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ABSTRACT  

An understanding of the orthotropic plates' behavior in their dynamic regime is essential 

because the loading can cause severe damage in the plates, such as: - cracking, loss of aesthetic, 

fear to the occupants, etc. To this end, a new set of stress - strain relations for. Orthotropic 

plates were derived. The principle of force of inertia was introduced, yielding the corresponding 

dynamic governing equation of orthotropic plate. The solution of the equation was obtained by 

numerical method, and the results show that the flexural rigidity of the bars has significant effect 

on the fundamental natural frequency of heavily reinforced concrete sections 
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INTRODUCTION  

The competitive trends of the world market 

have long been forcing structural engineers 

to develop minimum weight and labour cost 

solutions [1-4]. A direct consequence of this 

new design trend is a considerable increase 

in problems related to unwanted floor 

vibrations. This phenomenon is very 

frequent in a wide range of structures 

subjected to rhythmic dynamical load 

actions. This development makes related 

work in this respect justifying. Man, 

equipment and facilities including various 

types of machines (Technological loads) are 

the source of impact and dynamic loads. 

Wind and earthquake loads are not to be 

mentioned here, but it should be noted that 

even weak wind pressures could be the 

excitor to facilities and indirectly make 

unpleasant noises and vibrations [5-6].  

Euler [7] performed a free vibration 

analysis of plate problems, probably gave 

the first impetus to a mathematical statement 

of plate problems. Weaver et al [8] gave the 

formula for the frequencies of the various 

modes of vibration of plate isotropic. 

Malaikah et al [9] investigated the effect of 

the embedded steel bars in the concrete 

cylinders on the dynamic modulus of 

concrete. Their work revealed that the 

presence of the single bar made the 

specimen less susceptible to micro cracking. 

Much later, AI Wardany et al [10] used the 

Frequency-Wave Number (FK) method to 

demonstrate the effects of reinforcing bars in 

the spring back energy. Their result supports 

those obtained }n the numerical study of Wu 

et al [11]; which demonstrated that the 

existence of steel reinforcement bars in 

concrete causes a certain amount of the 

elastic energy generated to bounce back and 

forth between the concrete surface and the 
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steel bars. This energy is primarily 

dependent on the steel bars diameter, the 

cover thickness and the spacing between the 

reinforcement bars. The effect of various 

parameters like the width-to-thickness ratio, 

the material anisotropy, the fibre orientation, 

the aspect ratio, the edge conditions and the 

number of layers on the fundamental 

frequency of vibration is studied by 

Latheswary et al [I2].  

Cantieni [13] experimentally identified 

and measured the dynamic characteristics of 

a reinforced concrete structure, using 

Ambient Vibration Testing (A-VT). He 

excited the concrete slab by throwing a 5 kg 

medical ball from a height of roughly 1 m in 

irregular intervals of one to four seconds.  

Vellasco et al [1] investigated the 

structural behaviour of Commonly used 

composite floors subjected to rhythmic 

dynamical load actions, identified the 

occurrence of unwanted vibrations that 

could cause human discomfort, or in 

extreme cases, structural failure. Mello et al 

[2] presented an analytical methodology for 

the evaluation of structural behaviour of 

composite floors against human comfort. 

This procedure takes into account a more 

realistic loading model developed to 

incorporate the dynamic effects induced by 

human walking.  

EI-Dardiry et al [14] developed an 

isotropic and an orthotropic flat plate models 

for predicting simple and reasonably 

accurate dynamic behaviour of composite 

floors. Hsu [15] modelled numerically the 

vibration response of isotropic and 

orthotropic plates with mixed boundary 

conditions using a solution that is based on 

the differential quadrature method (DQM). 

The results demonstrated the efficiency of 

the numerical method in treating this class 

of engineering problem. Ventsel and 

Krauthammer [16] exploited the advantages 

Galerkin's numerical method to determine 

the frequencies of isotropic plates of 

different boundary conditions.  

An indirect method, based on principle of 

orthogonality is used in this study for the 

free vibration analysis of orthotropic plates. 

This study has been motivated by the lack of 

open literature on dynamic analysis of 

reinforced concrete orthotropic plates, based 

on the constituent materials, using 

Galerkin’s method. Moreover, the effects of 

various constituent materials of the plates 

have rather been suggested by literature to 

have effect on the dynamic behaviour of the 

reinforced concrete slabs. With these facts in 

view, the present study is carried out.  

 

FORMULATION OF DYNAMIC 

EQUATION FOR ORTHOTROPIC 

PLATES USING GALERKlN'S 

METHOD  

It can be recalled that the assumption of 

isotropy implies that material properties at a 

point are the same in all directions [16, 17]. 

