(&

Nigerian Journal of Technology (NIJOTECH)

Vol. 35, No. 1, January 2016, pp. 144 - 154

Copyright® Faculty of Engineering, University of Nigeria, Nsukka,
Print ISSN: 0331-8443, Electronic ISSN: 2467-8821

www.nijotech.com
http://dx.doi.org/10.4314/njt.v35i1.22

PRECISE DELTA EXTRACTION SCHEME FOR REPROGRAMMING OF
WIRELESS SENSOR NODES

E. M. Eronul* and S. Misra2
1 DEPARTMENT OF ELECTRICAL/ELECTRONIC ENGINEERING, UNIVERSITY OF ABUJA, GWAGWALADA, ABUJA. NIGERIA
2DEPARTMENT OF COMPUTER SCIENCE, COVENANT UNIVERSITY, OTTA, OGUN STATE. NIGERIA.
E-mail addresses: 1 majieronu2007@hotmail.com, 2 ssopam@gmail.com

ABSTRACT

In this paper, we present a precise delta extraction scheme and tool for use in wireless sensor network
reprogramming processes. Our approach involves the use of a novel algorithm based on SET theory and the unique
pattern of the Execution Link File (ELF) structure to extract delta from two distinct firmware (original and the
modified). The delta consist of two set of unique values: one set clearly indicate the address of where the change
has occurred and the second relays the change Data content. In addition, we developed a set of metrics that relays
the degree of modification made with respect to the original file. The scheme capabilities, when compared with
similar utilities referred in literature, shows an appreciable capacity to reduce energy consumption rate as well as
effect a reduction in the amount of memory space used during reprogramming processes.

Keywords- reprogramming; operating system, wireless sensor network, Delta

1. INTRODUCTION

Wireless Sensor Networks (WSN) are mostly deployed
in remote locations and are compose of a large
number of sensor nodes that are memory constrained
and deficient in sustainable energy supply. WSN has
been helpful in several applications where remote
monitoring and control are the needful [1, 2].
Interestingly, the need to alter a WSN application
initial set objectives is a common occurrence in real
time. To effect these changes, the wireless sensor
nodes will have to be reprogrammed via serial
communication or other known direct approaches.
However, this is not possible because sensor nodes in
most cases once deployed in challenging and
inaccessible terrain cannot be easily reached. The only
option appropriate and commonly in use is the Over-
the-Air remote reprogramming method.

In several works [3, 4, 5], the Over-the-Air
reprogramming method has been effectively
implemented via the use of embedded operating
systems. Jun-Zhao in [6] as well as Dunkiels et al in [7]
categorized the reprogramming processes into three,
namely: full code image replacement approach, the
loadable module approach and the incremental-
differential approach. Each approach evolved from

*Corresponding author, Tel: +234-803-392-7733.

the need to improve upon the drawbacks of the
others.

This work addresses energy consumption rate related
issues attributed to certain utilities employed in
reprogramming processes based on the incremental-
differential approach. Section two provides detailed
background information on the being
addressed based on reviewed selected works of
literature. A description of the materials and methods
employed in designing, realising and evaluating the
Precise Delta Extraction (PDE) scheme are conveyed
in section three. In section four, we discuss the results

issues

obtained from these evaluations; and in additions;
highlight some of the advantages the PDE scheme has
over existing delta extraction utilities. Section five
concludes the paper.

2 REVIEW OF RELATED LITERATURE

The full image replacement approach
overwriting existing system image currently running
on the sensor nodes with a compiled binary image of
the new application software and the operating
system inclusive. Examples of sensor networks
reprogramming software employing this approach
implemented in TinyOS [8, 9] are XNP and Deluge
[10]. Next in line is the /Joadable module based

involves

PRECISE DELTA EXTRACTION SCHEME FOR REPROGRAMMING OF WIRELESS SENSOR NODES

approach implemented on modularized operating
system architectures (e.g. LiteOS [11] and Contiki [7,
12, 13]). It entails the transmission of only modified
modules that are then linked and loaded by the
operating system. In comparison to the full image
replacement based approach, the loadable module
based approach is more suitable for over-the-air
reprogramming because only updated modules are
transmitted. It also allows for the addition and
removal of new application task packaged in modular
form. However, use of large memory space, demand
for more processing time that invariably translates to
higher power consumption and slow system execution
are drawbacks associated with the /oadable module
based approach. The incremental-differential based
approach scheme transmits only the delta thereby
reducing the amount of data needed to be transferred
(especially when only small changes are involved like
bug-fixes).

A review of existing reconfiguration scheme currently
in use that the Jincremental-differential
approach method is more promising when compared
to others [14]. A further review of the incremental-

shows

differential/based approach reveals that in some cases,
instead of smaller deltas being generated, larger ones
were rather produced [3]. A problem largely
attributed to the traditional incremental-differential
utilities employed in delta generation (Rsync [15]
employed in [3, 16] and Clone Detection [17] used in

[18]).
The majority of incremental-differential
reconfiguration = approach employs software

applications that extract differences between the
original source code and the modified application
source codes. Most rely on the Rsync algorithm [15],
though several extension or modifications have been
made to the original work meant for larger system'’s
networks to suit the WSN platform [19, 20] . The
utilities were inherently not designed to handle file
structures well-matched for sensor network data
transmission and dissemination.

The PDE scheme presented in this paper provides a
software tool and set of metrics for extracting precise
delta information to address the issues attributed to
the Rysnc utility and its variants. The Scheme has
measuring capabilities that reports the degree of
changes at various sections or segments. Hence, it is
used in measuring the extent of firmware modification
resulting from the addition or removal of software
coding elements (variables, constants, functions, etc.).

Nigerian Journal of Technology

E. M. Eronu & S. Misra

By extension, it is helpful in detecting firmware
cloning.

3 METHODOLOGY

The approach adopted involves the use of a novel
algorithm based on SET theory and the unique pattern
of the Execution Link File (ELF) structure to design
the scheme. The design enables the extraction of the
delta from two distinct firmware (original and the
modified) express as functions of their constituent set
of bytes. The delta consists of two unique values. One
clearly indicates the address of where the change has
occurred and the second relays the change noticeable
in the Content/Data. In addition, we developed a set of
metrics that relays the degree of modification made
with respect to the original file. The entire scheme is
implemented using the Language Integrated Query
(LINQ) and the Microsoft C# programming tool [21].
LINQ is a programming model that introduces queries
as a first-class concept into any Microsoft NET
Framework language. LINQ provides a methodology
that simplifies and unifies the implementation of any
data access [22, 23].

