

* Corresponding author, tel: +234 7065868393

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING

HEURISTIC APPROACH

A. M. Hambali 1,*, Y. A. Olasupo 2 and M. Dalhatu 3
1, 2, 3, COMPUTER SCIENCE DEPARTMENT, FEDERAL UNIVERSITY WUKARI, WUKARI, TARABA STATE, NIGERIA

E-mail addresses: 1hambali@fuwukari.edu.ng, 2ademolay15@gmail.com,

3 dalhatu@fuwukari.edu.ng

ABSTRACT

There are different approaches used in automating course timetabling problem in tertiary

institution. This paper present a combination of genetic algorithm (GA) and simulated annealing

(SA) to have a heuristic approach (HA) for solving course timetabling problem in Federal University

Wukari (FUW). The heuristic approach was implemented considering the soft and hard constraints

and the survival for the fittest. The period and space complexity was observed. This helps in

matching the number of rooms with the number of courses.

Keywords: Heuristic approach (HA), Genetic algorithm (GA), Course Timetabling, Space Complexity.

1. INTRODUCTION

Scheduling is necessary in many sectors for effective

and smooth operations. It can be found in public

transport, at hospital, education sectors etc.

Educational environs, especially the higher

institution of learning, have a lot of things to be put

into consideration which makes scheduling a great

task to accomplish [1]. Some of the common

considerations include the availability of lecturers,

number of classes and courses, and budgeting.

Planning schedule manually is effort and time

consuming compare to automated scheduling. In

scheduling, several constraints have to be fulfilled.

The Common constraints that need to be considered

are; only one teacher can teach one class at one

specific time, a room can only be occupied by one

class at a time and students should not have more

than one class each time period. These constraints

are often divided into hard and soft constraints [2].

The hard constraints are not allowed to be violated,

while the soft constraints may be violated, but with

the setback of a less optimal scheduling. Due to the

huge amount of time and money spent on

scheduling manually, there have been numerous

attempts to automate this task with the help of

computers. Research has shown that this problem is

most commonly NP-complete (Non polynomial

Complete) [3]. However, this of course depends on

how many and how complex the constraints are.

Due to the difficulty of problem and the many

different constraints, there is no general algorithm

which will find the optimal solution for every

timetable problem. To get around with this problem,

several optimization algorithms have been

implemented. These algorithms are mostly meta-

heuristic and range from local search algorithms like

Tabu search [4] and simulated annealing [5] to

evolutionary algorithms like particle swarm

optimization [6] and genetic algorithms [7]. Jonas

and Rasmus [8] revealed that the reason for the

many different algorithms being implemented is

because of the complex nature of the problem.

Almost every school has different constraints and

pre-conditions which need to be fulfilled. The

evolutionary algorithms mostly perform better in the

early stages of the process whereas the local search

algorithms perform better in the late stages. This has

led to the creation of many hybrid algorithms [9]

which use evolutionary algorithms to narrow down

the search space and local search algorithms to find

the best solution in that space.

Providing an effective timetable that affects the life

of students and lecturers in the university education;

it is very necessary to develop an automated system

Nigerian Journal of Technology (NIJOTECH)

Vol. 39, No. 1, January 2020, pp. 1 – 14

Copyright© Faculty of Engineering, University of Nigeria, Nsukka,
Print ISSN: 0331-8443, Electronic ISSN: 2467-8821

www.nijotech.com

http://dx.doi.org/10.4314/njt.v39i1.1

http://www.nijotech.com/
http://dx.doi.org/10.4314/njt.v39i1.1

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING HEURISTIC APPROACH, A. M. Hambali, Y. A. Olasupo & M. Dalhatu

Nigerian Journal of Technology, Vol. 39, No. 1, January 2020 2

to tackle both simple and complex timetabling

problem. It leads to substantially better timetables

compared to those made manually, and it

significantly lessens the work of the university’s

administration.

In general, a university course timetabling problem

usually refers to finding the exact allocated time

within a limited time period. For example, in a week,

a number of events (courses-lectures) schedule and

assign of the events to a number of resources

(lecturers-rooms) in such a way that a number of

constraints are satisfied. According to Petrovic [10],

on “ Novel Similarity Measure for Heuristic Selection

in Examination Timetabling”, as cited by [2] has

defined the timetabling as the allocation of a set of

subjects into a classroom over a limited number of

time periods to avoid the occurrence of conflicts of

interests between two subjects or lecturers. A good

scheduling technique that can lead to optimization is

important to ensure it is able to produce all timetable

for students and lecturers. The main problem in the

university timetable generation is to provide

lecturers and lecture activities by matching all

lectures with allotted time as well as the person

responsible for it. The information required for the

course schedule including room availability, time

slots and several specific policy options. For

example, information on room availability can be

specified to the room capacity for certain events. In

the domain of university timetable, it is often used

to refer to the construction of schedule (with time

slots) through the system by considering several

numbers of constraints [2].This proposed system is

developed for FUW to generate courses timetable.

