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ABSTRACT 

In this work, we investigate the well pressure distribution in a boundless reservoir.  This research work seeks to know 

the pressure variation in a reservoir whose pressure disturbance caused by the withdrawal of fluid from the wellbore, is 

yet to be felt at the external boundaries of the reservoir. The diffusivity equation was used in the analysis. The work 

covers the transient state where the reservoir is acting as if it was infinite in size. The finite element technique, using 

Lagrange quadratic shape elements was employed to carry out the analysis over the cross-section of the reservoir. The 

analysis was done with the assumption that before the well begins production, there was uniform distribution of 

pressure all through the reservoir. The accuracy of the result was validated by comparing with the results published by 

Chatas and Lee. The comparison shows a strong positive correlation between the two methods. Also, the results 

published by Chatas and Lee stated only the pressure at the wellbore at a particular time but this work predicts the 

pressure variation in the entire reservoir from the wellbore to the infinite sized external boundary at the same time. 

 

Keywords: Infinite acting reservoir, permeability, porosity, dimensionless variables, diffusivity equation, and Crank-

Nicholson scheme. 

 

Nomenclature 

B  Formation volume factor, RB/STB 
c  Compressibility, psia-1 

h  Thickness, ft 

K  Stiffness matrix 

k  Permeability, md 

M  Mass matrix 
n  Number of elements 

P  Pressure, psi 

DP  Dimensionless pressure 



DP  Dimensionless pressure rate 

iP   Initial reservoir pressure, psi 

Q  Terminal flow rate 

q  Volumetric flow rate, STB/D 

r  Radius, ft 

Dr  Dimensionless radius 

er  External radius, ft 

eDr  Dimensionless external radius 

wr  Wellbore radius, ft 

s  Time step, hr 

t  Time, hr 

Dt  Dimensionless time 

w  Weight function 

  For all 
Greek letters 

t  Time increment, hr 

  Family of approximation 

  Porosity, fraction 

  Viscosity, cp 

  Pi 

  Interpolation function 

  Infinite

 

1. INTRODUCTION 

There are basically three types of flow regimes that exist 

in describing the flow behaviour of fluids and pressure 

distribution as a function of time in reservoirs. These 

flow regimes are: steady-state flow, pseudo-steady-state 

flow, and unsteady-state flow [1]. 

The unsteady-state flow frequently called transient flow 

is a fluid flow condition that occurs when the rate of 

change of pressure with respect to time at any position in 

the reservoir is neither zero nor constant. This definition 

suggests that the pressure derivative with respect to 

time is essentially a function of both position and time. In 

the unsteady-state flow cases, it is assumed that a well is 

located in a very large reservoir and producing at a 

constant flow rate. This rate creates a pressure 

disturbance in the reservoir that travels throughout this 
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infinite-size reservoir. During this transient flow period, 

reservoir boundaries have no effect on the pressure 

behaviour and this is often very short in duration. 

The constant terminal rate is one of the solutions of the 

radial diffusivity equation for a reservoir acting as if it 

was infinite in size and where necessary, they are applied 

in majority of well test analysis techniques. This, in itself, 

presents problems because for any second-order 

differential equation there is an infinite number of a 

possible solution, dependent on the choice of initial and 

boundary conditions [2]. 

Transient pressure response for a well producing from a 

finite reservoir of circular, square, and rectangular 

drainage shapes has been studied by [3], [4], [5], [6], [7], 

[8], [9] and [10]among others. Van Everdingen and Hurst 

presented the solution to diffusivity equation in eq. 8 in 

the form of infinite series of exponential terms and 

Bessel functions. The authors evaluated this series for 

several values of reD  over a wide range of values for tD. 

[11] and [12]conveniently tabulated these solutions for 

the following two cases: Infinite-acting reservoir and 

Finite-radial reservoir. 

Flows through porous media have been analysed in 

various ways through the years past. In well testing 

analysis, there are four solutions that are useful: the 

solution for a bounded circular reservoir: the solution for 

steady state case; the pseudo-steady state solution; and 

the solution that includes wellbore radius for a well in an 

infinite reservoir. This work addresses the case of a fluid 

in in an infinite sized reservoir.  

 

2. THEORY 

The law of conservation of mass, Darcy’s law and the 

equation of state has been combined to obtain the 

following partial differential equation: 

   

   
 

 

 

  

  
 

   

         
 
  

  
                        

with the assumptions that compressibility, c is small and 

independent of pressure, P; permeability, k, is constant 

and isotropic; viscosity,  , is independent of pressure; 

porosity, ϕ, is constant; and that certain terms in the 

basic differential equation (involving pressure gradients 

squared) are negligible. 

