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ABSTRACT

Through experimental studies, Vlasov showed that Euler’s critical load formula cannot be
directly applied to thebuckling analysis of thin-walled closed columns. I n thisstudy, Vlasov's
displacement model with modification by Varbanov and Euler’ s elastica model wereused in
a comparative study to determine the flexural buckling strength of single-cell doubly
symmetric thin-walled box columns with different boundary conditions. The study involved
atheoretical formulation based on Vlasov' stheory asmodified by Varbanovandimplemented
theassociated displacement model in analyzing flexural buckling modes. Euler’ scritical load
formula was used to solve the same set of problems and the results thereof were compared
with those obtained from Vlasov' smodel. Theflexural behaviour showedthat for all threesets
of boundary conditions considered, the critical load due to flexure about the oz-axis will
control design in both models. Comparison with the Euler critical load results showed that
Euler’ smode underestimated thecritical bucklingload by 67.53%for hinged-hinged, 67.11%
for clamped-hinged and 66.11% for clamped-clamped boundary conditionsrespectively. For
bending about the oy-axis, the underestimation ranged from 51.14% for hinged-hinged,
50.33% for clamped-hinged to 48.52% for clamed-clamped boundary conditions. Theresults
show that for single-cell doubly symmetric box columns, the Euler buckling strength should
be increased by about 100% to 200% to obtain the Vlasov buckling strength. The actual
percentage depends on the axis of symmetry and the boundary conditions under
consideration.

Key words. Euler's Model, Flexural Buckling, Single-Cell Section, Thin-Walled Column,
Vlasov's Model.

NOTATIONS: ¢,(s): Generalized longitudinal strain
U,(X): Longitudinal displacements function fieldsdueto flexure about oy- and
due to flexure about oy- and oz-axes oz-axes, and warping torsion
and warping due to torsion about ox- about ox-axis.
axis. @i(9): First derivative of the longitudinal
V. (X): Transverse displacements function strain fields with respect to the
due to flexure about oy- and oz-axes, profile coordinate, S
torsion about ox-axis, and distortion P (s): Generalized transverse strain
of the cross-section. fieldsdueto flexure about oy- and
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0z-axes, torsion about ox-axisand
distortion of the cross-section

P,:  Critical buckling load
S Profile coordinate

E: Modulus of elasticity
G: Modulus of rigidity

(X, S):Shear stress
o(X, s): Normal stress

INTRODUCTION

Thin-walled structures consist of awide and
growing field of engineering application
which seek efficiency in strength and cost by
minimizing material [1]. Multitude of
research efforts have recently been invested
in thin-walled structures because of the
complexity of their behaviour, their natural
optimization characteristics and the need for
brief but accurateand reliabledesign methods
[2]. Thin-walled closed structures are very
economical asstructural elementsduetotheir
light weight, and their high flexural and
torsiona rigidity [3-6]. However, owing to
the thinness of their walls, these structures
appear to have low resistance against
buckling, consequently their instability
problems need some careful and in-depth
study before their reliable design as
compression elements can be accomplished
[5]. Closed cross-section thin-walled steel
columns have at least three competing
instability modes: flexural, torsional and
distortional buckling [6].

Backing his theory up with
experimental studies, Vlasov showed that
Euler's critical load formula cannot be
directly applied to the buckling analysis of
thin-walled closed columns because the
formula was derived on the basis of
elementary beam theory which does not

€, Longitudinal strain
Vs Shear strain
: Moment of inertiaabout the oy — axis

l,: Moment of inertiaabout the oz —axis
l,..  Warping constant
w: Warping function

embrace cross section warping and distortion
[7]. Subsequent research efforts have been
quoting this finding by Vlasov, but none has
studied the level of relationship between
flexural buckling strengths obtained from the
two models. Strict application of Vlasov’'s
equation for the analysis of thin-walled
structures|eadsto large number of kinematic
unknownsinform of displacement functions.
As a result of this problem, Varbanov [4]
showed that by using generalized strain
fields, the number of kinematic unknowns
was drasticaly reduced. Generalized strain
fields are strain fields chosen in such a way
that they constitutelinear combinationsof the
unit (elementary) strainfieldsused by Vlasov
[8].