The system can be adopted by any Nigerian

university with similar constraints and

characteristics. Heuristics approach is used to

allocate courses, period and room resources in

different phases so as to obtain a feasible solution

that will satisfy the users’ requirements (lecturers

and students).

2. REVIEW OF RELATED WORK

Zahra [11] works on four main metaheuristic

algorithms to solve the course timetabling problem

on ten dataset. The four algorithms were compared.

It was found at the final result that Ant colony

System (ACS) works better of all, follow by the Tabu

Search (TS). ACS gives initial better solution than the

TS and thus gives a less cost reduction.

Metaheuristic can be used to solve timetabling

problem as suggested by [12]. In this case, the

metaheuristic algorithm noted to have been divided

into three categories; two stages of optimization

algorithm and algorithm that allow relaxation.

Samuel, Arnold and Milyandreana[1] suggested

heuristic and genetic algorithm for course

timetabling problem. The target matrix does not

include room. The system merges the room to the

cell in the timetable. They planned the course

available in the parallel matrix to all course in the

timetable, and if there is a need for courses to be

split, it has to be differentiated.

Asaju et al. [13] provide an effective way of solving

course Timetabling problem using artificial bee

colony algorithm. The tool carefully traverses the

UTP search space using the vicinity structure

repetitively, surrounded by the onlooker and

employed bee operators. The ABC algorithm was

assessed using curriculum-based course timetabling

(CB-CTT) together with the Uncapacitated

Examination Timetabling Problem (UETP).

In [14], the room scheduling of lectures in Utrecht

University was planned to be automated. The

number of lectures examined with the density of the

Problem (NP-Complete) account for difficulty of the

current system. The current system uses the greedy

algorithm. A local search was effectively employed

which resolve the main problem together with

further restrictions preferred by the scheduler at the

Utrecht University. It was found that the algorithm

of syllabus plus was far better than a greedy

algorithm at the expense of considering several

algorithm.

Awadallah et al. [15] suggested a hybridization of

Harmony search Algorithm for Nurse Sheduling

problem. The Harmony search Algorithm is hybridize

with a greedy shuffle. The algorithm was tested on

four dataset which is outline in the first International

Rostering Competition.

Solving timetabling problem prove to be

cumbersome and in most cases contain series of

conflicts [16]. He stated that the timetabling

problem could be solved by encoding them into

maximum satifiability (Max-SAT). The course

timetabling problem of the department of

Mathematics, Cairo University was tackle by

encoding them into Max-SAT. The constraints were

modeled as maximum satifiability (Max-SAT)

instance.

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING HEURISTIC APPROACH, A. M. Hambali, Y. A. Olasupo & M. Dalhatu

Nigerian Journal of Technology, Vol. 39, No. 1, January 2020 3

Hamed, Jaber and Amin [17] analyze available

approaches for solving university timetabling

problem which include the metaheuristic methods,

operational researches, intelligent novel method and

distributed multi agent system based approach

known as Cooperative Search method. Similarly, the

investigation of distributed multi agent system

approach enables the timetabling of similar events

between the departments. Moreover, Hamed, Jaber

and Amin [16] stated that the hard constraints

should not, in any circumstances, be dishonored and

the soft constraint should be less violated.

Ruggero et al. [18] worked on simulated annealing

and tunning search approach to solve curriculum-

based course timetabling problem(CB-CTT). It was

reported the outcome of the methodology employed

account for the modelling of similarities between the

parametric search method and instances features

which allows the setup of parameters unseen

instances base on the assessment of instances itself.

De Werra, Asratian and Durand [19] modelled the

timetabling in similitude to the edge of boarder of

a bipartite multigraph. They made an extension by

dividing the set of classes into groups. It contains a

given lecturer to a given class and a set of lecturers

given lectures to group of classes. Moreover, they

stated that NP (Non Polynomial) – complete is only

when the a lecturer is to three groups of classes.

Recent article reveals that a new approach of

combining the invocation standard of Mixed –

Integer programming (MIP) solver with problem

specific modulo network simplex heuristic method

(ModSim). It was later reported that the iterated

approach allowed the ModSim to prevail over the

local minima proficiently and enable the MIP solver

to be a better start up solution. The experiment was

based on sampling 16 railway instances of PESPlib

which is the available periodic event scheduling

problem instance at that moment. With the iterative

combine method used, it is said to account for the

reduction of the purpose of earlier known solution to

at least 10% and up to about 23% approximately

[20].