In this work, the diffusivity equation was analysed for 

circular reservoirs, the case in which the well is located 

in the centre of a cylindrical reservoir with an infinite 

external boundary. 

 

3. GOVERNING EQUATION 

   

   
 

 

 

  

  
 

   

         
 
  

  
 

Initial and boundary conditions: 

i.     at t                                                       

ii. ( 
  

  
)
  

 
   

    
for                                         

iii. ( 
  

  
)
  

                                                          

 

4. DIMENSIONLESS VARIABLES 

The above equations incorporate physical parameters 

such as permeability, and it would be futile to solve this 

problem for a particular combination of values for these 

parameters. Dimensionless variables are designed to 

eliminate the physical parameters that affect 

quantitatively, but not qualitatively, the reservoir 

response. The above equations are in Darcy units, and 

the dimensionless terms will render the system of units 

employed irrelevant. For this line source model, 3 

dimensionless variables are required. In US Oilfield units, 

distance, time and pressure are replaced as follows: 

Dimensionless time:  

    
           

     
 

                                         

 Dimensionless distance:    

      
 

  
 
                                                          

Dimensionless pressure: 

    
  

        
                                  

By defining dimensionless pressure and dimensionless 

time in this way, it is possible to create an analytical 

model of the well and reservoir, or theoretical ‘type-

curve’, that provides a ‘global’ description of the pressure 

response that is independent of the flow rate or of the 

actual values of the well and reservoir parameters. 

Eq.1 can be transformed by substituting the following 

dimensionless variables in Eqns. 5-7 into eq. 1 and this 

becomes: 

    

   
  

 

  

   

   
  

   

   
                      

and the boundary and initial conditions become: 

1. Dimensionless initial condition (uniform pressures 

in the reservoir): 

     ,                                            

2. Dimensionless inner boundary condition (constant 

rate at the well): 
   

   
  ,                                            

3. Dimensionless Outer Boundary Conditions (Infinite 

acting reservoirs): 

        ,                                 

 

5. ASSUMPTIONS 

The assumptions used in proposing a solution to the 

diffusivity equation are as follows: 

• The well is producing at constant flow rate. 

• The reservoir is at uniform pressure, Pi when 

production begins. 
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• The well, with a wellbore radius of rw is centred in a 

cylindrical reservoir of radius reD. 

• No flow across the outer boundary, i.e., at r. 

• The diffusivity equation was analysed for boundless 

circular reservoirs. 

 

6. FINITE ELEMENT FORMULATION 

a. Weak Formulation 

In the development of the weak form, we assumed a 

quadratic element mesh and placed it over the domain 

and applied the following steps: 

From eq. 8, we have: 
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)                                           

Multiply eq. 12 by the weight w  function and integrate 

the final equation over the domain. 

∫ 
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)]                         

Eq. 13 becomes, 

∫ ∫  ∫  

  

   

   

 

 

 

 

[
   

   
  

 

  

 

   
(  

   

   
)]                  

Integrating eq. 14 with respect to z , then  , over the 

limits, we have: 

∫  

    

    

 [
   

   
  

 

  

 

   
(  

   

   
)]                     

Eq. 15 can be exploded into: 

∫  

    

    

   

   
       ∫  

    

    

 

   
(  

   

   
)                

Integrating eq. 16 by part, we have: 

∫   

    

    

  

   

   

   
      [  

   

   
]
    

    

 ∫    

    

    

   

   
    

                                                                   

Grouping eq. 17 into linear and bilinear components, we 

have: 

∫   

    

    

  

   

   

   
     ∫    

    

    

   

   
      [  

   

   
]
    

    

                                                               

∫   

    

    

  

   

   

   
     ∫    

    

    

   

   
            

                                                              

Where           
   

   
  

b. Interpolation Function 

The weak form in eq. 19 requires that the approximation 

chosen for PD should be at least quadratic in rD so that 

there are no terms in eq. 19 that are identically zero. 