Orthotropic materials are materials that 

display orthogonal dependent properties. 

Thus, the governing differential equation for 

orthotropic plates is as given in Equation 

(l.0).  

  
   

   
   

   

      
   

   

   
  (    )  

(1.0) 

The expressions for flexural rigidities of 

such an orthotropic plate (two-way 

reinforced concrete slab) arc as follows [16, 

17]  
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Where 

Ec and c are modulus of elasticity and 

Poisson's ratio for concrete, respectively.  

Es is the modulus of elasticity for steel; and 

Ixs, Iys are the moments of inertia of steel 

bars about the x and y axes, respectively.  

Let a differential equation of a given 2D 

boundary value problem be of the form:-  

 [ (   )]   (   )                   

(4.0) 

 

Where, w = w(x, y) is an unknown, P = a 

given load term defined also in the domain 

, L = a symbol indicating either a linear or 

non - linear differential operator.  

The function w must satisfy the prescribed 

boundary conditions on the boundary of 

that domain.  

However, requiring that the 

magnitude of the function [L (w) - P] be 

minimum, leads to the following Galerkin 

equation:  

∬ [ (  )   ]  (   )      
 

 
… (5.0) 

In the dynamic regime, the forcing function 

appearing on the right - hand side of the 

governing differential equation becomes 

[18-20]:  

   (     )    
   

  
(     )… (7.0) 

Thus, the differential Equation 1.0 becomes,  

        (     )   (     )  

   
   

   
(     )…    (8.0) 

Where, D** = Flexural rigidity of 

Orthotropic Plates (Equation 1.0)  

Equation (8.0) is the differential equation 

of forced, undamped motion of plate. Thus, 

for natural or free vibrations, P(x, y, t) is 

set equal to zero, and equation (9.0) 

becomes:  

        (     )    
   

   
(     )     

 (9.0) 

Note: Deflection w must satisfy the 

boundary conditions at the plate edge (these 

conditions practically do not differ from 

those in the case of static equilibrium) and 

the following initial conditions:  

    (    )  
  

  
   (   )        

(10.0) 

Where, Wo = initial deflection for point (x, 

y), 0 = Initial velocity for point (x. y)  

A complete solution of the problem 

of a freely vibrating plate is reduced to 

determining the deflections at any point at 

any moment of time. To solve Equation 

(9.0) and obtain w(x, y, t) in general, one 

can assume the following solution:  

 (     )  (             ) (   )  

   (11.0) 

Which is a separable solution of the shape 

function W(x, y) describing the modes of 

the vibration and some harmonic function 

of a time; co is the natural frequency of 

the plate vibration which is related to 

vibration period T by the relation,  

  
  

 
 …     (12.0) 

Introducing Equation (11.0) into Equation 

(9.0) 

         (   )      [ (   )]      

(13.0) 

Assume that a shape function for the plate is 

approximated by series (14.0), which 

satisfies, term by term, all boundary 

conditions 
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 (   )  ∑     
 
   (   )…. (14.0) 

Substituting equation (14.0) into equation 

(13.0) and then, using the general procedure 

for the Galerkin’s method given in equation 

(5.0), the expression given by equation 

(15.0) is obtained.  

∬ [   ∑    
      

 
   

 

 

    ∑     (   )
 
   ]           

            … (15.0) 

The numerical implementation of the above 

conditions leads to the Galerkin system of 

linear algebraic homogenous equations for 

orthotropic plates of the form.  

                           

                 

                               

 … (16.0) 

Where,  

        ∬ [ 
         

 

 

      ]      …    (17.0) 

This system of homogenous equations has 

non-trivial solution, if its determinant made 

up of the coefficients aik is equal to zero. 

The latter (Equation 17.0) results in the nth 

order characteristic Equation of the form  

 ( )   … (18.0) 

Which yields therefore, the frequency or 

characteristic root,  

 

ANAL YSIS AND RESULTS  

Case 1: Clamped Rectangular Plate  

 
In the clamped rectangular plate shown in 

figure 1,considering only the first term of 

the series, i.e.  

 (   )     ( 
    ) (     )  (19.0) 

Note that, the amplitude Cik cannot be 

determined from the linear eigenvalue 

problem.  

Using equation (17.0),  
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From the Isotropic solution of Ventsel et al 

[16] ,  

  
 

    
√
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… (21.0) 
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For the simply supported plate of figure 2, 

considering the shape function as in 

Equation (22.0)  
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Retaining only the first term of the series of 

the shape function, i.e.  