3.1 Design and Implementation

Program modification can occur in any of the ways

listed below:

¢ Adding new functionalities or data (for example,
constants, variables, program constructs)

e Removing no longer needed functionalities and
related data.

¢ Updating existing functions or data content.

Let

A = {x|all bytes making up the firmware of the original}

source code
and
B= {x|all bytes making up the firmware of modified }
source code
Now,

A*=B\A

: At = Added set of code with significant increase in |B|
Also,
A= A\B

: A” = Removed set of codes with significant decrease in |A|

However, modification could take place without a
significant change in the number of elements
contained in either A or B. Such occurrences can be
represented as A,

Descriptions of the symbols used in the mathematical
modelling of the PDE scheme are given in Table 1 and
Table 2 respectively. The symbols used were based on

Vol. 35, No. 1, January 2016 145

PRECISE DELTA EXTRACTION SCHEME FOR REPROGRAMMING OF WIRELESS SENSOR NODES

the structure of the Execution Link File (ELF) format
[24].

Table 1: Description of ELF membership type symbols

[24]
Member o
Description
Types
PH.ptvpe Type of segment this array element
PP describes
SH.shgyg, Section’s physical address
PH.pgqar Segment’s physical address
The number of bytes in the file image
PH-pfilez Y &

of the segment

The number of bytes in the file image
of the section

Flags relevant to the segment

SH. Shfilsize

SH. Shflags

Table 2: Description of ELF memberships’ attributes

type symbols [24]
Attributes Description
PHy Lonp The array element specifies a
- loadable segment
SHE (10 The section occupies memory
during process execution
The section contains executable
SHFgxgcinsTR

machine instructions

Let SEG = a collection of seg;with the PH.p_type
attributes =PHr ;pap-

n-1
SEG = U seg; |PH.ptype = PHr,,,,)
j=0
Where PH = Program Header and nn = number of
segments:
And let

A = sec;.SH.shgq4r
€ [Segj.PH- paddrﬁsegj.PH- Padar

+ seg; PH. pfilez] (2)
B = sec;.SH.shyjjsize % 0 3)
C = sec;.SH.shgags = SHE10c 4
D = SeCi.SH.Shflags = SHFgxEciNsTR (5)

Where SH s the Section Header and m is the number
of sections then the elements of seg; consists of a
collection of sections sec; expressed thus:

i=0
From each section contained in
address value (Uaddr)

instruction code/data by concatenating values of

m—1
seg; = {U sec; | A&BVCVD} (6)

segj, a unique

is derived for each

Nigerian Journal of Technology

E. M. Eronu & S. Misra

segment number (j), section number (i) and the
position (p) of each instruction/data (Dy).
m-1
Uaddr, =j+i+p fork=0 > Z|segj| 7
j=0
The addressing scheme uniquely identifies an
associated instruction code/data contained in the
entire loadable file. In order to identify changes
(A*, A~and A¥) resulting from reprogramming or
reconfiguration processes, seg;are obtained for the
original file’s ELF (Fy.4) and the modified version
(Frmod) Subsequently, using
Uaddr, as a reference, each D, within sec; of
respective seg; are compared and where there are

respectively. while

differences, they are reported as either modified set of
codes (AT), added set of codes (A*) or removed set of
codes (A™) appropriately. Algorithm 1 listing shows
the algorithm employed for the PDE.

Algorithm 1: Precision Delta Extraction (PDE)
Implementation

1. From SEG obtain a collection of seg
2. |
3. For each seg, obtain a collection of sec
4, |
5. For each sec collection
6. {
7. Compare associated contents (D) of F,;, and
Fioq as addressed by
unique address value (Uaddry,)
8. {
9. Case (contents = equal) : ignore
10. Case (contents = different) : report as modified,
note address, count number of
occurrence(s)
11. Case (Uaddr), contained in F,,,, does not
exist in F,,,q) : a deletion of code(s) has taken
place , note address, count number of
occurrence(s)
12. Case (Uaddrcontained in F,,,q does not exist
in F,,) : an addition of code(s) has taken
place, note address, count number of
occurrence(s)
13. }
14. 1
15. }
16. }

3.2 Measuring the degree of A*, A~ and A¥in
relation to the original firmware size (Distortion
Metrics)

Let m, n and p represent the total number of

segments, sections and bytes/words respectively,

Likewise:

Vol. 35, No. 1, January 2016 146

PRECISE DELTA EXTRACTION SCHEME FOR REPROGRAMMING OF WIRELESS SENSOR NODES

Tsec; is the Total Number of bytes /words contained
in a section, Tsegjis the Total Number of bytes /words

contained in a segment and T is the Total Number of

bytes /words contained in the file. These terms can be
obtained thus:

Tsec; = |sec]| (8)
n-1
Tseg; = leecil 9
i=0
m—1
T; = Z|segj| (10)
=0

Where § represents the degree of changes effected,

the value § can be obtained thus:

5= (Tf (Forig) - Tf (Fmod) > (11)

Ty (Forig)

Based on the value of § , the following can be inferred:

i. When(é <0), it implies that a set of codes has

been added and possibly some of the original
codes could have been modified as well.

ii. When(é > 0), it implies that a set of codes has

been removed and possibly some of the original
codes could have been modified as well.

iii. When(é = 0), it implies that no change has taken
place. However, it is possible that some of the
original codes could have been modified as well.

3.3 PDE Evaluation

We evaluated the PDE by employing Sample
application source codes’ ELF files derived from the
GNU C compiler customised for the Contiki operating
system. Each of the sample files' source codes was
altered or modified in response to changes emanating
from evolving application needs. Typically, these
changes could involve or span over variables,
constants, function names, libraries and other source
code constructs. However, in this work the changes
were confined to variation involving constants,
variables and Function names only.