The main motivation for this present
study is the need to establish simple closed-
form relationship between flexural buckling
strengths obtained using Vlasov’'s
displacement model asmodified by Varbanov
and that obtained using Euler’ s el astic model
for single-cell thin-walled box columns.
Availability of such simple relationship will
enable an accurate estimate of Vlasov's
flexural buckling loads for single—cell box
columns when amore direct Euler’ svalueis
known.
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FORMULATION OF THE EQUILIBRIUM EQUATION:
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Figure 1: Axially

compressed single-cell thin-walled
box column and the associated stress resultants

Figurel shows an axially compressed thin- /
walled hollow column, the generated stress EZ=1 Vk(x)‘lfk(s)
resultants and the box cross-section
parameters. Using Lagrange's principle,

Thebending moment induced by distortionis

Vlasov [8] expressed thedisplacementsinthe given by:
longitudinal and transverse directions, uy _\m
and v, of athin-walled closed structure( ir; M, ) = Ek:l M) Vi)
seriesform as follows: The potential energy of an axialy
loaded thin-walled closed structure is given
u(e,s) = Y1 Ui 9;(s) by: 1,=S- (6
For the structure under consideration, the
_ strain energy and work degpe by the external
Ve s) = EZ’ -1 VK@ V) load are given by: d@j
Vlasov’'s formulation yields (m + n) second
order differential equations. Later work by 1
Varbanov [4] showed that m and n can be S = 21 f S[(G(x,s)s(x,s) +T(x,s)Y(x,s)> is)*
limited to four by using generalized strain
fields. Using equations (1) and (2) and basic M2
stress-strain relations of the theory of ) | 2 7)
elagticity, the expressions for normal and EI
shear stresses become:

W= %IL fSPv(/f,s)dxds

3
Substituting equations (7) ar(u} (8) into
eguation (6) and simplifying, weobtained the

o(x,s) = Ee, = EZZ.ZI Ul./(x)(pl-(s)

©(x,5) = Gyyg= G[ZZ-ZI U l-(x)(pl{(s)+
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total potential energy functional as:
Ty = % L{EEZI Ej”il a;i Uix)Ujix) +
GZ“,-ZI Ejnil by Uix) Uj(x) +
* GE?; Ef:l ¢ir Uix) V’{(x) +
Xy Xy U0 V) *
+GY Y mpy Vli(x) V’{ (x) +
EY S 1 3 Sk Vi@ V) -

n / /
Yy S0 hiaV )V oo
where

aj = f S<Pi(S)(Pj(S)t(S)dS
by = bjj = fS(pl{(s)(pJ{(s)t(s)ds

/
Cip = Cpj = S(pl.(s)wr(s) H(s)ds

~~

Cik = Ckj = f S(pj{(s)wk(s) H(s)ds
Mpp = My = Sq!k(s)qlr(s)t(s)ds
hip = hy = qufk(s)wr(s)ds

o g o L MEOMS)
ke = Srk EfS El

The total potential energy functional p, has
stationary values if the following Euler-
Lagrange differential equations are satisfied:

oF _d(oF

an d aUJ/

=0

OF _d[OoF) _,
Wy & oy!
J
Where,
VAN A |
T =F( U; UJ Vio Vs Ul., U] Vk, Vr)

13
Using equations(11) and (12) on equati Ol’(l (9;
and noting that for the thin-walled closed
column under consideration, m=3 and n=4,
we obtained the governing equations of
equilibrium as:

3 3 7 3 3
2 Ej=1 a;iU; ) -3y Ej=1 by Uix)

3 4 /
21 X1 Vg, = O

3 b P —
i Xy Ui+ Xy Xy RV -

4 4
szzl Erzl StV px) = 0
P
Where, kp, = (mkr_ghkr)

GENERATION OF THE STRAIN
MODES AND DETERMINAQ)ION OF
COEFFICIENTSOFTHE GOVERNING
EQUATIONS OF EQUILIBRIUM:
Considering the nature of loading (axial
compression), the longitudinal strain modes
@, consist of bending about y- and z-axes,
andwarpinginthelongitudinal direction. The
functions ¢, are chosen in the forms:

Py = Yigr Pog = Lsr P3e = Wy (16)
The transverse strain modes Y, consist of
bending about y- and z-axes, pure rotation
about thelongitudinal x-axisand distortion of
the cross sectio 1}he functions g, are
defined asfollows:
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/ / / / /
Vis) = P1(s) = Vi) V26) T Po(s) T Asy Y3 T PGy VaGs) T P3(s) T Pa(s)

ST, < IR L. T

/

(17)
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©1(s) P15y and Py sy Due to flexure about oz-axis
@25 P2(s) and P sy Due to flexure about oy-axis