 (   )        
  

 
   
  

 
  

U sing Equation (17.0), 
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From the Isotropic solution of Ventsel et al 

[16],  
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Case 3: Plate With Mixed Supports  

s 

 

For the plate with mixed support condition 

of figure 3, considering the shape functions 

as in equation (25.0),  

 (   )  ∑ ∑    
 
   

 
   (

  

 
)
 

   
   

 
… 

(25.0) 

Considering the first term of the series, then  
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From Equation (17.0)  
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From the Isotropic solution of Ventsel et al 
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NUMERICAL STUDY  

(a) Singly Reinforced Sections:  

In the preliminary design of a singly 

reinforced concrete slab of arbitrary support 
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conditions, the following physical and 

geometric properties were adopted: fcu= 32.5 

MPa, c = 0.20, 12 mm diameter mild steel 

spaced 150 mm both ways, Modulus of 

elasticity of steel, Es = 205,000 

N/mm
2
Thickness of slab, h = 150 mm, 

Density of reinforced concrete, p = 2563 Kg 

/m
3
= 0.000002563 Kg/mm

3
 a = 5000 mm, 

for b/a = 0.5,0.6,0.7,0.8,0.9, 1.0, 1.1 and 1.2.  

The fundamental frequency of the slab was 

evaluated based on the above data.  

 

(b) Doubly Reinforced Sections:  

In the preliminary design of a doubly 

reinforced concrete slab of arbitrary support 

conditions, the following physical and 

geometric properties were considered: fcu= 

35MPa,c = 0.20, 12 mm diameter mild 

steel spaced 150 nun both ways top and 

bottom. Modulus of elasticity of steel, Es = 

205,000 N/mm
2
 Thickness of slab, h = 175 

mm, Density of reinforced concrete, p = 

2563 Kg/m
3
 = 0.000002563 Kg/mm

3
 a = 

5000 mm, for b/a = 0.5, 0.6, 0.7, 0.8, 0.9, 

1.0, 1.1 and 1.2; cover to all reinforcement, 

c = 25 mm.  

The fundamental frequency of the slab was 

evaluated using the above data.  

Solution  

The results for the two cases were computed 

using the Q-Basic computer program, and 

are tabulated in Table 1 and Table 2 

respectively.  

From Nevile [21], Ec = 4.73(fc’) 
0.5

 (28.0) 

Where, fc' and Ec are the characteristic 

strength and modulus of elasticity of the 

concrete respectively.  

From Spiegel et al [22] and Rajput [23],  

    
    
 

   
          

    
 

   
    

       (     )    
 … (29.0) 

Where, Svy and Svx are the spacing of the 

reinforcements perpendicular to x and y 

directions respectively dsy and dsx are 

diameters in those directions respectively. 

ILM is the Moment of Inertia of an Area, for 

Lamina of infinite elemental components. 

Ixx = Moment of Inertia of an Area, for 

Lamina about an axis, xx, A = Area of 

section, h = centroid of a lamina about xx-

axis. Isx and Isy are moment of inertia of 

steels about x and y directions respectively.  

Tables 1 and 2 show the results of 

the fundamental frequencies obtained for the 

case of singly reinforced sections and 

doubly reinforced sections respectively. 
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Table 1: fundamental natural frequencies,, for single reinforced plate of varying 

conditions 

 
fixed supported all round  

, (rad/sec)  

Simply supported  

, (rad/sec)  

Mixed support condition  

, (rad/sec)  

b/a  [7]  
Present  

study  

%  

Difference  
[7]  

Present  

study  

%  

Difference  
[7]  

Present  

study  

%  

Difference  

0.5  4.472041  4.472396  + 0.0355  8.953696  8.954409  + 0.0713  6.53021  6.53073  + 0.0520  

0.6  3.268715  3.268975  + 0.0260  6.765015  6.765553  + 0.0538  4.327417  4.327762  + 0.0345  

0.7  2.562288  2.562491  + 0.0203  5.445309  5.445742  + 0.0433  2.989200  2.989438  + 0.0238  

0.8  2.120047  2.120216  + 0.0169  4.588759  4.589134  + 0.0375  2.108193  2.108361  + 0.0168  

0.9  1.830054  1.830200  + 0.0146  4.001529  4.001847  + 0.0318  1.487757  1.487875  + 0.0118  

1.0  1.632958  1.633088  + 0.0119  3.581476  3.581763  + 0.0287  1.020133  1.020214  + 0.0081  

1.1  1.494991  1.495110  + 0.0119  3.270689  3.270949  + 0.0260  0.6325393  0.6325896  + 0.00503  

1.2  1.395919  1.396030  + 0.0111  3.034308  3.034549  + 0.0241  0.2055341  0.2055505  + 0.00164  

r  -0.92069  -0.92069   -0.93308  -0.93308   -0.94658  -0.94658   

 

