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Abstract

The predictions for flexural requirements in singly reinforced concrete slabs and sections have been
assessed using the minimum weight approach and mathematical programming. Results indicate that
although the predictions in the codes are safe; they are quite conservative, expensive and encourage
abuse. The value of under-estimation ranges from 17% to 27% in the codes. A more precise stress block
may be necessary in order to reduce if not eliminate under-estimation. It is suggested therefore, that fully
probabilistic design formulations be employed for the determination of flexural requirements of
reinforced concrete slabs or sections in order to eliminate or at least minimize abuse(s) that can
subsequently result into the reduction of the structural integrity or outright failure of such members.
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1. Introduction

An evaluation of the flexural resistance of singly
reinforced concrete solid slabs with the optimum
weight required for structural safety and
economy and as stated in design codes [1, 2, 3, 4,
5] is presented.

It is a well-known fact by many design engineers
that the choice of the size of a reinforced concrete
section is controlled by many factors, which
includes: (i) intuition and experience of the
design engineer; (ii) relative cost of steel to
concrete; (iii) choice of limiting steel ratio; (iv)
member size imposed by the architect usually for
uniformity or aesthetics and (v) serviceability
conditions.

When member size restrictions are not imposed,
the design engineer is always faced with the
problems of choosing the smallest, cost effective
and most efficient concrete section and
reinforcement. This is the optimum section. A
rational approach to the selection of an optimum
slab section that is satisfactory at both the
ultimate and serviceability limit states includes
the determination of the effective depth and
height of slab, area of reinforcing steel, depth of
concrete in compression; and sometimes design
experience. But it must be noted that experience
has shown that there are variability in the
resulting designs by engineers on the same
project and structural element. This indicates
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that there is a region of safety and also that there
must be some probabilistic approach to the
design of these slabs in order to achieve the best
option for the particular situation.

However, some bases for fully probabilistic
formulations oriented towards the production of
optimum structural designs have been given [6, 7,
8, 9, 10, 11]. The factors suggested include using
adequate procedures for analysis and designs,
tolerances in geometry, ductility and strength
catalogue of available bar sizes. Also, they
emphasized that optimum design decisions are to
be made in the light of results from quality
control in productions both at the factory and on

the site. Thus, optimum designs can be
approached from a global application, but
starting initially from the optimization of

individual units or criterion. The Lagrange's
method [12, 13, 14, 15] is used herein, to evaluate
the ultimate limit-state of bending of a singly
reinforced concrete slab. The equations
presented herein have been developed using the
mathematical programming approach.
Mathematical programming methods are
intended to solve a problem by numerical search
algorithm. The optimization procedures can be
readily applied in different design problems.

In this report, the effective depth of the concrete
slab section is based on the simplified stress
profile as recommended in the codes [1, 2, 3, 4,
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5]. Figures 1 and 2 show a typical stress diagram
for a singly reinforced concrete section as
presented in BS8110. It has been argued [5] that
for normal purposes the idealization of the
stress-strain relationships in concrete is so
similar as to be indistinguishable. Hence, the
simplified relationship is also adopted herein for
Eurocodes [4, 5] predictions or formulations. For
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ease of formulation, the cost function is based on
a linear sum of the cost of concrete and the
required reinforcement for safety. But it must be
noted that the cost function is related to the
moment capacity and the effective depth of a
reinforced concrete slab section.
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Figure 1: Design stress block for ultimate limit state [B58110, 1985; 1997]
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Figure 2: Simplified stress block for ultimate limit state [BS 8110, 1985; 1997]

Nigerian Journal of Technology,

Vol. 33, No. 1, January 2014 20



OPTIMIZATION OF DESIGN FORMULATIONS FOR REINFORCED CONCRETE SLABS,

Also, the resulting expression is optimized using
the Lagrange's multipliers’ method leading to a
set of design variables.

At the ultimate limit state, it is important that
sections subject to bending be ductile, with
failure occurring by the gradual yielding of
tension steel bars rather than the catastrophic
sudden failure of the concrete in compression [1,
2, 3, 4,5, 16, 17, 18, 19, 20, 21, 22]. For
equilibrium of the slab concrete section, the
tensile force, Fs, in the reinforcement, must be
balanced by the compressive force, Ce, in the
concrete as shown in Figures 1 and 2.