P3(s) Pacs) and Pyu(s) Due to torsion about ox-axis

Y35y = h(s)

M,s),, Moment generated by distortion Ta

Due to pure rotation about ox-axis

go
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nin
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dif
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ion
s of equilibrium were determined for the
cross sections by first generating and plotting
the strain fields as shown in figure
2. Diagram multiplicationtechniquewasthen
used in determining the elements from the
strain mode diagrams as follows:

&
4..- R p—

NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 29 NO.1, MARCH 2010



COMPARATIVE STUDY OF VLASOV AND EULER INSTABILITIES OF AXIALLY COMPRESSED ... 71

Fig. 2. Generalized strain fields for single-cell doubly symmetric section

a;=a; = [;@,(9g; (9 t(s) ds Cu=[s@1 (Y, (9 t(s) ds=0

a, = [ 0y(9)@, (9) t(s) ds= 7.333a’t Cp = [s @5 (W, (9) t(s) ds = Bat

8y, = [ 999, (9) t(s) ds = 13.5a’t Cs = [s @5 (W;5 (9) t(s) ds=10

ap= 8, = [@.(99, () t(s) ds=0 Cou = [s @(P, (9 t(s) ds=0

A= 8y = [@:(9)¢; () () ds= 0 Cxs = [ @5(9U5 (9) t(s) ds = 0.6a
By = Anp = [;@A9)¢;(9) () ds= 0 Cs = [ @5 (90, (9) t(s) ds = 0.6a
g5 = [ 93(9) @5 (9) t(s) ds= 0.3a’ m, =m, = [SU (Y, (9) t(s) ds

b =B = [s9i (9] () t(s) ds My, = [, (9P, (9) t(s) ds = 4at

by, = [s @i (99 (9) t(s) ds = 4at my, =my = [, (Y, () t(s) ds= 0
by, =0, = [,1(995; (S) t(s) ds=0 My =My = [P, (Y5 (9 t(s)ds= 0
b= by = [ @1 ()5 (S) t(s) ds=0 My =m, = [P, (P, (9 t(s)ds= 0
b,, = [s@5(9)@5 (5) t(s) ds= 6at My, = [ W, ()Y, (S) t(s) ds = Gat

b, = by = [ @5 (95 (9) t(s) ds=0 My =My, = [ W, (S)W; (9) t(s) ds= 0
by = [ @5(9)@5 () t(s) ds = 0.6a’t My, =My, = [ W, ()Y, () t(s) ds= 0
Cr=Ci= [ (9, (9 t(s) ds My = [ W5 (U5 (9) t(s) ds = 15a’t
Cy = [s@1(V (9) t(s) ds = 4at My, = [ W5 (U, (9) t(s) ds= 0.6a’t
C=Cu=[s01 (9P, (9 t(8) ds=0 My, = [ W, (W, () t(s) ds= 0.6a’t
Ci3=Cy = [ @1 (Y5 () t(5) ds=0 he = hye= [s W (Y, (9) ds
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hy = [ W, (9P, (9ds= my,/t = 4a
h,=h, = [P, (9P, (5)ds= 0
hiz=hy = [ (U5 (5)ds= 0
h,=h,= Y, (Y, (5)ds=0
hy, = [ W, (Y, (S)ds = Ga
hy=hg, = [P, (Y5 (5)ds= 0
hyy =hy= [ U, ()0, (5)ds= 0
hgy = [ W3 (Y, (9)ds = 15a°
hy, = [ Ws (Y, (9)ds = 0.6a°
hy = [ Wi ()W, (9)ds = 0.6a°
1 M, (5)M_ (s)

= e ‘—d

Se = ST ] s

_E f M,()M(s) , _ 07681

A4

E*ST  E a
But, I 25%2 for al the plates
0768 3 0.064t"
= %44 T a i 12 a

DERIVATION OF INDEPENDENT
EQUATIONS IN LATERAL
DISPLACEMENT QUANTITIESV(x):
Substituting the zero coefficients as obtained
into the matrix form of the governing
equations of equilibrium (14 & 15), and
assuming the cross-section to be rigid (non-
deformable), we obtained:

[
€11 0 0 Vl
/
-10 0 =
22 V2 0
0 0 e33]|
_V3.
o
€11 0 0 Ul kll 0 0
0 ¢y 0 U2/ +1 0 kyy O
0 0 ¢33 / 0 0 k33
Us

Where, kll = (mll —ghll);

P
kyy = (mzz - Ehzz);

Expanding equation (18), we obtained:
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/1 / ’
’YallUl _bllUl —CllVl =0

