the 

improvements,𝜃0 on the initial guess using the "bisection 

method". In addition to the ability to determine suitable 

converging iterates, the bisection method requires that at 

start-up, two values (singularities) of the variable that 

bracket the real value must be known. This implies that 

at every stage of the computation, two points s  and s2 

must be available such that ( 1)    𝑎 𝑑  ( 2) <  .  

bisection method for the angle loci 
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Let 𝑥 be the real and 𝑦 be the imaginary part of 

function ( )define for the real part of a point on the 

locus, 𝑙𝑜 ≤ 𝑥 ≤ ℎ𝑖   𝑜𝑟 𝑙𝑜 ≤ 𝑥 ≤ ℎ𝑖 . “ 𝑙𝑜 ” and " ℎ𝑖 " are 

interval search area which can be in coordinate of  𝑥 or 

𝑦and are initialize by asymptotic line. In this interval, 

if ( )  (2𝑟   )𝜋  
𝑞𝜋

2
, correspondingly an exploratory 

point that make  (𝑥  𝑗𝑦)  to equals (2𝑟   )𝜋  
𝑞𝜋

2
is 

known as a closed loop pole ( ). 

In order to implement the bisection method, a simple test 

is needed, to see if function (𝑙𝑜 , 𝑦), has an argument 

(angle) greater than𝜋  𝑜𝑟 (2𝑟   )𝜋  
𝑞𝜋

2
and if function 

 (ℎ𝑖 , 𝑦), has an argument less than | 8 | or| ∗  8 |then 

that 𝑥the real part of the root (locus) exist in that 

interval.  

The process involved in the search and check can be 

described by Figure  , such that: 

 { ( ) ( )   ∑ (𝑠 − 𝑝𝑛)

𝑁

𝑛=1

− ∑  (𝑠 − 𝑝𝑚)

𝑀

𝑚=1

       (  ) 

 (𝑥  𝑗𝑦)  (2𝑟   )𝜋  
𝑞𝜋

2
                    (  ) 

 (ℎ𝑖  𝑗𝑦)  𝜃1  𝜃2  𝜃3                          ( 8) 

 (ℎ𝑜  𝑗𝑦)  𝜃4  𝜃5  𝜃6                           (  ) 

  
 

2
(𝑙𝑜  ℎ𝑖)                                    (2 ) 

Surely the contribution of the arguments depends on the 

part of the s-plane being considered. If one is iterating 

horizontally, there will usually be two bounds depending 

on how close to the real singularities and the asymptotes. 

 
Figure 1: Angle measurements from open loop poles and 

open loop zero to test point 𝑆  through bisectional 
method. 

 

A solution would simply use the asymptote for the 

branch as one boundary and the other can then be 

determined by actually trying small steps away from it 

till the sign changes or else intelligently use the bounds 

established by the singularities that originate the branch. 

Once the interval has been established it is trivial to 

determine the final best value. Consequently, an 

important function is the subroutine which works for 

each singularity and determines the argument of 

𝑎𝑟𝑔{𝑠 − 𝑤𝑙}  where 𝑤𝑙 is any of the 𝑁  𝑀  𝑞 

singularities that define the open loop transfer function 

 (𝑠) (𝑠). 

 (ℎ𝑖  𝑗𝑦)  ?                                (2 ) 

The first step in the bisection method involves dividing 

(bisecting) the interval 𝑙𝑜 ≤ 𝑥 ≤ ℎ𝑖 into two 

subintervals 𝑙𝑜 < 𝑥 <  and 𝑙𝑜 < 𝑥 < ℎ𝑖   where 

  
1

2
(𝑙𝑜  ℎ𝑖) the subinterval to be considered next is 

obtained by replacing 𝑙𝑜 by   if  (  𝑗𝑦)  