Gerhard et al. [21] presented a paper on the 3rd

international Timetabling Competition 2011. The

paper was reported with the aim to raise the profile

of automating timetabling problem in higher

institution. 35 instances were considered in 10

countries. It explains the data model used, XML data

format, in which the ambiguous instances and

solution can be simplified precisely.

Naderi [22] proposed three algorithms for solving

the problem of university course timetabling in form

of linear integer programming model. The three

algorithms proposed are the imperialist competitive

algorithm, variable neighborhood search and

simulated annealing. The outcome shows that the

imperialist competitive algorithm outweighed the

other algorithm in term of performance.

Tomáš et al. [23] initiate a Passenger Centric Train

Timetabling Problem. This accounts the contentment

in the design of the scheduling and considered the

cyclic and non-cyclic timetables. The non-cyclic

timetable shows high density demand in comparison

to cyclic timetable.

In considering a student-centric point of view during

scheduling to solve the Examination Timetabling

Problem, two columns Generation Algorithm could

be used [24]. The article explained how it is used to

solve the examination timetable at KU Leuven

campus Brussels in Belgium.

2.1. Constraints

The problem is considered solved when the following

criteria are satisfied:

Every event in every course is assigned a time slot.

All events are in the right kind of room.

No student group has two events at the same time.

No lecturer has two events at the same time.

No two events are scheduled in the same room at

the same time.

No event is in a room with less capacity than the

number of students at the event.

These constraints are referred to as hard

constraints, which mean that they are absolutely

necessary for the solution to be valid [8].

3. METHODOLOGY

In this research work, in order to achieve an

optimum output design, the researchers adopt

Charles’s Darwin theory on survival of the fittest

(genetic algorithm), simulated annealing along with

graph coloring heuristic to generate a

multidimensional array as space for referencing the

entire courses in any given semester.

Requirement Analysis

What is required of the system would be:

A set of courses C with n the number of courses

A set of lecturers T with t the number of lecturers

A set of rooms R with r the number of rooms

A set of timeslot P with d the number of days and h

the number of hours

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING HEURISTIC APPROACH, A. M. Hambali, Y. A. Olasupo & M. Dalhatu

Nigerian Journal of Technology, Vol. 39, No. 1, January 2020 4

A set of courses K with k number of departments

offering at least one course

A set of hard constraints X with x number of

constraints

A set of soft constraint S with s number of soft

constraints

A set of faculty W with w number of faculties

A set of department Q with q number of departments

A set of levels M with m number of level

In addition to the above expectations, all the credit

units of courses on a set C must be spelt out. The

set of lecturers is an optional requirement at the

general perspective of the university’s timetable,

however, this should be considered at the faculty or

departmental level of timetabling. So all

combinatorial optimization challenges must have the

goal of finding a solution, which is a combination of

a set of discrete variables that could respect all hard

constraints and minimizes or maximizes the value of

the objective function (soft constraints). This is best

attainable by the administrative policy of the

university.

3.1. Method of Data Collection

Data for this research work was collected from

Faculty of Pure and Applied Sciences, Federal

University Wukari, Taraba State.

3.2. Proposed System Model

The following assumptions may be taken into

consideration for effective performance of the

design. These are highlighted as follows:

i. No student should attend more than one

event (lecture) at the same time.

ii. The room must be big enough for all the

attending students and should satisfy all the

features required by the event.

iii. Only one event is put into each room in any

timeslot.

iv. Events are only assigned to timeslots that

are pre-defined as available for those

events.

v. General course should be available for all

faculty students.

vi. The timetable has to deal with total courses

registered in a particular Semester.

vii. Each room is to be of defined timeslots

every week.

viii. Wednesday session stops by 3pm and Friday

session stops by 1pm till 3pm.

ix. Some courses that need more than one

session per week may not necessarily be

considered.

x. Two sessions of one course cannot be set

on one day or two days consecutively.

3.3. Framework of the Proposed System

The layered structures of this problem indicate what

program should be built and how they will

interrelate. The system interface offers

programming tool used for designing the system.

The framework involves the flowchart of the

proposed system. The proposed framework clarifies

the steps and conditions that could be adopted while

developing the system. The framework is based on

four perspective area of interest for efficient running

of the system:

1. Schedule courses on regular lecture rooms

while the number of students enrolled for the

course is not greater than the room capacity.

2. Schedule practical courses on specified

laboratory while the number of students

enrolled for the course is not greater than the

room capacity

3. Schedule inter departmental courses (Crs)

considering the room capacity and the

common room that can accommodate the

departments involved such that the timeslots

of their respective departmental and GST

Courses (Crs) is not clashed or overlapped.