2. Materials and Methods

2.1 Establishment of design functions

The ultimate moment of resistance, My, of the slab
is given as:

M, = 045f, bx(d - gj )

In (1), b is the breadth of section; x is the depth to
neutral axis from compression face; d is the
effective depth and fc, is the concrete strength.
Equation (1) can also be written as;

M, = kbd> _d = c|Ms @)
or b

u

where k, is a parameter and C = V(1/k).

The ratio of reinforcement area to the concrete
section, p, may be given as:

A = pbd 3)
where, As is the area of steel reinforcement.

A cost function will involve the weight of the
reinforced concrete slab member. Thus, the total
cost will be equal to the cost of the flexural
reinforcement and concrete. Now, if Cs and Cc
represent the unit costs of steel and concrete per
unit volume respectively, then the cost of the slab
of unit length is given as:

cost = CcV, + C.\V. 4)
where Vs and V. are the volumes of steel and
concrete of a unit length of slab respectively and
are derived as:
V. = 1A =

S

V., =

(&

pbd 5)
1.(d —d,)b (6)

If ds is the distance of tensile steel centroid to the
tensile face, then, the reinforcement ratio,

When a rectangular section is to be designed, the
loads and hence the ultimate bending moment,
M,, height of slab, h, and material properties, fe
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and fy are generally known. Thus, the effective
depth, d, and area of tension steel are to be
determined. In this formulation, the quantities, C
and p in equations (2) and (3) are used as design
variables of the optimum design problem instead
of d and As because My and b (breadth of slab
section) are eliminated favourably in the
constraints and objective function. Substituting
equation (5) and (6) in equation (4), we obtain;

Cspr‘/AZ“ + @ + t)bC‘/% (7

where, t = ds/d. Let the ratio of the unit cost of
steel to that of concrete be given as q. Therefore,

q = = (8)

CcoST =

Thus, equation (7) becomes;

CoST = {pg + (1 + 1)}C.C.\ybM, (9)

The parameter, C~N(bM,), can be taken as a
constant for a given slab, since the parameters, C,,
b and M, are constant for the slab under
consideration. Therefore, minimize the COST
function:

vy = {0l + 1) + pg)C
where Y is the COST function.
The ultimate moment of resistance of a
reinforced concrete slab section may also be
written in terms of the tensile steel as equations
(11a) or (11b) for the codes [1, 2, 3, 4, 5]
respectively:

(10)

x
M, = 087fA|d-—
u fy _&[ 2) (113)
(CP110,1972; BS8110,1985, EC2,2008)
X
M, = 0.95fyAS(d—2] (11b)

(EC2,1995; BS8110,1997)

Now, equating forces from the stress blocks (see
Figures 1 and 2) gives,
0.45f,,bx =0.87f A,

(12a)
(CP110,1972; BS8110, 1985, EC2,2008)
0.45f. bx =0.95f A,
v (12b)
(EC2, 1995; BS8110, 1997
or
0.87f,A,
x=——2""(CP110; BS8110, 1985, EC2,2008)
0.45bf , (13)
0.95f,A,
or x=——2" (EC2,1995; BS8110,1997)
0.45bf

Substituting My from equation (2) into equation
(11) and x from equation (12) we obtain,
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0.95f7 p*C? ,
(CP110;BS8110,1985; EC2,2008)
0.95fy2 p2 C’? 5
(EC2,1995; BS8110,1997)
Now, let
0.95f2
Y, = ) (15)
.
and
7, = 0.387f, (CP110; EC2,2008; BS8110,1985)

(16)
or y, = 095f (EC2,95; BS8110,1997)
Substituting y1 and 72 for the corresponding
values in equation (12) gives:

pC oy = %) + 1 =0 (17)
Therefore, the optimum design cost of a
reinforced concrete singly reinforced solid slab or
section in flexure is to minimize equation (10)
subject to the following constraints;

s p = P, (18)
This means that the optimum reinforcement ratio
for the section lies between the minimum
reinforcement ratio, p:1 and the maximum
reinforcement ratio, py, as per codes requirement
for a reinforced concrete slab or singly reinforced
concrete section.

