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Abstract 

In this study, a range of (0.01-0.03) mol was used to synthesize silver doped ZrS through 

electrodeposition. A three-electrode system was employed in the synthesis. Platinum is used for 

the anode, silver and silver chloride (Ag/AgCl) are used for the reference electrode, and FTO 

(fluorine-doped tin oxide) is used for the cathode. The ZrS and Ag/ZrS XRD patterns showed 

the materials are polycrystalline with distinct phase orientation planes. An intense peak, indexed 

at (111) and showing values between 23.59o and 62.62o, displays a heavily dampened peak plane 

at (111). The micrograph of the ZrS material shows a presence of hexagonal structure material 

along with precipitate. The presence of various silver concentrations results in particle clumping 

and a uniformly coated substrate surface. In the visible region, the Ag/ZrS material displays a 

distinct absorption band, which is attributed to the silver surface plasmon resonance. The 

wavelength of the surface plasmon resonance band is determined by the size, shape, and 

dielectric properties of the silver material and the surrounding ZrS material. The energy band 

structure of ZrS increases from 2.32 to 2.51 eV with increasing silver molarity due to silver 

incorporation within the ZrS lattice. 

Keyword: X-ray diffraction patterns, optoelectronic, Energy dispersive X-ray, bandgap, 
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Introduction 

The primary global challenges arising from 

pollution and the greenhouse effect due to 

fossil fuel combustion rather than renewable 

energy utilization are energy and 

environmental issues (Alzoubi et al., 2021; 

Elhalim et al., 2021). To combat the surge in 

energy consumption resulting from 

population growth and developing nations' 

demands, we must replace non-renewable 

energy sources. Finding clean and 

                                                           
 

sustainable renewable energy sources is now 

an urgent priority (Alnehia et al., 2023; 

Article, 2024; Bencherif et al., 2022; 

Bouarissa et al., 2021). Solar energy is 

considered by researchers as a cost-effective 

and renewable option with abundant 

availability and high output efficiencies. The 

solar photovoltaic industry relies heavily on 

the distribution and intensity of solar 

radiation. Solar thermal applications use 

solar energy as a heat or electricity source in 

technologies like concentrated fuel cells and 
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solar power plants (Hasan et al., 2023; 

Ikhioya, 2024; Ikhioya and Nkele, 2024).All 

technologies harness sunlight and convert it 

into different forms. Solar energy can be 

converted into solar fuel through 

photosynthesis, as an example. Through 

photosynthesis, plants store solar energy by 

producing protons and electrons, which can 

be transformed into H2 and CH4. Biomass 

photosynthesis only uses 11% of solar 

energy. Photovoltaics convert photons into 

electrons for electricity, while solar thermal 

applications absorb and convert photons into 

heat(Jimin Shang et al., 2019; Kashif et al., 

2022s; Kumar et al., 2016; Li et al., 2019; 

Mattinen et al., 2019). The heat is used to 

warm a working fluid, which can then be 

collected and used to directly heat spaces and 

water. However, the energy conversion may 

not be enough, so we need to improve 

production efficiency by developing fuel 

from water and carbon dioxide with 

biological-inspired nanoscale assemblies, 

innovative configurations of natural 

photosynthetic pathways, and genetic 

engineering to boost biomass 

production(Moustafa et al., 2021, 2022; 

Nnannaa et al., 2024; Sharma et al., 2024; 

Shetti et al., 2019). Photovoltaic systems still 

face a significant challenge in aligning 

intermittent energy production with 

fluctuating power demand. To tackle this 

challenge, an option is to integrate a storage 

element into these sporadic energy sources. 

In two dimensions, dichalcogenides are a 

versatile group of materials with diverse 

properties and numerous potential 

applications. TMDCs have gained popularity 

following the rise of graphene, the original 

2D material made of carbon with semi-

metallic properties. Scientists have 

conducted extensive research on group 6 

elements such as molybdenum and tungsten, 

focusing on their semiconducting sulfides 

and selenides and their potential applications 

(Tian et al., 2022; Tripathi et al., 2021; 

Valussi et al., 2021; Ye et al., 2023). 