4. Schedule GST courses on regular lecture room

in the highest room capacity considering the

timeslots for departmental and practical

courses of each department that register the

courses.

From this proposed framework there are several

steps that must be carried out to solving the

problem. Fig. 1 and 2 depicts the architecture of the

timetabling problem for Federal University Wukari

(FUW).

The processing of input data requires that

departmental and practical courses must be

scheduled before interdepartmental & GST Courses.

The polygon represents a fresh step which is a

subset of step in the system; for example, all

departmental courses from one department to the

next department in a faculty are scheduled before

jumping to other departments in another faculty.

This can be accomplished sequentially while the

courses and the room number are in ascending or

descending order.

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING HEURISTIC APPROACH, A. M. Hambali, Y. A. Olasupo & M. Dalhatu

Nigerian Journal of Technology, Vol. 39, No. 1, January 2020 5

3.4. Architectural of Proposed System Flow

Chart

Allotting of time slots, the periods, days & rooms for

each course must start from hundred (100) levels to

five hundred (500) level beginning from the first

department in the first faculty to the last department

of the last faculty. This means scheduling in

sequential order except where the algorithm

changes in case of the complexity found in timeslots

for interdepartmental and GST courses. The

derivative can be viewed as follows:

a[WrQkMyCx] stands for the array of total courses of

the institution per semester such that faculties,

departments, levels, courses are arranged in

sequential order. Wr= {wi…wl} is a set of all faculties

where wi is the first faculty in the set and wl is the

last faculty, the same applicable to the departments,

levels and courses.

4. META-HEURISTIC ALGORITHMS

Meta-heuristic Algorithm utilizes the evolution

system of algorithm to solve the timetabling

problem. The most commonly meta-heuristic

algorithms using the power of evolution are the

genetic algorithm or local search such as simulated

annealing. These kinds of algorithms calculate an

approximate solution rather than the optimal one.

This is to severely decrease the run time of the

program and still get an acceptable solution.

4.1. Genetic Algorithm

A genetic algorithm starts with a set of random

solutions to the problem [8]. This algorithm works

with number of solutions and each solution is called

a chromosome. The chromosome consists of several

genes which are values corresponding to certain

properties in the solution. The genes can then be

used to control the fitness of the chromosome.

Based on the chromosomes’ fitness, a new off string

is created by crossing. These off springs are then

randomly mutated to create a bigger search space.

When an offspring matches a specified fitness

condition, this means an acceptable solution has

been found and the algorithm terminates. There are

two main stages in the genetic algorithm; the

selection and the crossover.

4.1.1. Selection

There are few ways in selecting which chromosomes

to be crossed. Some of these are elitism selection,

roulette-wheel selection and tournament selection

[7].

4.1.2 Crossover

It may vary which genes are carried over when two

chromosomes are being crossed. To decide this,

there are few different methods: Some of them are

single point crossover, two point crossover and

uniform crossover [7].

4.2. Simulated Annealing

Simulated annealing is based on neighborhood

search with the special property of sometimes

accepting a worse solution to avoid getting caught

in a local optimum and instead finding the global

one. The idea of simulated annealing is inspired by

the annealing process in metal work. The colder a

metal is the more stable its shape is. To change the

shape of the metal it is heated up and then

processed while it is cooling down, ultimately

freezing its shape until reheated. Simulated

annealing works in a similar way, where it has a

temperature variable controlling the heating process

[8].

The temperature variable is initially set to a high

value and is then slowly decreased while the

algorithm runs. The higher the temperature is, the

more probable the algorithm is to choose a worse

solution than the current one. This gives the

algorithm the chance of avoiding getting stuck in a

local optimum early on. As the temperature

decreases, so does the chances of the algorithm

choosing a worse solution, which in the end leads to

a local search in a much more narrow search space

and hopefully finding a close to optimal solution.

Algorithms using only downhill search have a very

large chance of getting stuck in a local optimum,

whereas a better global optimum might be found

just a few neighbors away. As reported in [8], the

graduated cooling process terminates this problem

effectively and makes it much better than the

downhill algorithms on large search space with

numerous local optima [5].

4.3. Time Complexity

The timetable contains a fixed number of time slots

available to assign events to timeslots. These

timeslots can contain several events in parallel as

long as none of these events have the same

resources. There are also other constraints that

specify which events that can be contained in the

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING HEURISTIC APPROACH, A. M. Hambali, Y. A. Olasupo & M. Dalhatu

Nigerian Journal of Technology, Vol. 39, No. 1, January 2020 6

same time slot for interdepartmental courses. The

times usually make up one week, but this is up to

the university’s managerial decision. There may be

instance of where two weeks make the timetable

instead of one week; this issue relies upon NP-

complete problems. However, it would be more

efficient to fix all the necessary resources (hard

constraints) in one week on the timetable.