Table 2: Fundamental Natural Frequencies,  of Doubly Reinforced Plate of Varying 

Conditions  

 
Fixed supported all round , 

(rad/sec)  

Simply supported  

, (rad/sec)  

Mixed support condition , 

(rad/sec)  

b/a  
[7]  

Present  

study  

%  

Difference  
[7]  

Present  

study  

%  

Difference  
[7]  

Present  

study  

%  

Difference   

0.5  5.311507  5.324414  + 1.2907  10.63443  10.67997  +4.5540  7.756025  7.740264  -1.5761  

0.6  3.882301  3.896874  + 1.4573  8.034906  8.080188  +4.5282  5.139736  5.122782  -1.6954  

0.7  3.043266  3.059546  + 1.6280  6.467473  6.512604  +4.5131  3.550316  3.532231  -1.8085  

0.8  2.518011  2.535903  + 1.7892  5.450148  5.495181  +4.5033  2.503932  2.484141  -1.9791  

0.9  2.173582  2.192906  + 1.9324  4.752673  4.797639  +4.4966  1.767031  1.744719  -2.2312  

1.0  1.939488  1.960027  +2.0539  4.253774  4.298692  +4.4918  1.211627  1.185061  -2.6566  

1.1  1.775622  1.797157  +2.1535  3.884645  3.929528  +4.4883  0.7512761  0.7153127  -3.59634  

1.2  1.657954  1.680286  +2.2332  3.603892  3.648748  +4.4856  0.2441158  0.1232622  -12.0853  

R  -0.92069  -0.92039   -0.93308  -0.93308   -0.94658  -0.94921   

 

 

DISCUSSION OF RESULTS  

From the tables, it can be seen that there is 

an increase in the fundamental frequencies 

obtained when the flexural rigidity of the 

reinforcements is taking into account in all 

the cases. This is substantiated by higher 

correlation coefficients, r obtained by 

Product Moment Method between the span 

ratio, b/a and w computed when the steel 

effects are considered. Hence, indicates that 

the reinforcing bars in the reinforced 

concrete slabs have effect on the 

fundamental natural frequency of reinforced 

concrete slabs.  

Interestingly, in Table 1, the simply 

supported RC slab gave highest value of  

of about 9.0 rad/s. The value decreases 
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rapidly as the span ratio, b/a increases down 

the table. The effect of the steel on co 

obtained is also high in the simply supported 

case, ranging from 0.0241 % - 0.0713%. 

Slabs of mixed support condition gave  of 

6.53073 rad/s, but decreases in value 

spontaneously as b/a ratio increases down 

the table. The effect of the steel is about 

0.00164 % - 0.0520 %. Fixed supported slab 

gave the lowest value of  , 4.4724 rad/s, 

but as b/a increases down the table,  

decreases gradually. This trend reveals the 

usual suitability and stability of fixed 

supported RC slabs in large slab spans. The 

effect of steel is between the range of 0.0111 

- 0.0355. Here, the slab is heavily 

reinforced, thereby yielding to higher value 

in the fundamental natural frequencies, w 

obtained when the effect of the steels t 

flexural rigidity are taking into account. The 

difference is very appreciable in the simply 

supported slab to about 4.5 %. In fixed slab, 

the difference increases to about 2.2332 % 

down the table, as the b/a ratio increase. 

While in the mixed support condition, the 

difference increases geometrically to about - 

12.1 %. The negative sign is due to the free 

support end unsupporting the steels. This at 

the same time reveals the gross danger the 

member would have been subjected to under 

dynamic regime, when its fundamental 

natural frequency is estimated neglecting the 

flexural rigidity of the reinforcements.  

 

CONCLUSIONS  

The following main conclusions are drawn 

from the study:  

1. The flexural rigidity of the bars has 

significant effect on the fundamental 

natural frequency of heavily reinforced 

concrete sections.  

2. The negligence of flexural rigidity of the 

reinforcing bars in the estimation of the 

fundamental natural frequency of slabs 

gives results that are inaccurate; and in 

some cases unsafe leading to unstable 

structure.  

3. Inculcating the flexural rigidity of the 

reinforcing steels in estimation of the 

fundamental natural frequency of slabs 

will give the actual fundamental natural 

frequency of the slab in its self-excited 

dynamic regime, without 

approximation.  

4. The assumption of uniform flexural 

rigidity of reinforced concrete slabs 

would appear adequate only in singly 

reinforced sections, for calculating the 

natural fundamental frequency of slabs.  

5. In the case of heavily reinforced slabs, 

the present formulations would appear 

adequate, safe and economic for 

predicting the dynamic regime of 

reinforced concrete plates.  
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