Since the primary variable is simply the function itself, 

the Lagrange family of interpolation functions is 

admissible. We proposed that PD is the approximation 

over a typical finite element domain by the expression: 

     ,     ∑   

 

   

      
      and     

               

Substituting eq. 20 into eq. 19, we have: 

∫   
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 ∫     
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Factor out ∑    
 
    

∑   

 

   

 ∫   

    

    

   
 

   

   
 

   
    ∑ ̇  

 

   

∫   

    

    

  
   

    

   
                                                         

where    ̇   
   

   
 

In matrix form we can represent the semi-discrete finite 

element model thus, 

|   
 |{  }  |   

 |{ ̇  }  {  
 }                    

Eq. (23) is known as the finite element model. 

Where 

   
  ∫   

    

    

   
 

   

   
 

   
                                          

   
  ∫   

    

    

  
   

                             

Using Quadratic Lagrange Interpolation functions for a 

quadratic element: 

      
 

  
                                 

      
 

  
                                        

      
  

  
      (          

)                      

The coefficient matrix can be easily derived by 

substituting the Lagrange interpolation functions into 

eq. 24 respectively. The matrices are shown below: 
[  ]

 
 

  
[

                       
                             

                        

]      

Also, the mass matrices can be easily derived by 

substituting the Lagrange interpolation functions into 

eq. 25 respectively. The matrices are shown below: 

[  ]  
 

  
[

               
                 

                   

]          
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Using four quadratic elements, 

                                              

In this analysis, we have withheld the computational 

details of the shape assembly of the finite element 

analysis (FEA) used. However, the authors would be glad 

to interact with researchers who may want to refer to the 

computational mathematics involved. 

 

7. TIME APPROXIMATION 

Recalling eq. 23: |   
 |{  }  |   

 |{ ̇  }  {  
 }     

For a given time step s, eq. 23 becomes 

|   
 |{  }  |   

 |{ ̇  }  {  
 }                   

For the next time step s+1, eq. 23 becomes 

|   
 |{  }    |   

 |{ ̇  }   
 {  

 }                       

Multiply eq. 32 by  1  and eq. 33 by , then we add 

the two resulting equations, 

[   
 ] [     { ̇  }   { ̇  }   

]

 [   
 ] [     {   }   

  {   }   
]

      {  
 }                                         

The   family of interpolation for time consideration is 

given as: 

     { ̇  }   { ̇  }   
 

{   }   
 {   } 

     

            

Substitute eq. 35 into eq. 34 and using the Crank-

Nicholson Scheme where,    
 ⁄  

[[   
 ]  

     

 
 [   

 ]] {   }   

 [[   
 ]  

     

 
 [   

 ]] {   } 

 
     

 
[{  

 }  {  
 }   ]                 

From the initial condition given in eq. 9 for a constant 

terminal rate case, it implies that when 0s , i.e., initial 

time, all dimensionless pressure in the reservoir will be 

zero. Also, the flow rate was constant all through 

operation. This means that {  
 }  {  

 }    .Hence, eq. 36 

becomes: 
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Where    ̅  
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    { ̅  
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8. RESULTS AND DISCUSSION 

When a well is put on production with the assumption 

that the well is producing at a constant flow rate after a 

shut-in period, the pressure in the wellbore begins to 

drop due to the withdrawal of the fluid from the 

reservoir through the well bore. This drop in pressure at 

the well bore causes a pressure disturbance that spreads 

through the entire reservoir. The influence of the 

reservoir boundaries or the shape of the drainage area at 

this point does not have any effect on the rate at which 

the pressure disturbance spreads in the formation. That 

is why the transient state flow is also called the infinite 

acting state. During this period, the external boundary of 

the reservoir is assumed mathematically to be at infinity 

i.e., eDr . This means that the value of the 

dimensionless pressure DP is not affected by the 

external reservoir boundary but only a function of the 

dimensionless time Dt . At this point, it is important to 

note that in actual sense, the external boundary of the 

reservoir is not at infinity. During the infinite acting 

period, the declining rate of wellbore pressure and the 

manner by which the pressure disturbance spreads 

through the reservoir are determined by reservoir and 

fluid characteristics. These characteristics include 

porosity,  permeability, k, total compressibility, tc  and 

the fluid viscosity, µ.  

Graphs of dimensionless pressure against dimensionless 

time from results obtained from the FEM analysis in the 

infinite acting reservoirs are shown in Figs. 1 and 2. 

These were shown for different radial values of 

dimensionless external radius of 1.5 and 4 and 

dimensionless times step of 0.0005 and 0.01 

respectively. Presented in Fig 1 is the dimensionless 

pressure between dimensionless time of zero and 0.1 

and at time step of 0.0005 and Fig 2 presents the 

dimensionless pressure between dimensionless time of 

zero and 3. From Figs. 1 and 2, it was observed that 

before the reservoir starts production, i.e., 0Dt , the 

dimensionless pressure was zero in the entire reservoir. 