2.2 Application of Lagrange’s Multipliers Method
By noting equation (18), the constraint on the
problem is equation (17). The application of the
Lagrange's multipliers method will lead to the
solution of equation (16) so as to yield a set of
design variables. The required Lagrange
function, ¢, for the slab in flexure may be defined
as:

9 =@ + pm)C 19)
- Hpc oy - 1) + 1}

where,

0 = (@ + 1) (20)

Partial derivative of ¢ with respect to p and C

gives;

99

— = Clg - acrp - nl =0 @D

dp

and

¥ _ [ + p) _ o (22)

oC - 2@nco* - 27,p0)

Now, eliminating A from equation (21), we have,
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q

= (23)
cnp - %)
Substituting (23) in (22), we get
q
QO + pg - *
c2rnp - 7 (24)
2pCloy, - nl =0

Solving equation (24a), we have
(@ + pal2Coy, — C7,]

- 29p°Cy, + 29pCy, = 0

20Cpy, + 2qCp’y, CQy,

- Cqpy, — 29Cp’y, + 2qCpy, = O
Therefore,
0Cy,
20Cy, + qCy,
Now, dividing through by QCy. we get for CP110
(1972),BS8110 (1985) and EC2 (2008), while the

quantity 2.18f; changes to 2.0fy; for EC2 (1995)
and BS8110 (1997).

p:

(24b)
Y Q
Substituting for y1, 2 and Q from equations(15),

(16) and (20) respectively, we obtain that,
1

2.18 fy q
+
fu U+ 1)
Also, substituting in the equation of constraint,
that is, equation (17),

P = (25)

pnlenYlon.y = ») + 1 =0 (26

Hence,

C;;'” = ! (27)
Jom b, - nen)

Substituting the limiting values of reinforcement
ratio,p, that is, minimum, p; and ultimate, py, in
equation (27), we obtain, the ultimate value for
the criterion, Cy, as:

1
C = (28)
Jo %P
and
|
c = 29)
Jp. (r, %P.)

Considering equation (18), the optimum
steel ratio,popt, and optimum coefficient, Cop, are
as given in equations (30) and (31), with due
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considerations of the provisions in relevant
sections of the codes [1, 2, 3, 4, 5].

P = Pus i P 2 P,
= Py i P = Py 2 p (30)
= ps if op < P,

C, = C; if p, = p,

Cpi = Cos if Py = Poy (31

Copt = Cu 5 l‘f popl‘ = pl

There are seven quantities involved in the design
procedure, namely, fe, fy, pu, p1, My, t and q. But
we know that p; and pu are fixed as per code
provisions. Thus, the required end result is to
find the effective depth and steel area for each set
of six variables. The large number of variables
implies that there will be a large number of
design results. For example, if each variable can
assume two different values, then there will be
about 26 = 64 results; that is, two design
engineers are likely to obtain 64 design results in
one reinforced concrete slab design.  The
practical implication of this is the variability in
the strength of reinforced concrete in existing
and future structures. This is a dilemma in
reinforced concrete designs.

However, from equations (30) and (2b) we can
establish that

1 1

Con 3 \/Z”[’” (32)
Thus, from equation (26)

1 _ 1 (33)
NN P )
Hence,
kno = Pl = nep) (34)

The parameter describing  k7},is actually a
function. Therefore, its optimal value will occur
at a point of optimum gradient. Thus, we shall
apply the partial derivatives of the function with
respect to its principal variables. That s,

ko = Plg. 1) (35)
Re-writing equation (33), we have,

m m m 2
kopt = popt . }/2 71 (popt ) (36)

Differentiating equation (36) with respect to q
and t we obtain,
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ok, 9.,
dq A dq
. (37a)
0y o Pon _
- 71 'popt . aq =0
and
ok, 9P,
- f 7/2 —
ot ot ) (37b)
m apopr
- 2}/1 'popt ° at = O

From equation (25), we obtain for the British
codes [1, 2] and Euro codes [5] as;

op 2.18f, B
Pop = i /, + 4 (38)
dq dq| f.. + 1)
2.18f, -
a m
Lo~ | o s (39)
dq N q (1 + t)
1 + 1)
Also,
m -2
apopl = 4+ 218fv + q X 1 5 (39b)
o f C+ 0 1+
Substituting equation (39) in equation (37)
respectively we obtain,
o, [2.18f, g T 40
_opt. -2 ) — ( a)
aq |PT T T t)} ’
Qi PR AL ]| _ o aom)
o |7 1S U+ 1)
Now, let
2.18f, q