Having implemented these changes, the modified files
were then recompiled to obtain new ELF files. Each
pair of generated ELF files (original and modified)
were further processed using the PDE. The PDE, by
design, outputs a dataset, which contains a collection
of delta (the data difference(s) between the original
and modified files) and their respective address or
addresses where applicable. In addition, the PDE
produces three reports: the first and second reports
are printouts of ELF constituents (available sections,
data contents, and their respective addresses) of both
the original and modified files respectively. The third

Nigerian Journal of Technology

E. M. Eronu & S. Misra

report relays the changes detected in the two files.
Figure 1 shows the front end of the PDE application
developed using C-sharp programming tools, and
Figure 2 shows an additional form that displays ELF
profile information of application firmware.

As indicated in the Figure 1, the original and modified
application’s ELF constituents (generated unified
address, physical address, data, list of loadable
segments and segments related addresses and size) as
well as the generated delta are displayed using the
list view object components labelled as ‘Original’ ,
‘Modified’ and ‘Delta’ respectively.

4, RESULTS AND DISCUSSION

In consonant with section 3.3 we demonstrate the
performance of the PDE using an application sample
‘remotepowerswitch.c’ built on the Contiki OS [25].
Changes effected at various source code’ program
structure were applied to each application’s source
code, each of the ensuing modified files paired with
the original was compiled and their subsequent ELF
files fed into the PDE. The Delta obtained, and other
relevant information provided on the ELF profile
form, are presented under related subsections 4.1, 4.2
and 4.3.

Table 3: List of remotepowerswitch.elf’ ELF

constituents
Segment Number of SegmentByte Segment Flags
Number Sections size
0 465 79, 988 Execute, Read
1 65 2,152 Execute , Read
2 4 1,788 Write, Read
3 1 0 Read
4 15 8,344 Write, Read
5 2 912 Execute , Read
6 1 36 Execute , Read
7 1 4 Execute , Read
8 1 4 Execute , Read
9 1 4 Execute , Read
10 1 4 Execute , Read

Total bytes contained in File 93,236

4.1 ELF Profile of the ‘Remote Power Switch’ Sample
Application

Using the ELF profile front end of the PDE, the
constituents of the generated ‘remotepowerswitch.elf
form in its original state (without any modifications)
are presented in Table 3. The Profile’s front end as
shown in Figure 3 indicates where these constituents
were obtained from. In addition, The ELF profile front
end provides the following information:

Vol. 35, No. 1, January 2016 147

PRECISE DELTA EXTRACTION SCHEME FOR REPROGRAMMING OF WIRELESS SENSOR NODES

iii.

E. M. Eronu & S. Misra

iv. Whether ‘Execute’, ‘Read’ or ‘Write’ operations are
allowed in the listed segments.

It also indicates the unified Addressing scheme
obtained to identify uniquely each data content
within the ELF file.

Alist of all loadable segments contained in the file.
The information is obtained using Equation (9).
The virtual and physical start address of each V.
segment.

The total byte size of each segment

ORIGINAL : 8370

MODIFIED : 8370

“0->0->0"3D000000°27BDFFAS
“0->0->1"3D000004°AFB7004C
“0->0->2"3D000008AFB3003C
“0->0->3"3D00000C"AFED0030
*0->0->4"30000010°AFBFO054
*0->0->5"3D000014*AFBEDDS0
“0->0->6"30000018°AFBE0043
*0->0->7"3D00001C"AFE50044
*0->0->8"3D000020°AFB4004D
“0-=0->3"30 000024 AFB20038
*0->0->10"30D0000258°AFB 10034
*0->0->11"5D00002C*305821
“0->0->12"3D0000:30°A08021
*0->0->13"30D 000034 AFAGDDED

*0->0->17"5D000044°A3A40010
“0->0->18"30D 000043 24020025
“0->0->15"30D00004C 14820070
*0->0->20"5D000050°26110001

“0->0-:21"30D000054

“0->0->24"3D00006071821

*0->0->25"30D000064 24050030
*0->0->26"5D00006324070020
“0->0-:27"3D00006C" 24030028
*0->0->28"30D0000701 0860064
*0->0->29"5D000074*2450FFFF
“0->0->30"5D000078"2885002E
*0->0->31"30D00007C"10A0005A

“0->0->0"30000000°27BDFFAS
*0->0->1"30000004°AFB7004C
“0-:0->2"3D000008AFB3003C
“0->0->3"3000000C"AFE00030
*0->0->4"30000010°AFBFD054
*0-:0->5"30000014°AFBEDDS0
“0->0->6"30000018°AFBE0048
*0->0->7"3000001C"AFES0044
*0-:0->8"3D000D020"AFBAD040
“0->0->3"30 000024 AFE20038
*0->0->10"3D000028°AFB 10034
*0-:0->11"5D00002C*805821
“0->0->12"3D000030°A08021
*0->0->13"3D000034°AFAGDDGD

*0-:0->17"5D000044°A3A40010
*0-:0->18"3D000045° 24020025
*0->0->19"3D00004C14820070
*0->0->20"5D 0000507261 10001
*0->0->21"3D000054° 26020002
*0->0->22°50000058°8044FFFF
*0->0->23"5D00005C2406002D
“0->0->24"3D00006071821
*0->0->25"30000064°24050030
*0->0->26"5D000065"24070020
“0-:0->27"3D00006C 24030028
*0->0->28"30000070"1 0860064
*0->0->29"5D000074*2450FFFF
“0-:0->30"95D000078"2885002E
*0->0->31"3D00007C10AD005A

“0->0->37"300000:34°3C 055000

DELTA [Modfied wrt Original File] - 1

“0->31-:35724020001

Mot Capture [Present in original but not in modified : 0

DELTA [Modified wrt Modified File] : 1

*0->31->35"24020002

Mot Capture [Present in modified but not in original] :

i

Deleted:0
Added:0

_&;nal
| File

_ | Modified
| File:
______|

Metrice [Normalised]

