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ABSTRACT

Through experimental studies, Vlasov showed that Euler’s critical load formula cannot be
directly applied to the buckling analysis of thin-walled closed columns. In this study, Vlasov’s
displacement model with modification by Varbanov and Euler’s elastica model were used in
a comparative study to determine the flexural buckling strength of single-cell doubly
symmetric thin-walled box columns with different boundary conditions. The study involved
a theoretical formulation based on Vlasov’s theory as modified by Varbanov and implemented
the associated displacement model in analyzing flexural buckling modes. Euler’s critical load
formula was used to solve the same set of problems and the results thereof were compared
with those obtained from Vlasov’s model. The flexural behaviour showed that for all three sets
of boundary conditions considered, the critical load due to flexure about the oz-axis will
control design in both models. Comparison with the Euler critical load results showed that
Euler’s model underestimated the critical buckling load by 67.53% for hinged-hinged, 67.11%
for clamped-hinged and 66.11% for clamped-clamped boundary conditions respectively. For
bending about the oy-axis, the underestimation ranged from 51.14% for hinged-hinged,
50.33% for clamped-hinged to 48.52% for clamed-clamped boundary conditions. The results
show that for single-cell doubly symmetric box columns, the Euler buckling strength should
be increased by about 100% to 200% to obtain the Vlasov buckling strength. The actual
percentage depends on the axis of symmetry and the boundary conditions under
consideration.

Key words: Euler’s Model, Flexural Buckling, Single-Cell Section, Thin-Walled Column,

Vlasov’s Model.

NOTATIONS:

iU (x): Longitudinal displacements function

due to flexure about oy- and oz-axes

and warping due to torsion about ox-

axis. 

kV (x): Transverse displacements function

due to flexure about oy- and oz-axes,

torsion about ox-axis, and distortion

of the cross-section. 

in (s): Generalized longitudinal strain

fields due to flexure about oy- and

oz-axes, and warping torsion

about ox-axis.

inN(s): First derivative of the longitudinal

strain fields with respect to the

profile coordinate, S

kψ (s): Generalized transverse strain

fields due to flexure about oy- and
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oz-axes, torsion about ox-axis and

distortion of the cross-section

crP : Critical buckling load

S: Profile coordinate

E: Modulus of elasticity

G: Modulus of rigidity

τ(x, s):Shear stress

σ(x, s): Normal stress

xg : Longitudinal strain

xsγ : Shear strain

yI : Moment of inertia about the oy – axis

zI : Moment of inertia about the oz – axis

ωωI : Warping constant

ω: Warping function

INTRODUCTION 

Thin-walled structures consist of a wide and
growing field of engineering application
which seek efficiency in strength and cost by
minimizing material [1]. Multitude of
research efforts have recently been invested
in thin-walled structures because of the
complexity of their behaviour, their natural
optimization characteristics and the need for
brief but accurate and reliable design methods
[2]. Thin-walled closed structures are very
economical as structural elements due to their
light weight, and their high flexural and
torsional rigidity [3-6]. However, owing to
the thinness of their walls, these structures
appear to have low resistance against
buckling, consequently their instability
problems need some careful and in-depth
study before their reliable design as
compression elements can be accomplished
[5]. Closed cross-section thin-walled steel
columns have at least three competing
instability modes: flexural, torsional and
distortional buckling [6].

Backing his theory up with
experimental studies, Vlasov showed that
Euler’s critical load formula cannot be
directly applied to the buckling analysis of
thin-walled closed columns because the
formula was derived on the basis of
elementary beam theory which does not

embrace cross section warping and distortion
[7]. Subsequent research efforts have been
quoting this finding by Vlasov, but none has
studied the level of relationship between
flexural buckling strengths obtained from the
two models. Strict application of Vlasov’s
equation for the analysis of thin-walled
structures leads to large number of kinematic
unknowns in form of displacement functions.
As a result of this problem, Varbanov [4]
showed that by using generalized strain
fields, the number of kinematic unknowns
was drastically reduced. Generalized strain
fields are strain fields chosen in such a way
that they constitute linear combinations of the
unit (elementary) strain fields used by Vlasov
[8]. 
       The main motivation for this present

study is the need to establish simple closed-

form relationship between flexural buckling

strengths obtained using Vlasov’s

displacement model as modified by Varbanov

and that obtained using Euler’s elastic model

for single-cell thin-walled box columns.