/1 /
ya22U2 - b22U2 - 022V2 =0

1/ /
ya33U3 - b33U3 - C33V3 =0
Expanding equation (19), we obtained:

011U1/+k11V1// =0

|
(=]

/ /]
022U2 + k22V2 =

033U3/+k33V3// =0

Eliminating U,(x) and their derivatives from
equations (20) and (21), we obtained:

2 I

iv

V1 +agq Vl =0
iv 2 1

V2 +a22V2 =0
iv 2 1

V3 +as3 V3 =0

2

c11 b1k

Where, a121 = 11—;
va11ki1

2
2 |60 bxnkn|

I e Binind !
22 Yay ko

2
c33 ~ b33k33

Ya33k33
The independence of the above three
equations shows that there are three possible
independent buckling modes, namely:

flexural buckling about oz- and oy-axes (22)
and (23) and torsional buckling mode about

2 —
d33 =

ox-axis (24).The general solution of the
flexural modes (22) and (23) are given by:
Vi =C,cos0y;, X+ C,sina,; X+

+C;x+C, (20) (25)
V,p = C, COS 0, X+ C, sinay, X
+C;x+C, (26)

The constants C,, C,, C, and C, were
evaluated from the boundary conditions as
follows:

(1) Hinged-Hinged condition:

V1 =73 = 0(21) 0, D)
a*v,

= =0(x=0,))
2 d?

a*v

(i) Clamped—Hinged condition:

7y L8 - 0w =0,1); )
dvy éZde 0 0
& Cn 00|
2 2
d%v Z

LY oy
&? a2

(iii)  Clamped—Clamped condition:

Vl = V2 = 0;
dv dv-
_1 = _2 = O(x:O, l)
dx dx

Applying the boundary conditions (27), (28)
and (29) to equations (25) and (26) and
noting that for nontrivial solutionsor nonzero
valuesof the constants, thedeterminant of the
coefficients of C, ... C, must varnish, we
obtained the following:

() Hinged-Hinged conditions:-
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1 0 0
1 0 0
cosalll sinalll )
cosalll sinalll 0
1 0
1 0
and cos a221 sin “221
cosayyl  sinaysl

(i) Clamped—Hinged conditions:

0 0
0 a1 1
cosayql sinagql I
cosayyl sinagyl 0
0
0 Lo%)
and Cosayyl  sinansl
cosanyl  sinaysl

(iii)  Clamped-Clamped conditions:

S 0~

l
0

1
0

1

0
0 011
cosayq/ sinaq 1/
-0q1sinayq/  ajqcosaqql

0 0
0 09 1 0
cosaysl sinayyl 1]
—appsinanyl  appcosaxyl 1 0
' (32

Equations (30), (31) and (32) represent the

stability matrices for equations (22) and (23)

for the two axes of symmetry and the
different boundary congdiions. Expanding
equations (30), (31), and (32), we obtained
the critical buckling loads for the respective
boundary conditions as follows:

(i)
2
11 G
P, =|mq1 -
cr 11
22 hll
T wyayy+byy
;2
(i)
.2
11 G
Pep=\myq - A
Z xyayp +byq | 11
i
(iii)
22
11 G
P..=\myq -
cr 11
4n21t2 h11
*yay1 +by1
I
(i)
2
2 G
Per =|mn~—— s
T xyay, +by)
I
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(i)
2
22 G
P.. =\myy -
cr 22
20.1 “vaon +b h22
) Yaz2 +022
/
(iii)
02
22 G
Py =|mpp - > 5 7
4n“n b 22
> *yayy +022
)

NUMERICAL STUDY

A numerica study was performed for single-
cell thin-walled steel box column with the
following parameters:

E =210 x 10°MN/n??, G = 81 x 10®MN/m?,
L = 4.5m, a= 0.08m, and t = 0.0005m to
0.02m.

The critical loads associated with the two
flexural buckling modes were evaluated for
the different boundary conditions and the
results presented on tables 1 and 2.

THE EULER BUCKLING LOAD
EQUIVALENT:
The Euler’ s buckling load is given by:

_ wH

cr 12 ’
eff

Bending about oz-axis: | ,= a,; = 7.333a%, a
=0.08m,L = 4.5m

Hinged-hinged condition; |, = L = 4.5m;

p

 ®PEl

2
leﬁf

~ P

cr

lg = effectlvelen

75

Clamped-hinged condition | 4 = 0.7L;
- P, = 784.241t
Clamped-clamped condition; | 4
- P, =1537.112t

= 0.5L;

Bending about oy-axis: |, = 13.5a’
Hinged-hinged condition:

P, = 707.453t
Clamped-hinged condition:
- P, =1443.782t

Clamped—clamped condition:

- P, =2829.813t
Again, the critical loads associated with the
two flexural buckling modes were evauated
for the different boundary conditions and the
results presented on tables 1 and 2.