This means that before production, the initial pressure in 

the entire reservoir was constant. As production begins, 

the dimensionless pressure increases drastically at the 

early stage. This sudden increase in the dimensionless 

pressure was as a result of the withdrawal of fluid from 

the reservoir. Later on, the dimensionless pressure 

increases almost uniformly with a small slope. This is 

due to the fact that the fluid which has been withdrawn 

from the reservoir has been recharged mainly because of 

the expansion of the compressed fluid within the 

reservoir. 
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Fig. 1: A graph of PD against tD for FEM and Chatas and 

Lee results in the infinite reservoirs for reD = 1.5 and  t = 
0.0005 

 
Fig. 2: A graph of PD against tD for FEM and Chatas 
and Lee results in the infinite reservoirs for reD = 4 

and  t = 0.01 
 

Table 2: Comparison between FEM and Chatas and Lee 
results in infinite acting reservoirs for reD = 4 and  t = 

0.01 

tD % error 
 

tD % error 

0.15 0.1333 
 

0.8 0.0677 
0.20 0.0707 

 
0.9 0.0389 

0.30 0.0398 
 

1.0 0.0249 
0.40 0.0354 

 
1.2 1.2685 

0.50 0.0324 
 

1.4 1.2991 
0.60 0.0604 

 
2.0 0.0196 

0.70 0.0569 
 

3.0 1.2602 

 

Table 1: Comparison between FEM and Chatas and Lee 
results in infinite acting reservoirs for reD = 1.5 and  t = 

0.0005 

Td % error  tD % error  tD % error 

0.0000 0.0000 

 

0.007 0.1098 

 

0.04 0.0481 

0.0005 6.0000 

 

0.008 0.1030 

 

0.05 0.1304 

0.0010 0.8523 

 

0.009 0.0973 

 

0.06 0.2800 

0.0020 0.6061 

 

0.010 0.0925 

 

0.07 0.5970 

0.0030 0.6633 

 

0.015 0.0000 

 

0.08 0.9842 

0.0040 0.5764 

 

0.020 0.0000 

 

0.09 1.5672 

0.0050 0.2584 

 

0.025 0.0000 

 

0.10 2.2583 

0.006 0.2367 

 

0.03 0.0000 

  

The results presented in Figs 1 and 2 are the 

dimensionless pressure at the well bore of the reservoir. 

The result from the FEM analysis was seen to agree with 

results publish by Chatas and Lee. To test for the level of 

convergence of the results, a table of percentage error 

between the FEM solution and the results published by 

Chatas and Lee was generated. This was shown in Table 

1 with dimensionless external boundary radius of 1.5 

and time step of 0.0005 and Table 2 with dimensionless 

external boundary radius of 4 and time step of 0.01. 

Dimensionless Pressure against Dimensionless Radial 

Displacement 

At this point, it is pertinent to note that irrespective of 

the fact that there is a change in dimensionless pressure 

with dimensionless time at the well bore which has been 

the main course of many researchers. It will be important 

to note also that for a particular dimensionless time, 

there is a corresponding change in the dimensionless 

pressure with the dimensionless radial displacement. So, 

at the transient period where the reservoir is acting as if 

it is infinite in size, there is pressure variation within the 

reservoir. 

Table 3 shows the dimensionless pressure (PD) variation 

throughout the reservoir. It was observed that PD values 

decreases from the well bore out into the reservoir until 

the infinite sized reservoir boundary where PD =0. It was 

also observed that there were times within the reservoir 

where the pressure at some points within the reservoir 

was greater than the initial pressure of the reservoir. 

This is shown by the negative PD values in Tables 3 and 4. 

These negative PD values where seen to occur at the early 

stage of the transient period in the infinite acting 

reservoir. Thereafter, PD values become positive all 

through the infinite sized reservoir. From this analysis, 

Table 3 shows the results obtained for a well whose 

dimensionless external boundary radius is 1.5 but acting 

as if it was acting infinite in size and the time step is 

0.0005.  