Availability of such simple relationship will

enable an accurate estimate of Vlasov’s

flexural buckling loads for single–cell box

columns when a more direct Euler’s value is

known.
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FORMULATION OF THE EQUILIBRIUM EQUATION: 

Figure 1: Axially
compressed single-cell thin-walled 

box column and the associated stress resultants

Figure1 shows an axially compressed thin-
walled hollow column, the generated stress
resultants and the box cross-section
parameters. Using Lagrange’s principle,
Vlasov [8] expressed the displacements in the

(x,s)longitudinal and transverse directions, u

(x,s)and v  of a thin-walled closed structure in
series form as follows:

(1)

(2)

Vlasov’s formulation yields (m + n) second

order differential equations. Later work by

Varbanov [4] showed that m and n can be

limited to four by using generalized strain

fields. Using equations (1) and (2) and basic

stress-strain relations of the theory of

elasticity, the expressions for normal and

shear stresses become: 

(3)

    (4)

The bending moment induced by distortion is
given by:

(5)

The potential energy of an axially
loaded thin-walled closed structure is given

pby:                π  = S – W           (6)
For the structure under consideration, the

strain energy and work done by the external

load are given by:

(7)

(8)

Substituting equations (7) and (8) into

equation (6) and simplifying, we obtained the
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total potential energy functional as:

 

 

 

  

  (9)

where

  (10)

pThe total potential energy functional p  has
stationary values if the following Euler-
Lagrange differential equations are satisfied: 

(11)

(12)

Where,

 

(13)
Using equations (11) and (12) on equation (9)

and noting that for the thin-walled closed

column under consideration, m=3 and n=4,

we obtained the governing equations of

equilibrium as: 

        (14)

(15)

Where, 

GENERATION OF THE STRAIN
MODES AND DETERMINATION OF
COEFFICIENTS OF THE GOVERNING
EQUATIONS OF EQUILIBRIUM:
Considering the nature of loading (axial
compression), the longitudinal strain modes

i(s)n   consist of bending about y- and z-axes,
and warping in the longitudinal direction. The

i(s)functions n  are chosen in the forms: 

1(s) (s) 2(s) (s) 3(s) M(s)   n   = y ; n  = z ; n  = ω (16)

k(s)The transverse strain modes ψ  consist of

bending about y- and z-axes, pure rotation

about the longitudinal x-axis and distortion of

k(s)the cross section. The functions ψ  are

defined as follows: 
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s of equilibrium were determined for the
cross sections by first generating and plotting
the strain fields as shown in figure 
2. Diagram multiplication technique was then
used in determining the elements from the
strain mode diagrams as follows: 
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Fig. 2. Generalized strain fields for single-cell doubly symmetric section