RESULTSAND DISCUSSION
The results as presented on tables (1 and 2)
show that the flexural buckling load about
oz-axisislessthan that about oy-axis. Hence,
the flexural behaviour shows that for all the
three sets of boundary conditions considered,
the critical load due to flexure about the oz-
axis will control the design. Comparison of
Vlasov critical load valuesin table 1 with the
Euler critica load results showed that the
Euler model underestimated the critica
buckling loads by 67.53% for hinged-hinged,
t]hl% for clamped-hinged and 66.11% for
gmped clamped boundary conditionsunder
flexure about the oz-axis. However, under
flexure about oy-axis, the percentages of
underestimation by Euler model were
reduced to 51.14% for hinged-hinged,
50.33% for clamped-hinged and 48.52% for
clamped-clamped boundary conditions
respectively. In both axes, the results also
indicate that improved fixity reduces the
degree of underestimation by Euler model.
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Theresultsgenerally show that for single-cell
doubly symmetric box columns, the Euler
buckling strength could be used to estimate
the Vlasov flexural buckling strength by
increasing the Euler value by about 100% to
200% depending on the axis of symmetry and
the boundary conditions.

CONCLUSION

This study has resulted in a better
understanding of the level of difference
between the more accurate Vlasov critical
loadsfor single-cell thin-walled box columns
and the underestimated Euler critical loads.
Theresults confirmsthat Euler's critical load
model is indeed inadequate for instability
design of thin-walled box columns. A critical
comparison of the results show that the
simpler Euler flexural buckling loads can
now be used for making a reasonable
estimate of the more accurate and more
rigorous Vlasov flexural buckling value.

Tablel: Vlasov and Euler critical buckling loads for single-cell doubly symmetric thin-walled
box column under the different boundary conditions and bending about oz-axis

Hinged-Hinged (MN) | Clamped-Hinged (MN) | Clamped-Clamped (MN)
t(m) Pcr(Vlasov) | Per (Euler) |Per(Vlasov) | Per (Euler) |Pcr(Vlasov) | Per (Euler)
0.02 23.673 7.686 47.686 15.685 90.714 30.742
0.0175 20.713 6.725 41.725 13.724 79.374 26.899
0.015 17.754 5.764 35.764 11.764 68.035 23.057
0.0125 14.795 4.803 29.803 9.803 56.696 19.214
0.01 11.836 3.843 23.843 7.842 45.357 15.371
0.0075 8.877 2.882 17.882 5.882 34.018 11.283
0.005 5.918 1921 11.921 3.921 22.678 7.686
0.0025 2.959 0.961 5.961 1.961 11.339 3.843
0.001 1.184 0.334 2.384 0.784 4.536 1.537
0.00075 0.888 0.288 1.788 0.588 3.402 1.153
0.0005 0.592 0.192 1.192 0.392 2.263 0.769
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Table2: Vlasov and Euler critical buckling loadsfor single-cell doubly symmetric thin-walled
box column under the different boundary conditions and bending about oY -axis

Hinged-Hinged (MN) | Clamped-Hinged (MN) | Clamped-Clamped (MN)
t(m) Pcr(Vlasov) | Per (Euler) |Per(Vlasov) | Per (Euler) |Pcr(Vlasov) | Per (Euler)
0.02 28.958 14.149 58.137 28.876 109.963 56.596
0.0175 25.338 12.380 50.87 25.266 96.194 49.522
0.015 21.718 10.612 43.603 21.657 82.452 42.447
0.0125 18.099 8.843 36.335 18.047 68.710 35.373
0.01 14.479 7.075 29.068 14.438 54.968 28.298
0.0075 10.859 5.306 21.801 10.828 41.226 21.224
0.005 7.239 3.537 14.534 7.219 27.484 14.149
0.0025 3.620 1.769 7.267 3.609 13.742 7.075
0.001 1.448 0.707 2.907 1.444 5.497 2.830
0.00075 1.086 0.531 2.180 1.083 4.123 2.122
0.0005 0.724 0.354 1.453 0.722 2.748 1.415
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