T = -2 J 41

{72 7‘{ o r)ﬂ( )
Thus,
op. op.
p()p[ T — p()p[ T — 0 (42)
dq ot

But, T # 0, therefore, from equation (39), we
have,

1 q
- - 43
(1+1) (1+1) (43)
Solving equation (43) we obtain that
q 1
= - 44
(1+1) (1+1) (44
q
= -1 45
(1+17) (42)
This implies that
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g = —(+1) (46)
Now, from equation (25), we can deduce that
(EC2, 1995; BS8110, 1997).

ph, = S (CP110; EC2,2008; BS8110, 1985);
2.18f,~ f., (47)
ph, = o (EC2,1995; BS8110,1997)
2f, = fu

Substituting equation (47) into equation (27)
gives,
1

S _ S
[2.18f), — %[12.18f). ~ 1)
(CP110;EC2,2008; BS8110,1985)
1

m —
Cupl -

ﬂ (48a)

m
opt

e (s Y| (48D)
2f, = fu er - 1)
(EC2,1995; BS8110,1997)

Also, substituting for y1 and Y. from equations
(15) and (16) we get
1

Con = 0871, f ! o
_ 08Tty 0.9511{(218fwf)2H

218f, — f.

(CP110;EC2,2008; BS8110,1985)
1

m

opt I:W f”‘ ]‘| (49b)

- 095f7 "
2f, = fu ¢ [(2f,. - f.f
(EC2,1995; BS8110,1997)
Solving equation (49) we finally obtain for the
British and Euro codes respectively as equations
(50a) and (50b);
m — (2'18fy - f('u )
o JUf. £ (09466 F, — 087f%,) (50)
(CP110;EC2, 2008; BS8110, 1985)
, s, - 1.)
Copt =
Jf £, 00797, — 0957£,)]  (50b)
(EC2,1995; BS8110,1997)

3. Results of optimization technique
It is clear now, that the value of C,, can be

obtained at every choice of concrete and steel
strength to be used in a reinforced concrete slab
section. For example, when fo, = 20N/mm? and fy
= 250N/mm?, then, C™yp = 0.501423287, for the

codes [1, 2, 5] prediction. Substituting C;, in
equation (32);
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km = # =

opt m \?
( opf)
Thus equation (2a) becomes:
M, = 3.977324272bd*

The ultimate moment for a singly reinforced
concrete section is given by the British codes [1,

3.977324272

2,3] as:
M, = 0.156bd’ f., (51a)
and by the Euro codes [4, 5] as:
M, = 0.167bd* f,, (<C35/45)

5 (51b)
or M, = 0.1376bd" f,, (>(C35/45)

For example, in order to evaluate the resistance
moment, it is proposed that equation (51a) be
represented as;

M, = 0.156p,bd* f, (52)
Note that B, is the evaluation factor in equation
(52). Therefore,

k,, = 0.156 B, 1., (52)
This means that (e.g. for the British codes [1, 2,
3],

0.156f., 5, = 3.977324272

But fo, = 20N/mm?, and we obtain,

g = OITT3A2T2 _ houigaan1 (53
20 x 0.156

Therefore, for a singly reinforced concrete section
made up of grade 20 concrete and mild steel
reinforcement, the ultimate moment of resistance is
under-estimated by about 27% in two British codes
[1, 2]; and 25% in another British code [3].Also, in
the Eurocodes [4. 5] there is about 17% under-
estimation for concrete grade less or equal to
C35/45 and 29% under-estimation for concrete
grade higher than C35/45. The amount of
reduction in the value of under-estimation as
indicated in the codes [3, 4, 5] simply shows the
quantitative value of the quality control and cost
associated with the codes respectively.