Modified: 0.000112739571585628

Figure 1: Delta Extraction Fro-ntEnd

Y]
e ELF Profile =EEE
SEG.TYPE SEGVMA SBES.PHY SEG.SIZE SEG.FLAGS Unified Address Physical Address Data
Load 50000000 50000000 31400 Execute, Read 0-=0-+0 ~ | | 9D0077IC ~ | |27BDFFA8 ~
Load SFCO1180 SFC01180 2152 Execute, Read 001 SD007740 AFBT004C
Load AD000O00 ADDODODD 368 Write, Read 002 SD007744 AFB3003C
Load ADDDO 70 ADDDOT70 (1] Read 003 SD007748 AFBO0030
Load ADOD0T 7O ADDOO170 2800 Write, Read 004 SD00774C AFBFDOS4
Load BFCODO00 BFCOOO00 912 Execute, Read 005 SD007750 AFBEDDSD
Load BFCD0480 BFCO0480 36 Execute, Read 0026 SD007754 AFBE0048
Load BFCOZFFD BFCO2FFD 4 Execute, Read 007 SD007758 AFBB0044
Load BFCO2FF4 BFCO2FF4 4 Execute, Read 008 SDO0775C AFB40040
Load BFCO2ZFF3 BFCO2FF2 4 Execute, Read 009 SD007760 AFB20038
Load BFCO2FFC BFCO2FFC 4 Execute, Read 00210 SD007764 AFB10034
0011 5DO07768 209821
0012 SDOO7A6C ADSD21
00213 SDO07770 AFAGDOED
0014 SDO07774 BB21
00215 5DO07778 22040000
00216 SDO0777C 10800042
00217 5D007780 A3A40010
0018 5D007784 24020025
00219 5D007788 14820070
SECTION 0020 5D00778C 26110001
A 0021 SD007750
Section Mame: text._viprintf _cdnopswcX [seg:0sec:D] &ﬁ:% gg%ma 240655;5
0024 5DO0775C 1821
Section Name: text [seq:lsec:1] &ﬁ:% ggﬁgﬂ %ﬁ%ﬂﬂ&ﬂm
0027 5DO077A8 24050028
. i 0028 SDOO77AC 10860064
Section Name: dinit [seg:0sec:2] 00329 SD0077B0 2450FFFF
0030 5D0077E4 2885002E
;I Section Name: texd mf24j40_init [seg:l.sec:3] &ﬁ:ﬁ; ggﬁggg 0
L 0033 5DO077CO 50870068
= = 2 0034 5DO077C4 34630001
Hs Section Mame: text main [seglsec:d] D->0-335 SD0077C8 50290067
i & 0036 S5DO07FCC 34630002
0037 | |9DD0Y7DO0 v | [3CO59D00 B
¥
i S _ B D L L T LU oA D TR D1 DL PRSISSSETR LR SRR _ L

Figure 2: ELF Profile Display Front End

148

Nigerian Journal of Technology Vol. 35, No. 1, January 2016

PRECISE DELTA EXTRACTION SCHEME FOR REPROGRAMMING OF WIRELESS SENSOR NODES

SEG.VMA

SEG PHY SEG_SIFE

E. M. Eronu & S. Misra

Unified Address Physical Address

SDO00000
SFCO1180
ADDO0000

O-=0-=0
0-=0->1
O-=0--2

Z7BDFFCS

0-=0->3
0-=0->5
0-=0->6
0->0-7
0->0->8
0-=0->5
O0-=0-=10
O-=0-=11
O-=0-=12
0-=0->13
O-=0->14
0-=0->15
0-=0--16
O0->0->17
0-=0-=18

SECTION

0->0->19
0-=0-20

Section Name: dinit [seg.lsec5]

Section Mame: text process_thread_coap_receiver [seg:0sec:E]

Section Mame: |

Section Mame: text.coap_sernalize_message [seg:lsec:8]

Section Name: text . uip_nd6_ns_input [seg:lsec:S]

0->0->21
0-=0-=22
0-=0->23
0-=0->24
0-=0->25
0-=0--26
0027

0-=0->37

Figure 3: ELF profile of the remotepowerswitch.elf file

4.2 Case Study 1: Effecting Changes to ‘Constant Data *
Program Code Listing 1 and 2 shows the highlighted
section of the ‘Led.c’ source code where the change
was made. In this case, the label definition ‘LEDS_RED’
used in the original source code has a value of ‘#2’ as
indicated in the header file ‘Led.h’ in Program Code
Listing 1. The label definition was altered to take on a
new value of ‘#4’ represented by ‘LEDS_YELLOW'
The two source codes (the original and the altered)
were compiled and their generated ELF fed into the
PDE. The delta obtained are illustrated in Figures 6, 7
and 8.

Program Code Listing 1. Extract from ‘Led.h’ showing
values assigned to constant definitions used in
‘Led.c’

#ifndef LEDS_GREEN

#define LEDS_GREEN 1

#endif/* LEDS_GREEN */

#ifndef LEDS_YELLOW

#define LEDS_YELLOW 2

#endif/* LEDS_YELLOW */

#ifndef LEDS_RED

#define LEDS_RED 4

#endif/* LEDS_RED */

#ifndef LEDS_BLUE

#define LEDS_BLUE LEDS_YELLOW

#endif/* LEDS_BLUE */

Nigerian Journal of Technology

Program Code Listing 2: Extract from ‘Led.C’ file showing
original Constant Assignment (Case study1)

void

toggle_handler(void* request, void* response, uint8_t
*buffer, uint16_t preferred_size, int32_t *offset)

{
leds_toggle(LEDS_RED);

PORTEDits.REO = !PORTEDbits.REOQ;
}

Program Code Listing 3: Extract from ‘Led.C’ file
showing modified Constant Assignment (Case study
1)

void

toggle handler(void* request, void* response, uint8_t
*buffer, uint16_t preferred_ size, int32_t *offset)

{
leds_toggle (LEDS_YELLOW);

PORTEDits.REO =! PORTEDbits.REO;
}

SECTION NO.: 276; SECTION NAME: .text.toggle_handler; NAME INDEX.: 2175 TYPE:
ProgBits; LOAD ADDRESS: 9D@12ee8; SIZE: 38

l..@->276->0 | 9D@12008 | 27BDFFEB
l..@->276->1 | 9De12eeC | AFBFeo14
J.8->276->2 | 9D@12010 | F4BACSF
8->276->3 | 9D@12014 | 2404800