|𝜋|or(2ℎ   )𝜋  
𝑞𝜋

2
 because in this case  (  𝑗𝑦)  |𝜋| 

or (2ℎ   )𝜋  
𝑞𝜋

2
 but less than  (𝑙𝑜  𝑗𝑦). Conversely, 

if (  𝑗𝑦) < | 𝜋|   then subinterval to be considered is 

obtained by replacing ℎ𝑖  by  because in this 

case  (  𝑗𝑦) < |𝜋| or (2ℎ   )𝜋  
𝑞𝜋

2
but greater 

than (  𝑗𝑦), therefore, the next subinterval will exist 

as 𝑙𝑜 < 𝑥 <  and so this interval must contain a 

root(𝑥, 𝑦). Note that 𝑙𝑜and ℎ𝑖  are taking to be boundary 

under which root of the function are bracketed and is 

determine by asymptotic line.  The task of finding the 

root has now been refined from considering the interval 

𝑙𝑜 ≤ 𝑥 ≤   and replaced by the task of finding the 

unknown coordinate part of the root in an interval half 

the size until a true value is found. Once 𝑥 value is found, 

𝑦value will be step up or step down by a constant value 

base on the form that characteristic equation takes. 

 

2.2 Root Locus Performance Parameters 

i.  Gain Margin: This is defined as the factor by which 

the design value of K must by multiplied before the 

closed loop system becomes unstable, i.e. 

𝑀  
  
  
                                            (22) 

Where    is value of system parameter   on the 

imaginary axis of s-plane and   is the design value of 

system parameter  . 

ii. Phase Margin: This is the sum of 180o and the phase 

angle of the open loop transfer function at the point 

where the magnitude of the open loop transfer 

function is equal to unity given by; 

 𝑀    𝑀   8 
0      (𝑗 )                   (2 ) 

 

 . SOFTWARE DESIGN 

A modular approach was employed at the design stage of 

this control toolbox, the first step taken was to 

decompose the whole program into a mutually exclusive 

set of procedures (subroutines or functions) such that 

the combined total of all with the main body of the 

program can fully implement the process described in 

the outline shown below. Consequently, each procedure 

was then developed separately before final integration to 
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form a whole module as shown in the modular plan of 

the whole system. Each Procedure in this case is referred 

to either as a subroutine or a function in an Excel(R) VBA 

application. 

Excel VBA Root Locus Toolbox is a user friendly design 

toolbox; it accepts data through some cells and display 

information in some, the execution of a program is 

activated through a “Compute root-locus”. The interface 

can be categorized into two; input and output cells. In 

figure 2, point “A” is initiated with spin button which 

inputted numbers of both poles and zeros in a transfer 

function of a given system, the number of singularities in 

transfer function can be increment or decrement by 

clicking on these buttons. Point “B” comprises of three 

rows, each three rows for both pole and zero, each rows 

is caption with “Real part  , imaginary part  , and 

symbol”, real part are the real coefficient of the 

singularity, imaginary part are the imaginary coefficient 

of the singularity while symbol are initialized with “𝑝” for 

poles and “𝑧” for zeros. Point “ ” are used to initialize the 

boundary of generated chart, that is, extend of the size of 

the chart, this point comprises of four rows and value 

must be inputted there.  Point “𝐷” is initiated with 

command button and mark the execution of the program. 

Point “𝐸” only display the singularities inputted in point 

“ ” in descending order. Point “ ” is a series of cells that 

display the generated root locus.  Point “ ” is a chat that 

is plotted with the generated roots. 

 

 . SIMULATIONS AND RESULTS 

Implementation of the algorithm was carried out using 

Microsoft Excel® VBA. It has a number of control buttons 

that facilitate the adjustment of the system parameters. 

The numbers of poles and zeros can be entered directly 

or by means of two spin buttons. System type order can 

similarly be adjusted or entered using a corresponding 

spin button. These completely determine the character of 

the open loop system. Initiation of the root-locus 

calculation is carried out by clicking on the command 

button designated as “Compute root-locus”. The final 

realization of the root-locus tool has an opening window 

as shown in Figure 2. 