ij ji s i ja  = a  = I  n (s)n  (s) t(s) ds

11 s 1 1a  = I  n (s)n  (s) t(s) ds = 7.333a t3

22 s 2 2a  = I  n (s)n  (s) t(s) ds = 13.5a t3

12 21 s 1 2a  = a  = I  n (s)n  (s) t(s) ds = 0

13 31 s 1 3a  = a  = I  n (s)n  (s) t(s) ds = 0

23 32 s 2 3a  = a  = I  n (s)n  (s) t(s) ds = 0

33 s 3 3a  = I  n (s)n  (s) t(s) ds = 0.3a t5

ij ji s i jb  = b  = I  nN(s)nN (s) t(s) ds

11 s i 1b  = I  nN(s)nN (s) t(s) ds = 4at

12 21 s 1 2b  = b  = I  nN (s)nN (s) t(s) ds = 0

13 31 s 1 3b  = b  = I  nN (s)nN (s) t(s) ds = 0

22 s 2 2b  = I  nN (s)nN (s) t(s) ds = 6at

23 32 s 2 3b  = b  = I  nN (s)nN (s) t(s) ds = 0

33 s 3 3b  = I  nN (s)nN (s) t(s) ds = 0.6a t3

ir ri s i rc  = c  = I  nN(s)ψ  (s) t(s) ds

11 s 1 1c  = I  nN (s)ψ  (s) t(s) ds = 4at

12 21 s 1 2c  = c  = I  nN (s)ψ  (s) t(s) ds = 0

13 31 s 1 3c  = c  = I  nN (s)ψ  (s) t(s) ds = 0

14 s 1 4c  = I  nN (s)ψ  (s) t(s) ds = 0

22 s 2 2c  = I  nN (s)ψ  (s) t(s) ds = 6at

23 s 2 3c  = I  nN (s)ψ  (s) t(s) ds = 0

24 s 2 4c  = I  nN (s)ψ  (s) t(s) ds = 0

33 s 3 3c  = I  nN (s)ψ  (s) t(s) ds = 0.6a t3

34 s 3 4c  = I  nN (s)ψ  (s) t(s) ds = 0.6a t3

kr rk s k rm  = m  = I  ψ (s)ψ  (s) t(s) ds

11 s 1 1m  = I  ψ (s)ψ  (s) t(s) ds = 4at

12 21 s 1 2m  = m  = I  ψ (s)ψ  (s) t(s) ds = 0

13 31 s 1 3m  = m  = I  ψ (s)ψ  (s) t(s) ds = 0

14 41 s 1 4m  = m  = I  ψ (s)ψ  (s) t(s) ds = 0

22 s 2 2m  = I  ψ (s)ψ  (s) t(s) ds = 6at

23 32 s 2 3m  = m  = I  ψ (s)ψ  (s) t(s) ds = 0

24 42 s 2 4m  = m  = I  ψ (s)ψ  (s) t(s) ds = 0

33 s 3 3m  = I  ψ (s)ψ  (s) t(s) ds = 15a t3

34 s 3 4m  = I  ψ (s)ψ  (s) t(s) ds = 0.6a t3

44 s 4 4m  = I  ψ (s)ψ  (s) t(s) ds = 0.6a t3

kr rk s k rh  = h  = I  ψ (s)ψ  (s) ds
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11 s 1 1 11h  = I  ψ (s)ψ  (s)ds = m /t = 4a

12 21 s 1 2h  = h  = I  ψ (s)ψ  (s)ds = 0

13 31 s 1 3h  = h  = I  ψ (s)ψ  (s)ds = 0

14 41 s 1 4h  = h  = I  ψ (s)ψ  (s)ds = 0

22 s 2 2h  = I  ψ (s)ψ  (s)ds = 6a

23 32 s 2 3h  = h  = I  ψ (s)ψ  (s)ds = 0

24 24 s 2 4h  = h  = I  ψ (s)ψ  (s)ds = 0

33 s 3 3h  = I  ψ (s)ψ  (s)ds = 15a3

34 s 3 4h  = I  ψ (s)ψ  (s)ds = 0.6a3

44 s 4 4h  = I  ψ (s)ψ  (s)ds = 0.6a3

kr rks  = s  =

44s  = 

But,  for all the plates

DERIVATION OF INDEPENDENT

E Q U A T I O N S  I N  L A T E R A L

KDISPLACEMENT QUANTITIES V (x):
Substituting the zero coefficients as obtained

into the matrix form of the governing

equations of equilibrium (14 & 15), and

assuming the cross-section to be rigid (non-

deformable), we obtained:

             (18)

(19)

Where,

etc.

Expanding equation (18), we obtained:
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 (20)

Expanding equation (19), we obtained:

(21)

iEliminating U (x)  and their derivatives from

equations (20) and (21), we obtained:

(22)  

(23)

(24)

Where,

 

The independence of the above three

equations shows that there are three possible

independent buckling modes, namely:

flexural buckling about oz- and oy-axes (22)

and (23) and torsional buckling mode about

ox-axis (24).The general solution of the

flexural modes (22) and (23) are given by:

1(x) 1 11 2 11 V  = C  cos α x + C  sin α x +

3 4+C x + C (25)

2(x) 1 22 2 22 V  = C  cos α x + C  sin α x 

3 4+C x + C (26)

1 2 3 4The constants C , C , C  and C  were

evaluated from the boundary conditions as

follows:

(i) Hinged-Hinged condition:

      (27)

(ii) Clamped–Hinged condition:

     (28)

(iii) Clamped–Clamped condition:

                    

             (29)

Applying the boundary conditions (27), (28)

and (29) to equations (25) and (26) and

noting that for nontrivial solutions or nonzero

values of the constants, the determinant of the

1 4coefficients of C  ... C  must varnish, we

obtained the following:

(i) Hinged-Hinged conditions:-
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and (30)

(ii) Clamped–Hinged conditions:

and

(iii) Clamped-Clamped conditions:

...(32)

Equations (30), (31) and (32) represent the

stability matrices for equations (22) and (23)

for the two axes of symmetry and the

different boundary conditions. Expanding

equations (30), (31), and (32), we obtained

the critical buckling loads for the respective

boundary conditions as follows:

(i) 

(ii) 

(iii) 

(i) 
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(ii) 

(iii) 

NUMERICAL STUDY   
A numerical study was performed for single-

cell thin-walled steel box column with the

following parameters:

E = 210 × 10 MN/m , G = 81 × 10 MN/m , 3 2 3 2

L = 4.5m, a = 0.08m, and t = 0.0005m to

0.02m.

The critical loads associated with the two

flexural buckling modes were evaluated for

the different boundary conditions and the

results presented on tables 1 and 2.