Another challenge that needs to be resolved is

allocating appropriate hour(s) for every course. This

may be influenced by the university administration

and management based on the extent of current

resources as well the growing rate of the institution.

From this scenario, the lecture hour for each course

will vary according to credit units Table 1: Lecture

Length (Hour).

4.4. Computational Complexity

It is provable that the decision problem underlying

FUW is NP-complete. The following proof considers

(as could be seen in the next section) one sectional

computation in which all courses are assigned on

each semester. This means that the sub problem of

selecting the appropriate courses and scheduling

them feasibly.

Table 1: Lecture Length Per Credit Unit
1 1credit unit 2credit units 3credit units Proportional to credit units

2 1 credit unit 2 credit units 3 credit units
If credit unit≤2, lect.hr = 2hrs else

lect.hr= 3hrs

3 1credit unit 2credit units 3credit units
If credit unit≤3, lect.hr=2hrs else
it should be 3hrs

Fig. 1: Proposed System Framework (Part A)

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING HEURISTIC APPROACH, A. M. Hambali, Y. A. Olasupo & M. Dalhatu

Nigerian Journal of Technology, Vol. 39, No. 1, January 2020 7

Fig. 2: Proposed System Framework (Part B)

4.5. Space Complexity

To generate the timetable, as had been emphasized

earlier in the previous sections, is to allocate each

course on a set of rooms at specific lecture period

without overlapping. The lesson period for all the

courses must correspond to a memory location

respectively. However, general courses at

departmental or at faculty level may share the same

lecture hall and time (memory space) depending on

the schedule. The space for departmental course must

be distinct altogether within the matrix (array). Really,

searching for space in order to schedule

interdepartmental, GST and practical courses having

scheduled departmental courses involve thorough

swapping. Furthermore, it would be better to consider

departmental course first in allocation to ease the

complexity.

4.6. Memory Space Generation

The total number of lecture hall for a semester should

be grouped sequentially in alphabetical order such that

the cardinality of each group must exactly be equal

except where it is necessary. Even though, number of

days of lecture on each room and lesson period may

not be the same, it will be quite fitting to initialize all

the resources with the room having the highest

number of days per week and periods a day. This is to

enable the generation of perfect dynamic array; but

the number of events on each room as initialized by

the user will remain constant. Therefore, the memory

space for such rooms will be considered imaginary;

that is array index for such rooms would be out of

bound.

Let the total room number be Rtotal= N Where N is the

sum of all the lecture halls which is

N = ∑ 𝑅𝑖
𝐿
𝑖=1 = R1 + R2 + … + RL. (1)

Therefore,
𝑅𝑡𝑜𝑡𝑎𝑙

𝑅𝑚𝑎𝑥
⁄ = Gtotal. (2)

R1max = R2max =… = Rnmax║R1max ≠ R2max ≠… ≠ Rnmax. (3)

That is the number of days for lecture to be scheduled

in each room in a week may or may not be the same

due to university policy; for this reason, the hall(s)

with the highest number of days for scheduling could

be taken as the Rmax.

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING HEURISTIC APPROACH, A. M. Hambali, Y. A. Olasupo & M. Dalhatu

Nigerian Journal of Technology, Vol. 39, No. 1, January 2020 8

The Room Grouping:

Initially, Gtotal =
𝑅𝑡𝑜𝑡𝑎𝑙

𝑅𝑚𝑎𝑥
⁄ = G1 = G2 = G3 =…= Gn (4)

iffRtotal ∕Rmax is an integer else G1 = G2 = … ≠ Gn

where Gn is the last group. Notwithstanding, Gn must

be scheduled whether it is equal to G1 or not but each

number referencing the value of array variables for

last group will be imaginary. However in the series,

such imaginary cell must be considered. Ideally, for

less strenuous derivation of the algorithm for efficient

allocation of resources, rooms and lecture hours need

to be grouped to form an array.

Conditional Room Grouping:

If Rtotal/Rmax = Gtotal such that Gtotal is an integer value

then

G1 = {Ri…Rx}, G2 = {R(x+1)…R2x}, G3 = {R(2x+1) … R3x}, Gn

= {R((n−1)x+1)…Rnx} (5)

where G1(│R│) = G2(│R│) = …= Gn(│R│) for the

whole group; that is the number of venues for each

group must be equal. But, if the Gtotal is a double value,

then Gn(│R│) ≠ G1(│R│) = G2(│R│) =…

Exceptionally, Gn (│R│) = Rtotal - Rmax (Rtotal%Rmax).