This same value of B, can be obtained for the other
singly reinforced concrete sections with various
combinations of steel and concrete strengths as
shown in Table 1. The value of the objective
function in Table 1, which is less than unity in all
the ranges of both concrete and steel strengths,
simply indicates the effectiveness of the objective
function and the optimization technique or
procedure followed. The value of the parameter, t,
in the objective function was taken as 0.06and using
nominal reinforcement in the codes as an example.
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Table 1: Percentage Under-Estimation for Various Singly Reinforced Concrete Sections

Steel Concrete % Under- _—
S/N strength  strength Cm Km estimation (lzb]ect.lve
/No (D) (fe) ot ot Bo Rectangular un\c{tmn
N/mm? N/mm? stress block ()
CP110 (1972) andBS8110 (1985) Formulations
20 0.5014232878 3.977324263 1.27478 27.48 0.5113
25 0.4486886949 4967178254 1.27364 27.36 0.4527
30 0.4098254972 5.953907061 1.27220 27.22 0.4091
1 250 40 0.3554487581 7.914910305 1.26842 26.84 0.3493
50 0.3185685041 9.853586368 1.26328 26.33 0.3036
60 0.2915793606 11.76214263  1.25664  25.66 0.2708
20 0.5011461432 3.981724572 1.27619 27.62 0.5204
25 0.4482968641 4975865105 1.27586 27.59 0.4630
30 0.4093021708 5.969141910 1.27546 27.55 0.4205
2 460 40 0.3546109847 7.952352654 1.27441 27.44 0.3603
50 0.3173439714  9.929776994 1.27305 27.31 0.3187
60 0.2898890984 11.89970604 1.27134 27.13 0.2877
BS8110 (1997) Formulations
20 0.5080858791 3.873697916  1.24157 24.16 0.5161
25 0.4558177094  4.813019390 1.23411 23.41 0.4577
30 0.4174686562 5.737890448 1.22604 22.60 0.4727
3 250 40 0.3642314879 7.537807185 1.20798  20.80 0.4229
50 0.3286335345 9.259259259  1.18708 18.71 0.3096
60 0.3030880997 10.88584711 1.16302 16.30 0.3720
20 0.5056115944 3911703704 1.25375 25.38 0.6891
25 0.4528541017  4.876221091 1.25031 25.03 0.3459
30 0.4139928968 5.834642091 1.24672 24.67 0.2909
4 460 40 0.3596375135 7.731611571  1.23904 23.90 0.2079
50 0.3227606056  9.599286563 1.23068  23.07 0.1455
60 0.2957328235 11.43407247 1.22159 22.16 0.0948
EC2 (1995) and EC2 (2008) Formulations
20 0.5080858791 3.873697917 1.1668 16.68 0.4039
25 0.4814371210  4.314404432 1.0396 13.96 0.3827
30 0.4174686562 5.737890448 1.1522 15.22 0.3319
5 250 40 0.3642314879 7.537807183  1.1352 13.52 0.2896
50 0.3286335345 9.259259259  1.3458 34.58 0.2613
60 0.3030880997 10.88584711 1.3185 31.85 0.2410
20 0.5056115944  3.911703704 1.17822 17.82 0.4716
25 0.4528541017  4.876221092 1.17499 17.50 0.4224
30 0.4139928968 5.834642091 1.17161 17.16 0.3862
6 460 40 0.3596375135 7.731611570 1.16440 16.44 0.3355
50 0.3435551164  8.472413793 1.23146  23.15 0.3205
60 0.2957328235 11.43407247 1.38494 38.49 0.2759

4. Conclusion

The cost implications of the design criteria for
singly reinforced concrete sections for slabs at
the ultimate limit state of bending has been
valued over the range of practical grades of
concrete and steel reinforcement. It is clear from
results obtained that the ultimate moment of
resistance for a singly reinforced concrete slab in
bending is under-valued irrespective of the stress
block that may be used. There is an under-

Nigerian Journal of Technology,

estimation of practical value when the wholly
rectangular stress block or any other stress block
in design codes investigated is used. A more
precise stress block may be necessary in order to
reduce if not eliminate under-estimation.

However, the implications of this under-
estimation are that economy is sacrificed for
safety, while the design formulation may be said
to be expensive. This is because more materials
in terms of the concrete and steel have been used
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to sustain a lower loading condition. This
explains the basis behind encouragement or
outright abuse of singly reinforced concrete slabs
by construction practitioners. Other concrete
elements need be evaluated the same way so as
to ascertain the effectiveness of their formulation
as prescribed in the design codes. It is suggested
that the design criteria for reinforced concrete
slabs and singly reinforced concrete sections in
flexure be based on fully probabilistic
formulations instead of the current pseudo-
probabilistic formulations since this will ensure
both safety and economy while eliminating or
reducing abuse of these members.
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