Also, Table 4 also shows the results obtained from the 

FEM analysis but at this point, the dimensionless 

external boundary radius was 4 and the time step was 

0.01. At this point, the reservoir extent is yet to be felt. 

What this means is that the pressure disturbance is yet to 

be felt at the external boundary radius of the reservoir 

which in this case is 4. This is the reason the PD values at 

the dimensionless external boundary radius of 1.5 and 4 

were respectively zero.  
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Table 3: Pressure Distribution in an infinite acting reservoir with reD = 1.5 

rD 1.0000 1.0625 1.1250 1.1875 1.2500 1.3125 1.3750 1.4375 1.5000 

tD Dimensionless Pressure 

0.0005 0.0235 -0.0009 0.0019 -7.30E-05 0.0002 -6.00E-06 1.26E-05 -4.50E-07 0.0000 

0.001 0.0349 0.0024 0.0007 0.0003 -0.0001 2.92E-05 -2.30E-05 2.64E-06 0.0000 

0.0015 0.0432 0.0063 0.0004 0.0003 -3.10E-05 -1.10E-06 7.18E-06 -2.20E-06 0.0000 

0.002 0.0498 0.0101 0.0008 0.0002 7.63E-05 -8.00E-06 1.29E-05 -8.50E-07 0.0000 

0.003 0.0607 0.0175 0.0029 0.0004 0.0002 2.21E-05 2.38E-06 2.06E-06 0.0000 

0.004 0.0698 0.0243 0.0058 0.001 0.0002 5.44E-05 7.82E-06 1.53E-06 0.0000 

0.005 0.0776 0.0307 0.0091 0.0021 0.0004 9.20E-05 2.37E-05 3.11E-06 0.0000 

0.006 0.0847 0.0366 0.0126 0.0034 0.0008 0.0002 4.47E-05 7.81E-06 0.0000 

0.007 0.0912 0.0422 0.0161 0.005 0.0013 0.0003 7.57E-05 1.54E-05 0.0000 

0.008 0.0972 0.0475 0.0197 0.0069 0.002 0.0005 0.0001 2.71E-05 0.0000 

0.009 0.1029 0.0525 0.0232 0.0088 0.0028 0.0008 0.0002 4.58E-05 0.0000 

0.01 0.1082 0.0573 0.0267 0.0108 0.0038 0.0012 0.0003 7.51E-05 0.0000 

0.015 0.1312 0.0784 0.0432 0.0218 0.001 0.0041 0.0015 0.0005 0.0000 

0.02 0.1503 0.0964 0.0582 0.0329 0.0174 0.0085 0.0038 0.0014 0.0000 

0.025 0.1669 0.1123 0.072 0.0438 0.0253 0.0137 0.0068 0.0027 0.0000 

0.03 0.1818 0.1265 0.0846 0.0543 0.0332 0.0192 0.0102 0.0043 0.0000 

0.035 0.1952 0.1395 0.0964 0.0642 0.0411 0.0249 0.0139 0.0061 0.0000 

0.04 0.2076 0.1515 0.1074 0.0737 0.0487 0.0306 0.0175 0.0079 0.0000 

0.045 0.2191 0.1627 0.1177 0.0826 0.056 0.036 0.0212 0.0097 0.0000 

0.05 0.2298 0.1731 0.1273 0.0911 0.0629 0.0413 0.0247 0.0114 0.0000 

0.055 0.2398 0.1829 0.1364 0.0991 0.0696 0.0464 0.0281 0.0131 0.0000 

0.06 0.2493 0.1921 0.145 0.1066 0.0759 0.0512 0.0313 0.0147 0.0000 

0.065 0.2581 0.2007 0.153 0.1138 0.0818 0.0558 0.0344 0.0162 0.0000 

0.07 0.2664 0.2089 0.1606 0.1205 0.0874 0.0602 0.0373 0.0177 0.0000 

0.075 0.2743 0.2166 0.1678 0.1269 0.0928 0.0643 0.0401 0.0191 0.0000 

0.08 0.2817 0.2238 0.1745 0.1329 0.0978 0.0681 0.0427 0.0204 0.0000 

0.085 0.2886 0.2306 0.1809 0.1385 0.1025 0.0718 0.0452 0.0217 0.0000 

0.09 0.2952 0.237 0.1869 0.1439 0.107 0.0753 0.0476 0.0228 0.0000 

0.095 0.3014 0.2431 0.1926 0.1489 0.1113 0.0786 0.0498 0.0239 0.0000 

0.1 0.3073 0.2488 0.1979 0.1537 0.1153 0.0816 0.0519 0.025 0.0000 

 