Recently, attention has shifted to a group of 

semiconducting materials, namely HfSe2, 

ZrSe2 HfS2, and ZrS2, because of their 

potential in semiconductor 

applications. Despite limited studies, both 

ZrS2 and HfS2 are likely indirect band gap 

semiconductors, regardless of their thickness. 

The reported band gaps of 1.8–1.7 eV for 

ZrS2 and 2.1–1.8 eV for HfS2 in bulk are 

suitable for different semiconductor 

applications.  

Tian et al. [20] successfully showed the 

deposition of high-quality, uniform ZrS2 

films on c-plane sapphire substrates using 

chemical vapor deposition. The atomic 

interface between ZrS2 and sapphire exhibits 

an exceptional level of sharpness. ZrS2 films 

show optoelectronic applications through 

photodetector devices. The ZrS2 

photodetectors show exceptional 

performance, with a light on/off ratio of 106 

and a specific directivity of 2.6 × 1012 Jones, 

which is the highest among other group-IVB 

two-dimensional Transition-metal 

dichalcogenides (TMDs). Mattinen et al 

(Mattinen et al., 2019) introduced a method 

that enables the creation of uniform films on 

different substrates with precise control over 

thickness. To increase the process scale, 

industry-compatible precursors and 

temperatures around 400 °C can be used. The 

deposited ZrS2 and HfS2 films are smooth, 

crystalline, with oxygen as the primary 

impurity. Applying an AlxSiyOz layer in a 

vacuum environment eliminated ZrS2 and 

HfS2's sensitivity to oxidation and reduced 

impurities. ZrS2 and HfS2photodetectors 

exhibit exceptional performance, remaining 

stable even in ambient conditions. The photo-

responsively achieved is comparable to ZrS2 

and HfS2 thin films or single flakes deposited 

at higher temperatures, but the response 

speed seems limited by photo-gating, as 

expected for 2D photo-detectors. The initial 

atomic layer deposition (ALD) techniques for 
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ZrS2 and HfS2 open up new possibilities for 

exploring their semiconductor applications. 

ZrS doped with silver displays excellent 

carrier mobility and a large bandgap as a 

semiconductor. Extensive studies have been 

carried out to explore its potential 

applications in optoelectronics, 

photovoltaics, and sensing. Methods like 

chemical vapor deposition, molecular beam 

epitaxy, sol-gel processing, and 

electrochemical deposition technique 

(Ikhioya et al., 2020; Ikechukwu & Ikhioya, 

2024; Ikhioya, 2015b, 2015a; Ikhioya et al., 

2015, 2020, 2021; Ikhioya and Ekpunobi, 

2014b, 2014a;  Ikhioya and Nkele, 2023a, 

2023b; Ikhioya et al., 2023) can synthesize 

silver-doped ZrS. The doping level and 

distribution can be controlled by adjusting 

the synthesis parameters. The addition of 

silver to ZrS shows promise in 

photocatalysis, energy storage, and 

biomedicine. Scientists are investigating how 

it can be used in flexible electronics and 

transparent conductors (Alnehia et al., 2023; 

Sharma et al., 2024; Shetti et al., 2019).  

The primary aim of this research is to 

investigate a nanostructured material 

produced by incorporating silver (Ag) into 

zirconium sulfide (ZrS). This material 

exhibits specific attributes and has practical 

applications in diverse areas. Silver-doped 

ZrS nanostructures have shown significant 

potential in optoelectronics, photocatalysis, 

and energy storage. Their unique optical and 

electrical properties can be advantageous for 

solar cells, photodetectors, and batteries.  

Experimental Procedures 

In this study, we employed the 

electrochemical deposition technique (ECD). 