THE EULER BUCKLING LOAD

EQUIVALENT:  

The Euler’s buckling load is given by:

effl  = effective length

z 11Bending about oz-axis: I = a  = 7.333a t, a3

= 0.08m, L = 4.5m

effHinged-hinged condition; l  = L = 4.5m;

effClamped-hinged condition l  = 0.7L;

cr� P  = 784.241t

effClamped-clamped condition; l  = 0.5L;

cr� P  = 1537.112t

        

yBending about oy-axis: I  = 13.5a t3

Hinged-hinged condition:

crP  = 707.453t

Clamped–hinged condition: 

cr        � P  = 1443.782t

Clamped–clamped condition:

cr        � P  = 2829.813t

Again, the critical loads associated with the

two flexural buckling modes were evaluated

for the different boundary conditions and the

results presented on tables 1 and 2.

RESULTS AND DISCUSSION 
The results as presented on tables (1 and 2)

show that the flexural buckling load about

oz-axis is less than that about oy-axis. Hence,

the flexural behaviour shows that for all the

three sets of boundary conditions considered,

the critical load due to flexure about the oz-

axis will control the design. Comparison of

Vlasov critical load values in table 1 with the

Euler critical load results showed that the

Euler model underestimated the critical

buckling loads by 67.53% for hinged-hinged,

67.11% for clamped-hinged and 66.11% for

clamped-clamped boundary conditions under

flexure about the oz-axis. However, under

flexure about oy-axis, the percentages of

underestimation by Euler model were

reduced to 51.14% for hinged-hinged,

50.33% for clamped-hinged and 48.52% for

clamped-clamped boundary conditions

respectively. In both axes, the results also

indicate that improved fixity reduces the

degree of underestimation by Euler model.
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The results generally show that for single-cell

doubly symmetric box columns, the Euler

buckling strength could be used to estimate

the Vlasov flexural buckling strength by

increasing the Euler value by about 100% to

200% depending on the axis of symmetry and

the boundary conditions.

CONCLUSION
This study has resulted in a better

understanding of the level of difference

between the more accurate Vlasov critical

loads for single-cell thin-walled box columns

and the underestimated Euler critical loads.

The results confirms that Euler's critical load

model is indeed inadequate for instability

design of thin-walled box columns. A critical

comparison of the results show that the

simpler Euler flexural buckling loads can

now be used for making a reasonable

estimate of the more accurate and more

rigorous Vlasov flexural buckling value.

Table 1: Vlasov and Euler critical buckling loads for single-cell doubly symmetric thin-walled
box column under the different boundary conditions and bending about oz-axis

Hinged-Hinged (MN) Clamped-Hinged (MN) Clamped-Clamped (MN)

t(m) Pcr(Vlasov) Pcr (Euler) Pcr(Vlasov) Pcr (Euler) Pcr(Vlasov) Pcr (Euler)

   0.02 23.673 7.686 47.686 15.685 90.714 30.742

   0.0175 20.713 6.725 41.725 13.724 79.374 26.899

   0.015 17.754 5.764 35.764 11.764 68.035 23.057

   0.0125 14.795 4.803 29.803 9.803 56.696 19.214

   0.01 11.836 3.843 23.843 7.842 45.357 15.371

   0.0075 8.877 2.882 17.882 5.882 34.018 11.283

   0.005 5.918 1.921 11.921 3.921 22.678 7.686

   0.0025 2.959 0.961 5.961 1.961 11.339 3.843

   0.001 1.184 0.384 2.384 0.784 4.536 1.537

   0.00075 0.888 0.288 1.788 0.588 3.402 1.153

   0.0005 0.592 0.192 1.192 0.392 2.263 0.769
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Table 2: Vlasov and Euler critical buckling loads for single-cell doubly symmetric thin-walled
box column under the different boundary conditions and bending about oY-axis

Hinged-Hinged (MN) Clamped-Hinged (MN) Clamped-Clamped (MN)

t(m) Pcr(Vlasov) Pcr (Euler) Pcr(Vlasov) Pcr (Euler) Pcr(Vlasov) Pcr (Euler)

   0.02 28.958 14.149 58.137 28.876 109.963 56.596

   0.0175 25.338 12.380 50.87 25.266 96.194 49.522

   0.015 21.718 10.612 43.603 21.657 82.452 42.447

   0.0125 18.099 8.843 36.335 18.047 68.710 35.373

   0.01 14.479 7.075 29.068 14.438 54.968 28.298 

   0.0075 10.859 5.306 21.801 10.828 41.226 21.224

   0.005 7.239 3.537 14.534 7.219 27.484 14.149

   0.0025 3.620 1.769 7.267 3.609 13.742 7.075

   0.001 1.448 0.707 2.907 1.444 5.497 2.830

   0.00075 1.086 0.531 2.180 1.083 4.123 2.122

   0.0005 0.724 0.354 1.453 0.722 2.748 1.415
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