Table 4: Pressure Distribution in an infinite acting reservoir with reD = 4 

rD 1.0000 1.3750 1.7500 2.5000 2.8750 3.2500 3.6250 4.0000 

tD Dimensionless Pressure 

0.01 0.0813 -0.0046 0.0071 0.0007 -4.80E-05 6.66E-05 -4.30E-06 0.0000 

0.02 0.1336 5.96E-05 0.0064 0.00011 6.18E-05 -3.80E-05 8.26E-06 0.0000 

0.03 0.1715 0.0085 0.0043 -0.0002 7.97E-05 -5.20E-05 4.92E-06 0.0000 

0.04 0.2013 0.0183 0.0027 -0.0003 4.26E-05 -1.80E-05 -2.10E-06 0.0000 

0.05 0.2262 0.0286 0.0021 -0.0001 1.26E-06 1.71E-05 -5.30E-06 0.0000 

0.06 0.2477 0.039 0.0024 8.64E-05 -2.10E-05 3.48E-05 -4.30E-06 0.0000 

0.07 0.2667 0.0493 0.0035 0.0003 -2.00E-05 3.64E-05 -9.70E-07 0.0000 

0.08 0.2839 0.0594 0.0053 0.0004 -8.60E-07 2.90E-05 2.48E-06 0.0000 

0.09 0.2997 0.0692 0.0077 0.0005 2.87E-05 1.93E-05 4.94E-06 0.0000 

0.10 0.3143 0.0788 0.0105 0.0006 6.28E-05 1.18E-05 6.11E-06 0.0000 

0.11 0.328 0.0881 0.0136 0.0007 9.75E-05 8.68E-06 6.23E-06 0.0000 

0.12 0.3408 0.0971 0.0169 0.0008 0.0001 1.05E-05 5.77E-06 0.0000 

0.13 0.3529 0.1059 0.0205 0.0008 0.0002 1.67E-05 5.24E-06 0.0000 

0.14 0.3645 0.1145 0.0243 0.0009 0.0002 2.67E-05 5.04E-06 0.0000 

0.15 0.3755 0.1228 0.0281 0.0011 0.0002 3.93E-05 5.47E-06 0.0000 

0.20 0.4244 0.1615 0.0484 0.0024 0.0005 0.0001 1.97E-05 0.0000 

0.30 0.5022 0.2272 0.0895 0.0088 0.0022 0.0005 0.0001 0.0000 

0.40 0.5643 0.2819 0.1284 0.0191 0.0062 0.0018 0.0004 0.0000 

0.50 0.6165 0.3291 0.1643 0.0319 0.0122 0.0042 0.0012 0.0000 

0.60 0.6618 0.3708 0.1976 0.046 0.0198 0.0077 0.0025 0.0000 

0.70 0.702 0.4083 0.2284 0.0609 0.0285 0.0122 0.0043 0.0000 
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rD 1.0000 1.3750 1.7500 2.5000 2.8750 3.2500 3.6250 4.0000 

0.80 0.7382 0.4423 0.2571 0.076 0.0379 0.0174 0.0065 0.0000 

0.90 0.7713 0.4736 0.2839 0.0912 0.0479 0.0231 0.0091 0.0000 

1.00 0.8017 0.5025 0.3091 0.1061 0.058 0.0292 0.0118 0.0000 

1.20 0.8562 0.5546 0.3552 0.1352 0.0784 0.0418 0.0177 0.0000 

1.40 0.9041 0.6006 0.3965 0.1625 0.0982 0.0544 0.0237 0.0000 

2.00 1.0197 0.7124 0.4985 0.2334 0.1509 0.0888 0.0404 0.0000 

3.00 1.1518 0.8406 0.6166 0.3182 0.215 0.1312 0.061 0.0000 

 

 

9. CONCLUSION 

In this work, we have formulated the Finite Element 

Model and the model was used to analyse the diffusivity 

equation which shows the pressure distribution across a 

circular reservoir for the constant terminal rate case in 

which the reservoir is acting as if it was infinite in size. 

The results obtained at the well bore at different 

dimensionless radius and time steps were shown in Figs 

1 and 2 and its accuracy was shown in Tables 1 and 2. 

Also presented were Tables 3 and 4 that shows the 

results obtained for the pressure distribution throughout 

the infinite sized reservoirs. It was seen that the 

dimensionless pressure decreases from the well bore to 

the external boundary. The results obtained from this 

analysis showed that there was a strong correlation with 

the results published by Chatas and Lee. Also, this work 

analysed the pressure variation through various points 

within the reservoir formation. 
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