 

 .  Tests of the Root-Locus Generator 

The ability to generate the root-loci for a given system 

depends on the structure and relative placement of the 

poles and zeros of the system. Three broad categories can 

be recognized while a fourth is a combination of the 

other types. The first category includes different types of 

systems with all poles and no zeros. The next class has a 

combination of poles and zeros. This has two sub-classes 

where the difference between the number of poles and 

zeros are either  ,   and greater than  . In the first two 

sub-classes there may be closed loci depending on the 

location of the singularities on the real axis. These are 

tested in the following experiments. The computation 

time is observed to depend on the following parameter: 

The size of the system: that is the number of singularities 

(poles and zeros) of the system; computation time are 

more for complex transfer function. The step size, “∂” 

(the distance between each point): the bisection iteration 

converges faster for larger values of ∂ and this reduces 

number of point generated. 

 
Figure 2: GUI Interface on Microsoft Excel 
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The number of branches: from the tested transfer 

function the number of branches is seen to be a function 

of time, the high the number of branches the high the 

execution time. 

The root-locus tool determines its different branches 

such that whenever a transfer function is defined and the 

command button clicked, it first determines all the 

branches on the real axis where they exist, then 

vectoring to determine either break-in or break-away 

points as the case may be between the odd and even 

singularities on the real axis. The break branches are 

then determined using the asymptotes as bounds for 

trials and the roots are extracted progressively for 

increasing values of the imaginary part of the roots. 

The simulations presented here reflect a progressive 

increase in complexity where first all the singularities are 

poles, then a progression of zeros are added to the 

transfer function with the location of the zeros being 

modified to change from the trivial when the successive 

odd and even singularities are of opposite type (trivially 

no break-away or break-in points) to more complex 

cases where there may be both break-away and break-in 

points. The simulations for different systems are as 

presented in Figures 3 to 12. 

The normalized transfer function “ ( )2” has two poles 

and one zero. The iteration started by pairing the 

singularities into odd and even number from right to left 

for real singularities. It checked if both odd and even 

singularities are of the same type, in this case, the first 

set of odd and even singularities are of different type 

(the first singularity pole p = -1 and the second 

singularity zero z = -2). It is certain that there will not be 

a break branch and path of locus along the real axis 

cannot exceed the range of paired singularities (odd and 

even singularities) therefore, a small decrement say, step 

size “∂ “    .   is deducted from most positive 

singularity until it reaches the second singularity, at each 

deduction, test point angle is checked to confirm if it 

equal to corresponding angle conduction (see equation 3 

and 4), if it equals, the corresponding test point is taken 

as root for that point. The first segment of the root 

terminated immediately step size “∂” decrement equal to 

the second root of that paired singularity. The iteration 

proceeds to the next paired root but in this case, it is only 

one root that is left, since only remaining root is real root 

with no imaginary, it follows the same iteration process 

as observe in first paired root. In this case the search root 

tends to infinity and intentionally truncated once “∂” 

decrement equal chart boundary along negative x-axis. 

The normalized transfer function “ ( )3” has two poles 

and one zero like “ ( )2”  ”but the position of the zero in 

this case is different , the iteration started by pairing the 

singularities, it checks if paired singularities are of the 

same type, in this case the singularities are of the same 

type (the first is pole p = -1 and the second is pole p = -

3), it is certain that there will be a break branch and path 

of locus along the real axis cannot exceed the range of 

paired singularities therefore, a small decrement say, 

step size “∂ “    .   were deducted from most positive 

singularity until it reaches the second singularity, at each 

decremented step, test point angle is compare with 

corresponding angle conduction, if the  compared test 

point is valid, the corresponding test point is taking as 

root for that point. The breaking point is determine by 

changing a step size “∂ “ in real axis to imaginary axis  

from y     to a step size “∂ “    .   for a start and iterate 

horizontally for every  increment. The program has a 

logical operation to change or determine path of search 

either by vertical or horizontal iteration especially for 

function that has sphere topology. 