The last group Gn with least number of rooms would

be declared as having the same number of rooms as

G1; the memory locations for the additional rooms for

the last group may be restricted from scheduling any

event (course). For this reason,

G1 = {Ri…Rx}, G2 = {R(x+1)…R2x}, G3 = {R(2x+1)…R3x}, Gn

= {Ra…RL} (6)

where Ra is the room number after the last room

number of the preceding group and RL is the last room

number of the entire group. Note that room numbers

must be in sequential order or otherwise by using the

room names or the room’s code. The Array: before

delving into the actual algorithm for the array, some

terms ought to be defined as follow:

a [pcrcdc]G1 … Gn is an array of memory locations for

group one where the intersection of these parameters

(period, room & day) corresponds to each lecture time

for any course; where Pc is a set of lecture period P,

Pc = {Pi … Pn} at a given day per room such that Pi ≥1

where Pi is an index for the first period and i ≥1 … n,

Pn the last period in the set.

Rc is a set of room r, such that Rc = {ri … rn} having

the same period at a given day where ri is an index

number for the first room, rn the last room in the set.

Dc is a set of days d, such that Dc = {di…dn} for a given

period per room in a group where di is the first day of

a given room and dn the last day such that the

cardinality of Dc, │ di…dn│≤ 6and i ≥ 1(for 6 is the

maximum number of required days per week)

rx= last room of G1= G2 =…= Gn

dx= last day of G1 = G2 = … = Gn of rx

px = stopping function

Px1= first stopping function of G1 = last periods of G1

in rx = Pcrxd1

Px2 = second stopping function of G1 = last periods of

G1 in dx = Pcdxr1.Px(G1)=Px (G2)=… =Px(Gn) in rx and dx

rL is the last room of any period in dn

dL is the last day of any period in rn

Pcdxr1 = Pcdnr1, Pcrxd1= Pcrnd1

Ra is the room number after the last room number of

the preceding group.

RL is the last room number of the entire group.

The table 2 depicts the structural model of the

dynamic array.

4.7. The Proposed Algorithm

1. Function allocateCourseToTimeslot()

2. do {

3. Process current fac

4. Get the next fac

5. Process the next fac

6. while there is fac to process

7 do{

8. Process current dept

9. Get the next dept

10. Process the next dept

11. while there is dept to process

12. do {

13. Process current lev

14. Get the next lev

15. Process the next lev

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING HEURISTIC APPROACH, A. M. Hambali, Y. A. Olasupo & M. Dalhatu

Nigerian Journal of Technology, Vol. 39, No. 1, January 2020 9

16. While there is lev to process

17. FunctionscheduleLevelCourse()

18. FunctionscheduleDepartmentalCourse()

19. while there is DeptCoursedo {

20. Process current DeptCourse

21. Get the next DeptCourse&& process

22. if cell is empty && the NumberOfStud enrolled <= roomCapt

23. RoomType is normal class

24. Timeslot for DeptCourse do not overlapped // clashed then {

25. IndexRefernceValue← Deptcourse

26. }

27. else {

28. Search for next fitted timeslot

29. }

30. }

31. end if

32. end while

33. end function

34. FunctionschedulePracticalCourse()

35. While there is PractCoursedo {

36. Process current PractCourse

37. Get the next PractCourse&& process

38. if cell is empty && the NumberOfStud enrolled <= roomCapt

39. RoomType is Practical class

40. Timeslot for PractCourse do not overlapped // clashed then {

41. IndexRefernceValue← Practcourse

42. }

43. else {

44. Search for next fitted timeslot

45. }

46. }

47. end if

48. end while

49. end function

50. FunctionscheduleInterdepartmentalCourse()

51. while there is InterDeptCoursedo {

52. Process current InterDeptCourse

53. Get the next InterDeptCourse&& process

54. if cell is empty && the NumberOfStud enrolled <= roomCapt

55. RoomType is normal class

56. Timeslot for DeptCourse do not overlapped // clashed then {

57. IndexRefernceValue ← InterDeptcourse

58. }

59. else {

60. Search for next fitted timeslot

61. }

 62. }

63. end if

64. end while

65. end function

66. FunctionscheduleGSTCourse()

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING HEURISTIC APPROACH, A. M. Hambali, Y. A. Olasupo & M. Dalhatu

Nigerian Journal of Technology, Vol. 39, No. 1, January 2020 10

67. while there is GSTCoursedo {

68. Process current GSTCourse

69. Get the next GSTCourse&& process

70. if cell is empty && the NumberOfStud enrolled <= HighestRoomCapt

71. RoomType is normal class

72. Timeslot for GSTCourse do not overlapped // clashed then {

73. IndexRefernceValue ← GSTcourse

74. }

75. else {

76. Search for next fitted timeslot

77. }

78. }

79. end if

80. end while

81. end function

82. }

83. }

84. }

In the algorithm above, the allocation of courses to

each timeslots is considered first at the faculty level

procedurally, until all the faculties are scheduled.