J.8->276->4 | 9Dpe12018 | 3cezBF8‘sN
l..e-»276->5 | 9pe1zeic | scaasiie
J..8->276->6 | 9De12020 | 30840001
l..e-»276->7 | 9pe12e24 | 2cs4e001
J..8->276->8 | 9De12028 | 8C436110

Original Data
value

Figure 4: Original Data value of the file before effecting
changes (Case study1)

Vol. 35, No. 1, January 2016 149

The Delta listing in Figure 6 was obtained from the
‘modifiedRpt.txt’ and the initial values as presented in
the ‘originalRpt.txt’ file is shown in Program Code
Listing 4. Program Code Listing 4 depicts the
alteration in the data content to be exactly one byte in
size. The change occurs at unified address location

PRECISE DELTA EXTRACTION SCHEME FOR REPROGRAMMING OF WIRELESS SENSOR NODES

‘0->276->3" and has a physical address

E. M. Eronu & S. Misra

‘9D012014". The extent of change does not affect the
size of the entire firmware, and it is confined to just a

segment in the program hence its orientation is of the

segment confined type.

L=

Precise Delta Extraction Platform

ORIGINAL : 22705

MODIFIED : 22705

“0->275->6"3D011FE4*4E10005 -
“->275->7"8D011FER"1021
“0->275->8"30011FEC"8C 640094
0->275->3 8001 1FFIFECES0090
02275 10°9D011FF4"FA02032
“0->275>119D011FFE1003021
022751279001 1FFCEFBFO014
“0->275->13-90012000"3E00008
"2 275->14"90012004727B00018
“0->276->0"50012008~27BDFFER
“0-x276-:1"5001200CAFBFO014
“0-2276->2°5001 2010 FADSCEF
“0-:276-4"50012018°3C02BF38
“0-2276->5"5001201C"BC446110
“-:276->6"50012020- 30840001
“0-2276->7"50012024°2CE40001
“-:276->8°30012028°BC436110
“0->276->9°8001202C"7CE30004
02276 10750012030°AC436110
“0->276-»11"9D012034°BFEF0014
“->2 7612700120387 3E00008
“0->276-»13"3001203C"27800018
“0->277->0790012040°3C024000
032772175001 20447244 2260C
P2277->279001 2048724450014
“0->277->3"5001204C71821

“D-32 772473001 2050754440000
“U-x277-:57500120547 24420002
“0-2277-:6"50012058 1445FFFD
2277 75001205C7641821
*0-2277-:8"50012060" 3C02CCCC
02277975001 2064 2442C0CD
*0-2277-=10090012063°620019
“0->277-»11°9D01206C°1810
227712759001 2070°3E00008
“0-2277->1378D012074°310C2
0->277-+ 1430012078 27BDFFES ¥

“0->275->Z"9001 1FD4"801821
“0->275-» 39001 1FDEADS021
“0->275->4"3001 1FDCCO3821
“0->275->5"9001 1FE0"80440011
“0->275->6"3001 1FE4"4810005
“0->275> 73001 1FEET1021
*0->275->8"9001 1FEC™BCE40054
“0->275->93000 1FFO8CE50090
022751073001 FR4F402032
“0->275->11-3D011FFE~1003021
0275129001 1FFC8FBFO0T4
“0->275->13950012000~3E00008
*0-:275->14*30012004=278D 0018
“0->276->0r9001 2008 27BDFFER
“0->276->1"9D01 200C"AFBFD0 14
*0->276-> 79001 20 10" F40ACEBF
“0->276->4"90012018°3C02BFE8
“0->276->5"3D01201C"8C446110
“0->276->6"30012020°30840001
“0>276-> 73001 2024"2C840001
“0->276->8"90012028"8C436110
“0->276->5 3001 202C"7C 830004
“0->275-> 1079001 2030°AC4 36110
"0->276->11"3001 2034 8FBFD014
“0->275-> 12730012038 3E00008
“0->276->139001203C278D0018
“0->277->0"3001 2040 3C02A000
“-x277-: 175001 2044724422600
0->277->2 9001 2048724450014
027739001 204C1821
A0->277-24"9001 205094440000
0->277-:5"90012054°244 20002
*0->277->6"9001 20581 445FFFD
“0->277->7 9001 205C°64 1821
*0->277->8"90012060°3C02CCCC
“0->277-25"3001 2064344 2CCCD
“0->277-> 1073001 2068620019

*)

DELTA [Modified wit Original File] - 1

e

value of

ToZTE>T2ADMO00E e |

Mot Capture [Present in onginal but not in modffied - 0

DELTA [Modified wit Modfied File] : 1
“0->276->3°24040002

Shows a smgle
modification has
taken place- the
change reported 15
a single byte.

Mot Capture [Present in modified but nat in onginal] : 0

Metrics [Nomalised]

Madified: 4.40431622590531E-05
Deleted-0

Added:0

Figure 5: PDE display delta results obtained from Case study 1

Nigerian Journal of Technology

Vol. 35, No. 1, January 2016

150

PRECISE DELTA EXTRACTION SCHEME FOR REPROGRAMMING OF WIRELESS SENSOR NODES

E. M. Eronu & S. Misra

SEGTIQN..;.

*0->276->3*24040004

.text.togyle handler COUNT : 1

~ Shows a single
modification has taken
place- the change reported
15 a single byte.

where change

has taken

SECTION NO.: 276 ; SECTION NAME : .text.toggle handler ; WAME IMDEX.:
2175 TYPE : ProgBits ; LOAD ADDRESS : 9D@120@8 ; SIZE : 38
l.@g->276->8 | 9D@12008 | 27BDFFES
J.8->276->1 | 9De120eC | AFBFeel4
lp->276->2 | o9D@12@18 | FABACSF
@->276->3 | 9D | 24040002
L.@a-»276-»>4 | 9DB12 | 3CBEBF8§“‘~H\H
b 8->276->5 | 9D@1201C_ 8C446118 o
1 g->276->6 | 9pe12020 | Modified Data value
J.8-»276->7 | 9De12024 |
Address
location of

Figure 6: Modified value of Data after effecting changes (Case study 1)