The normalized transfer function “ ( )2” has two poles 

and one zero. The iteration started by pairing the 

singularities into odd and even number from right to left 

for real singularities. It checked if both odd and even 

singularities are of the same type, in this case, the first 

set of odd and even singularities are of different type 

(the first singularity pole p = -1 and the second 

singularity zero z = -2). The normalized transfer function 

“ ( )2” has two poles and one zero. The iteration started 

by pairing the singularities into odd and even number 

from right to left for real singularities. It checked if both 

odd and even singularities are of the same type, in this 

case, the first set of odd and even singularities are of 

different type (the first singularity pole p = -1 and the 

second singularity zero z = -2). 

 
Figure 3: Root-locus plot for  ( )1  
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Figure 4:    Root-locus plot for ( )2  
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It is certain that there will not be a break branch and 

path of locus along the real axis cannot exceed the range 

of paired singularities (odd and even singularities) 

therefore, a small decrement say, step size “∂ “    .   is 

deducted from most positive singularity until it reaches 

the second singularity, at each deduction, test point angle 

is checked to confirm if it equal to corresponding angle 

conduction (see equation 3 and 4), if it equals, the 

corresponding test point is taken as root for that point. 

The first segment of the root terminated immediately 

step size “∂” decrement equal to the second root of that 

paired singularity. The iteration proceeds to the next 

paired root but in this case, it is only one root that is left, 

since only remaining root is real root with no imaginary, 

it follows the same iteration process as observe in first 

paired root. In this case the search root tends to infinity 

and intentionally truncated once “∂” decrement equal 

chart boundary along negative x-axis. 

The normalized transfer function “ ( )3”  has two poles 

and one zero like “ ( )2”  ”but the position of the zero in 

this case is different , the iteration started by pairing the 

singularities, it checks if paired singularities are of the 

same type, in this case the singularities are of the same 

type (the first is pole p = -1 and the second is pole p = -

3), it is certain that there will be a break branch and path 

of locus along the real axis cannot exceed the range of 

paired singularities therefore, a small decrement say, 

step size “∂ “    .   were deducted from most positive 

singularity until it reaches the second singularity, at each 

decremented step, test point angle is compare with 

corresponding angle conduction, if the  compared test 

point is valid, the corresponding test point is taking as 

root for that point. The breaking point is determine by 

changing a step size “∂ “ in real axis to imaginary axis  

from y     to a step size “∂ “    .   for a start and iterate 

horizontally for every  increment. The program has a 

logical operation to change or determine path of search 

either by vertical or horizontal iteration especially for 

function that has sphere topology. 

 

5. CONCLUSION 

Excel VBA Root-locus generator was tested using 

systems of different transfer function. Clearly the degree 

of complexity depends on the structure of the transfer 

function. For example, those with no breakaway points 

are generally simpler to generate then close loop poles 

than those with breakaway points. While the systems 

tried in this work are not exhaustive of all possibilities, it 

can be seen that the procedure can solve a reasonable 

number of systems that one may encounter in real life. 

This is a very welcome result since it is now possible for 

a designer, instructor or student to explore the root-

locus characteristics of many linear time invariant 

systems using nothing more proprietary than the 

ubiquitous EXCEL with its VBA environment. 

 
Figure 5:   Root-locus plot for  ( )3  
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Figure 6:   Root-locus plot for  ( )4  
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Figure 7:   Root-locus plot for  ( )5  
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Figure 8: Root-locus plot for  ( )6  
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Figure 9: Root-locus plot for  ( )  
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Figure 10: Root-locus plot for  ( )  
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Figure 11: Root-locus plot for ( )  
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Figure 12: Root-locus plot for  ( )10  
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Since this was essentially the objective of this work, it 

can be concluded that it has been successfully resolved. It 

is possible to generate root-locus plots for a sufficiently 

wide range of system types and use this for teaching, 

laboratory and design purposes. 

 

6 RECOMMENDATIONS 

The implementation presented here depends on search 

process which is not general but attempts to identify all 

possible types of loci for specific cases. This is a 

limitation which should be addressed by a subsequent 

researcher so that the resulting algorithm can be more 

compact and efficient. It is recommended that the 

algorithm be made more efficient by modifying its 

branching logic and using a more compact approach. 
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