The department under each faculty must also be in

series, the same thing with levels and courses in

every department. The program will search

repeatedly for all course type in each level before

moving to another level of the same department,

until all levels are exhausted. Likewise, until all

departments are exhausted before allocating

resources in appropriate timeslot for another faculty.

But there is an exception in the case of

interdepartmental course and GST course where set

theory must be applied in the program. This mean

that the program will check for common timeslot for

GST and interdepartmental courses for the

department enrolled for. The system will skip

iteration of such courses (GST and InterDeptCourse)

provided they were allocated in some previous

department such that clashing and overlapping are

all exempted

5. RESULT AND DISCUSSION

The main menu of the system is being displayed on

the Dashboard page and up to five sub-menus,

depending on the permissions of the user who logs

in. These sub-menus are the Add Faculty,

Department and Courses, Generate Time Table,

Print Time Table, Add System user and Exit. The

menus shown in figure 3 are for an administrator

user, who has access to all sub-menu options.

5.1. Subsystem Implementation

The subsystems or modules which represent

separate units of functionality of the system are the

Add Faculty, department and courses, Generate

Time Table, Print Time Table Add System user and

Exit.

5.2. Add Faculty, Department and Courses

The Add Faculty, Department and Courses page (Fig

4) allows the admin of the system to add new

faculties, departments and even courses to the

system. This page makes the system more flexible

in case of addition of some of these parameters.

5.3. Generate Time Table

This is the main timetable page (Fig 5) that

generates the timetable for each department. The

timetable is been generated based on the number of

courses register previously in a particular

department.

5.4. Add System User

This page (Fig 6) enables the system administrator

to add more system users that can also have access

to the system.

5.5. Database Implementation

This (Fig 7) shows the database of the system with

all the tables and their relationships.

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING HEURISTIC APPROACH, A. M. Hambali, Y. A. Olasupo & M. Dalhatu

Nigerian Journal of Technology, Vol. 39, No. 1, January 2020 11

Table 2: Model of Multidimensional Array.

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING HEURISTIC APPROACH, A. M. Hambali, Y. A. Olasupo & M. Dalhatu

Nigerian Journal of Technology, Vol. 39, No. 1, January 2020 12

Fig. 3: The Main Menu

Fig. 4: Add Faculty Module

Fig. 5: Generate Timetable

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING HEURISTIC APPROACH, A. M. Hambali, Y. A. Olasupo & M. Dalhatu

Nigerian Journal of Technology, Vol. 39, No. 1, January 2020 13

Fig. 6: Add User

Fig. 7: Entity Relational Diagram

6. CONCLUSION AND FUTURE WORK

6.1. Conclusion

The teaching staff usually spend a lot of time in

timetable generation and timetable management.

The aim of this work is to enable the process of

timetable generation to be done faster and more

efficient using the computerized method. The

Timetable Scheduler as an application for generating

lecture timetables has been effectively and

successfully deployed. The efficiency of this easy to

use software is shown to generate a zero clash

timetable in only eight iterations. The system is more

flexible to work perfectly in other institutions that

have similar constraints with FUW. Also, other

institutions that have different constrains can define

them before generating the timetable, for example,

available lecture rooms space, define free period and

so on. The data used in generating the timetable such

as courses can also be used for other purposes such

as managing students in their respective course

registration processes.

6.2. Future work

The automated timetable scheduler is a flexible

driven desktop application that enhances the

generation and management of the time table. On

the area of further works, the researcher suggests

the implementation of the online or web based

application that is accessible to all students and

lecturers within the institution and the world at large.

7. REFERENCES

[1]. L. Samuel, A. Arnold, & M. Milyandreana,
“Solving Timetable Problem by Genetic

Algorithm and Heuristic Search Case Study,”
Universitas Pelita Harapan Timetable.

Universitas Pelita Harapan Computer Science
Journal , pp. 87-93, 2012.

[2]. E. Burke, K. Jackson, J. H. Kingston, & R.

Weare, “Automated University Timetabling:
The State of the Art,” The computer
Journal, 40(9), pp. 565-571, 1997.

[3]. Y. Awad, A. Dawood, & A. Badr, “An

Evolutionary Immune Approach for University

Course Timetabling,” IJCSNS International
Journal of Computer Science and Network
Security, 11, pp. 127-135, 2011.