Program Code Listing 4: Extract from ‘Led.C’ file showing
the insertion of a ‘Flow of Control’ code construct (Case
study 2)

toggle handler(void* request, void* response,
uint8_t *buffer, uintl6_t preferred_size,
int32_t *offset)

{
int decide = 9;
if (decide = 1)
{
leds_toggle(LEDS_RED);
PORTEbits.RE® = !PORTEbits.REQ;
}
else
{
leds_toggle(LEDS_YELLOW);
PORTEbits.RE® = !PORTEbits.REQ;
}
}
SECTION NO.: 150 ; SECTION NAME :

.text.process_thread_remote_power_switch ;

NAME INDEX.: 142D TYPE : ProgBits ; LOAD
ADDRESS : 9D@OF268 ; SIZE : 84

| ©->150->0 | 9D@OF268 | 27BDFFES

| @->150->1 | 9De@F26C | AFBF@014

| @->150->2 | 9DeeF276 | AFBeeo10

| ©->150->3 | 9D@OF274 | 94820000

| @->150->4 | 9DeeF278 | 10400006

| ©->150->5 | 9D@eF27C | 808021

| ©->150->6 | 9DPOF280 | 24030059

Nigerian Journal of Technology

| @->150->7 | 9DeeF284 | 54430014
| @->150->8 | 9D@OF288 | A4800000
| ©->150->9 | 9DeeF28C | B403CB3
| ©->150->10 | 9DOOF290 | 24620059
| @->150->11 | 9D@GF294 | F4@43E3
| @->150->12 | 9D@6F298 | @
| @->150->13 | 9D@OF29C | 3CO2BF88
| @->150->14 | 9D@GF2A0 | 8C436100
| @->150->15 | 9D@OF2A4 | 7C030004
| @->150->16 | 9D@GF2A8 | AC436100
| @->150->17 | 9D@GF2AC | 3C@2BF88
| @->150->18 | 9D@GF2Be | 8C436116
| @->150->19 | 9D@OF2B4 | 7C030004
| @->150->20 | 9D@OF2B8 | AC436116
| ©->150->21 | 9D@OF2BC | 3C04A800
| @->150->22 | 9D@OF2CO | F4042CF
| @->150->23 | 9D@GF2C4 | 2484257C
0->150->24 | 9DOOF2C8 | 24020059
| ©->150->25 | 9D@OF2CC | A6020000
| @->150->26 | 9D@GF2D0 | B463CB7
| ©->150->27 | 9D@OF2D4 | 24620001
| ©->150->28 | 9D@OF2D8 | 24620003
| ©->150->29 | 9D@OF2DC | 8FBFOO14
| ©->150->30 | 9D@OF2E0 | 8FBEEE16
| @->150->31 | 9D@OF2E4 | 3E60008
| @->150->32 | 9D@GF2E8 | 27BDOO18

Figure 7: PDE display delta results obtained from Case

study 2

4.3 Case Study 2: Effecting Changes to ‘Flow of Control’

Vol. 35, No. 1, January 2016

151

PRECISE DELTA EXTRACTION SCHEME FOR REPROGRAMMING OF WIRELESS SENSOR NODES

Similar procedures carried out in the previous sub-
section were repeated for a scenario where ‘flow of
control’ construct is introduced in the main
application’s source codes. Program Code Listing 4
shows highlights of the introduced ‘flow of control’
construct. The isolated delta obtained were presented
in Figure 7. In addition, Figure 7 depicts the delta
distribution in the modified file.

4.4 Case Study 3: Effecting Changes to ‘Function’s
Name’

In this case, changes were made to the original code
by altering some selected function names in the
application’s source code. The deltas obtained were
quite large and were unevenly distributed in the
program memory map. These changes as reported by
the PDE are depicted in Figure 8.

4.5 Discussion of Results

A summary of the results obtained in the three case
studies earlier presented above is shown in Table 4.
The results were categorised under the following: the
delta(s) size, the physical address range of the
delta(s), related ELF segments where the delta
resides, delta orientation and the number of
segment(s) involved.

The PDE isolates delta codes and provides information
on the location in memory where appropriate changes
are to be made in the new firmware. The information
illustrated in Table 4. is useful in determining the size
of delta involved and nature or characteristic of their
distribution in the program memory.

In case study one, it is observed that the size of the
delta is a single byte, this very small change can mean
a lot in real WSN applications. One typical example
involves altering the rate at which a sensor samples
data in the field or taking an average of the number of
samples acquired.

These changes in most cases are limited to single byte
size or integer size. Using the conventional approach
will involve the erasure and rewriting of the entire
program memory space or a substantial amount of the
memory space if a loadable reprogramming approach
is employed. In case study three, the delta distribution
among segments in the flash memory is highly
fragmented. These changes spread over five ELF
segments, namely: (.text, .vector, .data, .reset, and
.config_ BFCO2FF0). Even though the total number of
bytes involved is relatively small (2725) compared to
the actual memory size (128KB) of the
PIC32MX320F128H microcontroller, the disjointed

Nigerian Journal of Technology

E. M. Eronu & S. Misra

nature of the delta is best handled by reprogramming
the entire available memory space. The observations
inferred from the above case studies can be
instrumental in devising an inference engine for the
fuzzy logic subsystem employed in the context-based
reconfiguration system for WSN.

The limitations attributed to the difference-based
approach as highlighted in Section 2 were resolved
using the precision delta extraction scheme. The
precision delta extraction scheme generate a unified
address scheme, which concatenates the segment
number, section number and the position of each data
contained in the original image and the modified
image file separately. The unified address scheme
gives each set of data contained in the two files unique
reference numbers that are similar. Hence, when any
of the set of data is missing, its corresponding unified
address ceases to exist, though its physical address
might still exist, it will definitely point to another data.
Similarly, when a set of new data is added, these new
data acquire new unified addresses and invariably
become easier to isolate.

This approach rules out the need to generate the pair
(Checksum, MD5 hash) for each block of the old image
and new image for comparison, which subsequently
reduces the cost of implementing expensive
computations in the base station. Though Panta,
Bagchi and Midkiff in [19] tried to justify the use of the
host computer in implementing their modified
algorithm, issues of degrading performance
occasioned by delay in Delta dissemination can arise
(especially in real-time applications). Other variants
of the Rysnc algorithm have been proposed and
implemented: RDIFF [26], VCDIFF [20] and BSDIFF
[27]. However, since they are derivatives of the
original Rsync algorithm, the lapses highlighted here
are very much applicable.