[4]. C. Renman, & H. Fristedt, “A comparative

analysis of a Tabu Search and a Genetic

Algorithm for solving a University Course
Timetabling Problem,” KTH, School of

AUTOMATED UNIVERSITY LECTURE TIMETABLE USING HEURISTIC APPROACH, A. M. Hambali, Y. A. Olasupo & M. Dalhatu

Nigerian Journal of Technology, Vol. 39, No. 1, January 2020 14

computer, Degree Project, in Computer

Science, First Level Stockholm, Sweden 2015

[5]. S. Kirkpatrick, C. D. Gelatt, & M. P.

Vecchi, “Optimization by Simulated Annealing,”
Science, 220 (4598), pp. 671-680, 1983.

[6]. R. M. Chen, & H. F. Shih, “Solving University
Course Timetabling Problems Using

Constriction Particle Swarm Optimization With

Local Search,” Algorithms, 6(2), pp. 227-244,
2013.

[7]. H. V. Yamazaki, & J. Pertoft. "Scalability of a
Genetic Algorithm that Solves a University

Course Scheduling Problem Inspired by KTH,"

2014.

[8]. R. Fredrikson, & D. Jonas, "A Comparative

Study between a Simulated Annealing and a
Genetic Algorithm for Solving a University

Timetabling Problem," KTH Royal Institute of
Technology, Degree Project in School of
Computer Science and Communication, 2016.

[9]. Z. Lü, & J. K. Hao. "Solving the Course
Timetabling Problem with a Hybrid Heuristic

Algorithm," In International Conference on
Artificial Intelligence: Methodology, Systems,
and Applications, pp. 262-273, Springer, Berlin,

Heidelberg, 2008.

[10]. Y. Yang, and S, Petrovic. "A Novel Similarity

Measure for Heuristic Selection in Examination
Timetabling," In International Conference on
the Practice and Theory of Automated
Timetabling, pp. 247-269, Springer, Berlin,
Heidelberg, 2004.

[11]. N. A. Zahra, “Comparison of Metaheuristic
Algorithms for Examination Timetabling

Problem,” J. Appl. Math. & Computing , 16, pp.
337 – 354, 2004.

[12]. L. Rhydian, “A Survey of Metaheuristics-Based

Technique for University Timetabling Problem,”
Wales , pp. 1-26, 2007.

[13]. L. B. Asaju, T. K. Ahamad, A. A.-B. Mohammed,
& A. A. Mohammed, “Artificial Bee Colony

Algorithm for Solving Educational Timetabling

Problems,” International Journal of Natural
Computing Research , 3 (2), pp. 1-21, 2012.

[14]. H. C. Kampman, "Timetabling at Utrecht
University," Master's thesis, 2013.

[15]. M. A. Awadallah, A. T. Khaer, M. A. Al-Betar &

A.L.A. Bolaji, “Harmony Search with Greedy
Shuffle for Nurse Rostering,” International
Journal of Natural Computing Research
(IJNCR), 3(2), pp. 22-42, 2012.

[16]. E. H. Mohamed, "Solving the Course-
Timetabling Problem of Cairo University Using

Max-SAT." arXiv preprint arXiv:1803.05027,

2018.

[17]. H. Babaei, K. Jaber & H. Amin, "A Survey of

Approaches for University Course Timetabling
Problem." Computers & Industrial
Engineering 86, pp. 43-59, 2015.

[18]. R. Bellio, C. Sara, D. G. Luca, S. Andrea, & U.
Tommaso, "Feature-Based Tuning of Simulated

Annealing Applied to the Curriculum-Based
Course Timetabling Problem," Computers &
Operations Research, 65, pp. 83-92, 2016.

[19]. D. De Werra, A. S. Asratian, & S. Durand,
“Complexity of Some Special Types of

Timetabling Problems,” Journal of
Scheduling, 5(2), pp. 171-183, 2002.

[20]. G. Marc, & L. Christian, “An Improved Algorithm
for the Periodic Timetabling Problem,” 17th
Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and
Systems (ATMOS 2017), 12; pp. 1–14,

Germany, 2017

[21]. G. Post, D. G. Luca, H. K. Jeffrey, M. Barry, &

S. Andrea, "The Third International

Timetabling Competition," Annals of
Operations Research 239, (1), pp. 69-75,

2016.

[22]. B. Naderi, “Modeling and Scheduling University

Course Timetabling Problems,” International
Journal of Research in Industrial, 5 (1-4), pp.

1-15, 2016.

[23]. T. Robenek, M. Yousef, S. A. Shadi, C.
Jianghang, & B. Michel, "Passenger Centric

Train Timetabling Problem." Transportation
Research Part B: Methodological 89, pp. 107-

126, 2016.

[24]. G. Woumans, D. B. Liesje, B. Jeroen, & C.
Stefan, "A Column Generation Approach for

Solving the Examination-Timetabling
Problem," European Journal of Operational
Research 253 (1), pp. 178-194, 2016.