5. CONCLUSIONS

The PDE Metric tool developed is an improvement
over existing similar tools like the Rysnc and its
variants. The PDE does not need tuning in order to
reduce the overheads associated with Rysnc and its
variants. The PDE provides concise physical address
and the virtual address of deltas. This information is
useful for targeting Delta locations and allowing
reconfiguration procedures to be confined to a single
segment of the Flash memory thereby saving an
enormous amount of energy expended when an entire
program memory is reprogrammed.

Vol. 35, No. 1, January 2016 152

ORIGINAL : 22705

PRECISE DELTA EXTRACTION SCHEME FOR REPROGRAMMING OF WIRELESS SENSOR NODES

MODIFIED : 22738

E. M. Eronu & S. Misra

DELTA [Madfied wrt Original File] : 2725

~0->0--0"3D 000000~ 27BDFFCS
*0->0->1"5D000004*AFBFOD34
*0->0->2"5D000008*AFB50030
*0->0->3"5D00000C AFBADDZC
“0->0--4"3D000010°AFB30028
*0->0--5"5D000014°AFB20024
*0->0->6"5D000018*AFB 10020
*0-=0-=7"5D00001CAFBODOIC
“0->0->8"3D000020°808521
~0->0->9"30000024°A380303C
*0->0->10"5D0D0028"F40438FC
*0->0->11"5D00002C"A3808050
*0-=0->12"3D000030°F404D 44
“0->0-:13"3D000034°0
*0->0--14"5D000038°AF2280A0
*0->0->15"9D00003C" 24040005
*0->0->16"3D000040°F404C40
“0->0->17"3D000044°24050004
*0-»0--18"3D000048°8F8280AC
*0->0->15"5D00004C 10400003
*0->0->20r5D000050°3C1 4A000
*0->0->21"3D000054°F40372C
“0-x0--2273D 0000580
*0->0->23"5D00005C265003D8
*0->0->24"5D0D00G052030006
*0->0->=25"3D 000064 24020006
“0->0->26"3D000065™ 146 2000F
*0->0-=27"3D00006C3C02A000
*0->0->28"5D00D0070"504 20400
*0->0->259D 000074304 230001
“0->0->30r3D00007514600009
~0->0-:31"3D00007C2404000E
*0->0->32"5D0D00B0" 304 2003F
*0->0->33"5D000084°24030010
*0->0->34"3D000085104 30007
“0->0->35"3D00008C™0
*0-»0--36"3D000090°F404C40
*0->0->37"5DD0D00E4"2:

“0->0->0"3D000000"27BDFFCE
*0->0->1"5D000004°AFBFD034
*0->0->2"5D000008°AFB50030
“0->0->3"3D00000CAFBADD2C
“0->0->4"3D000010°AFB30028
“0-=0--5"30000014°AFB20024
*0->0->6"5D000018°AFB 10020
“0->0->7"3D00001CTAFBOODIC
“0->0->8"3D000020°308821
“0->0->973D000024°A380805C
*0->0->10"5D 000028 F404516
“0->0->11"5D00002C"A380805D
“0->0->12"5D000030°F404D65
“0->0-13"3D000034°0
“0-=0->14"50000038°AF8280A0
*0->0->15"5D00003C"24040005
“0->0->16"30 00004 0°F404C 54
“0->0->17"30000044°24050004
“0-=0->18"50000048°8F8280AC
*0->0->15"5D00004C1 0400003
*0-»0->20"50000050°3C14A000
“0->0->21"3D 000054 F40372C
“0-x0-2273D 00005870
*0->0->23*5D00005C265003D8
*0->0->24"5D00006052030006
“0->0->25"30 000064 24020006
“0->0->26"3D 000068 1462000F
“0-=0->27"5000006C"3C02A000
*0->0->28"5D000070°50420400
“0->0->25"3D000074°30430001
“0->0->30"3D00007814600009
“0->0->31"3D00007C"2404000E
*0->0->32"5D000080°3042003F
“0-»0->33"50000084°24030010
*0->0->34"3000008810430007
“0->0->35"3D00008C0
“0-=0->36"5D 000090 F404C5A
*0->0->37"5D 000054 2.

“0->0->10"F4048FC
“0->0->12"F404D44
“0->0->16"F404C40

Mot Capture [Present in onginal but not in modffied : 33

“0->277-=27278D0018
“0->281->14720001
“0->281-=15"80004

IV Criginal
File

[Modified |

DELTA [Modified wrt Modified File] : 2725 File

“0->0->10"F404316
“0-=0-12"F404D65
“0->0->16"F4DACHA

Mot Capture [Present in modified but not in original] : 66

“0->222-=21"27BD0013 ~
023122070

*0->234-=19"278D0018
“0->241-=18"27BD0018 Sr

Metrics [Momalised]

Modified: 0.12001761726452

Deleted:0.00145342435586875
Added:0.0023068437117375

Figure 8: PDFE display delta results obtained from Case study 3

Table 4: A summary of results obtained for the three case studies

Network Survey,”

[1] J. Yick, B. Mukherjee and D. Ghosal, “Wireless Sensor
Journal of Computer Networks,

vol. 52, no. 2008, pp. 2292-2330, 2008.

Computing:

2004.

Sensor
Computing,” [EEE Pervasive Computing,

[2] J. Burrell, T. Brooke and R. Beckwith, “Vineyard
in Agricultural
pp- 38-45,

Networks

Size of Physical Address Orientation of Number

Case . Range(s) ELF segment Change in

Title changes 8 of
study in bvte Name Memory(Delta Seoment

yt Start End Orientation) g

Effecting

Changes to 2 9D012014 9D012014 .text Segment confined 1

Constant

Data

Effecting

Changes to 3 9D00F280 9DO0F2C8 .text Segment confined 1

Flow of

Control

Effectin 9D000028 9D013884 .text

harote 9FC01280 9FC01984 .vector Seoments

e 2725 A00025FC A0002784 .data D 5

Name’ BFC00014 BFC00194 .reset J

BFCO02FF0 BFCO2FF0 .config BFCO2FFOQ

6. REFERENCES Nodes wusing Function call Indirections and

Difference Computation,” in Proceedings of the
Annual Technical Conference (USENIX), San Diego,
CA,USA,, June, 2009.

[4] C. Han, R. Kumar, R. Shea, E. Kohler and M. Srivastava,
“A dynamic operating system for sensor nodes,” in
Proceedings of the 3rd International Conference on
Mobile systems, Applications , and Services
(MobiSys), 2005.

[3] P. R. Krishna, S. Bagchi and P. S. Midkiff, “Zephyr:

Efficient Increamental Reprogramming of Sensor

Nigerian Journal of Technology

Vol. 35, No. 1, January 2016 153

PRECISE DELTA EXTRACTION SCHEME FOR REPROGRAMMING OF WIRELESS SENSOR NODES

[5] S. Misra and E. M. Eronu, “Implementing
Reconfigurable Wireless Sensor Networks: The
Embedded Operating System Approach, Embedded
Systems,” in High Performance Systems, Applications
and Projects, 2012, pp. 221-232.

[6] S. Jun-Zhao, “0OS-based Reprogramming Techniques in
Wireless Sensor Networks: A Survey,” in Ubi-media
Computing (U-Media), 3rd [EEE International
Conference, July, 2010.

[7] A. Dunkels, N. Finne,]J. Eriksson and T. Voigt, “Run-
time Dynamic linking for Reprogramming Wireless
Sensor Networks,” in Proceedings of the 4th
International Conference on EFmbedded Networked
Sensor Systems, New York, USA, 2006.

[8] J. Hill, “Tiny0S: An Operating System for Sensor
Networks,” in Ambient Intelligence Springer-Velag
Berlin Heidelberg, Netherland, 2005.

[9] J. Jeong, S. Kim and A. Broad , “Network
reprogramming, tinyos documentation,” [Online].
Available: http://www.tinyos.net/tinyos-1-
x/doc/xnp.pdf. [Accessed 10 01 2012].

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Cullar and K.
Pister, “System architecture directions for
networked sensors,” in Proceedings of the 9th
International Confernce on Architectural Support
for Programming Languages and Operating
Systems, November, 2004.

[11] Q. Cao, T. Abdelzaher,]. Stankovic and T. He, “The
LiteOS Operating System: Towards Unix Like
Abstraction for Wireless Sensor Networks,” in
Proceedings of the 7th International Conference on
Information Processing in Sensor Networks (IPSN
2008), St. Louis, MO, USA, 2008.

[12] C. Han, R. Kumar, R. Shea, E. Kolher and M.
Srivastava, “A Dynamic Operating System for
Sensor Nodes,” in Proceedings of the 3rd
International Conference on Mobile Systems
Applications and Services, ACM, New York.

[13] K. Kulkarni, S. Sanyal, H. Al-Qaheri and S. Sanyal,
“Dynamic Reconfiguration of Wireless Sensor
Networks,” [International jJournal of Computer
Science and Applications, vol. 6, no. 4, pp. 16-42,
20009.

[14] E. M. Eronu, S. Misra and M. Aibinu, “Reconfiguration
Approaches in Wirless Sensor Network: Issues and
Chanllenges,” in Znd [FE Conference on Emerging
&Sustanable Technologies for Power & ICT in a
Developing Society (NIGERCON), Owerri, Nigeria,
2013.

Nigerian Journal of Technology

E. M. Eronu & S. Misra

[15] A. Tridgeell and P. Mackerras, “The Rsync
Algorithm,” The Australian National University.,
Canberra, Australia, 1996.

[16] S. Kim, J. Lee, K. Hur, K. Hwang and D. Eom, “Tiny
Module-Linking for Energy-Efficient
Reprogramming in wireless sensor networks,”
Transactions on Consumer Electronics, vol. 55, no.
4, pp. 1914-1920., 20009.

[17] F. V. Rysselberghe and S. Demeyer, “Evaluating
Clone Detection Techniques,” in Proceedings of the
International Workshop on Evolution of Large Scale
Industrial Applications, ELISA, 2003.

[18] N. B. Shafi, “Efficient Over-the-air Remote
Reprogramming of Wireless Sensor Networks,”
Ontario, Canada, 2011.

[19] R. K. Panta, S. Bagchi and S. P. Midkiff, “Efficient
Incremental Code Update for Sensor Networks,
ACM,” Transactions on Sensor Networks, vol. 7, no.
4, pp- 30.1-30.32,, 2011.

[20] D. Korn, J. MacDonald, J. Mogul and K. Vo, “The
VCDIFF Generic Differencing and Compression Data
Format. RFC 3284 (Proposed Standard),” 2002.

[21] J. Sharp , Microsoft Visual C# 2013, Sebastopol,
California 95472: O’Reilly Media, Inc., 2013.

[22] P. Paolo and R. Marco, Programming Microsoft LINQ
in Microsoft.Net 4 Framework, Sebastopol,
California 95472: O’Reilly Media, Inc., 2010.

[23] A. Freeman and]. C. Rattz, Pro LINQ: Language
Integrated Query in C# 2010, B. Ewan, Ed., New
York: Apress, 2010.

[24] TIS Committee, “Tool Interface Standard (TIS)
Executable and Linking (ELF) Specification,”
May,1995.

[25] P. Giovanni, “Remote Power Switch Example for the
Seed-Eye Board,” 24 01 2013. [Online]. Available:
https://github.com/contiki-os/contiki/blob/
master/examples/seedeye/powerswitch /remotepo
werswitch.c. [Accessed 01 10 2014].

[26] S. Milosh, P.]. Cuijipers and]. J. Lukkien, “Efficient
reprogramming of wireless sensor networks using
incremental updates and data compression,” in
International conference of Pervasive Computing
and Communications Workshops (PERCOM
Workshops), 2013.

[27] C. Percival, “Naive differences of executable code.
Technical Report,” Oxford Computing Laboratory,
University of Oxford., UK, 2003.

Vol. 35, No. 1, January 2016 154