The electrochemical bath system consists of 

ZrOCl2.8H2O (Zr2+) as the cation source, 

C2H5NS (S2-) as the anion source, and 

distilled water, all combined in a 100-mL 

beaker. A magnetic stirrer was used to stir the 

reaction bath. The power supply generated 

the electric field (DC voltage), with the 

cathode made of conducting glass and the 

anode composed of carbon and fluorine 

electrodes. Uniform thin film deposition 

through electrochemical deposition has been 

achieved. The FTO-coated working 

electrode, measuring 2.5 cm × 1.5 cm, was 

fragmented and cleaned using dish washing 

liquid. To synthesize Ag/ZrS, measure 0.01-

0.03 mol of AgNO3 precursor, a 0.1 mol 

ZrOCl2.8H2O solution in a 100-mL beaker, 

and a 0.5 mol C2H5NS precursor. The 

synthesis employs a three-electrode system. 

The anode is made of platinum, the reference 

electrode is made of silver and silver chloride 

(Ag/AgCl), and the cathode is made of FTO 

(fluorine-doped tin oxide). The FTO-coated 

substrate housed the counter and reference 

electrodes vertically in the beaker. The 

synthesis involved maintaining a 

potentiostatic condition of -200 mV versus 

SCE for 5 seconds. The synthesized films 

were cleaned and dried using a hand dryer. 

Target materials were poured into beakers 

alongside equal amounts of precursors during 

the synthesis process. The films underwent a 

20-minute annealing process to remove 

internal stress. The optical, structural, 

elemental analysis, and electrical properties 

of the deposited materials were thoroughly 

examined using appropriate tools. 

Results and Discussion 

The structural analysis of silver doped ZrS 

material. 

The undoped zirconium sulphide (ZrS) and 

Ag/ZrS X-ray diffraction patterns (XRD) at 

dopant concentrations of 0.01 to 0.03 mol are 

shown in Figure 1. The ZrS and Ag/ZrS XRD 

patterns showed the materials are 

polycrystalline with distinct phase 

orientation planes. The intense peak, indexed 

at (101 to 112), represents values from 23.59o 

to 62.62o. It also has a heavily damped peak 
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plane at (111). The deposited material is 

appropriate for use in optoelectronics 

applications. (Chukwuemeka et al., 2024; 

Emmanuel et al., 2022; Akpu et al., 2021; 

Ikhioya et al., 2020; Ikechukwu and Ikhioya, 

2024; Ikhioya et al., 2020, 2021, 

2023;Ikhioya and Ekpunobi, 2014a; Ikhioya 

and Nkele, 2023b, 2023a; Ikhioya et al., 

2023).When silver is incorporated into the 

ZrS lattice, it facilitates the formation of ZrS 

crystals. As the 2 theta angle increases, the 

intensity of X-ray diffraction peaks increases, 

suggesting more crystallites and larger sizes. 

The increase in the size of the crystallites in 

Table 1 is causing the growth due to a 

decrease in surface energy. The total energy 

of the system decreases as the crystallites 

grow, leading to a decrease in the surface 

area. The addition of silver dopant atoms 

changes how crystals grow, leading to the 

formation of bigger crystallites. The larger 

crystallite size observed at higher 2 theta 

angles in silver doped ZrS is due to crystal 

growth caused by reduced surface energy and 

the impact of silver dopant atoms on growth 

kinetics. Grain growth causes an increase in 

the crystallite size of silver-doped ZrS with 

an increasing 2 theta angle. When the 2theta 

angle increases, the X-ray beam explores 

larger crystallites by penetrating deeper into 

the material. The X-ray diffraction pattern 

will reveal details about the larger 

crystallites, leading to increased peak 

intensity and broader peak width. A wider 

peak width suggests a greater range of crystal 

sizes, with the larger crystals causing the 

higher 2 theta angles. In simpler words, as the 

X-ray beam goes deeper, it encounters bigger 

crystallites, causing the crystallite size to 

increase as the 2 theta angle increases. This 

phenomenon occurs frequently in materials 

that demonstrate grain growth, where smaller 

crystallites combine to create larger ones. 
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Figure 1: XRD pattern of ZrS and Ag/ZrS 

 

Table 1: Structural parameters of ZrS and Ag/ZrS 

Film 2θ  

(deg.) 

Recast 

d 

(spacing)  

Å  

 (Å) (β)  

 

(hkl)  (D)  

nm  
𝛔 
lines/m2                                                                     

ZrS 23.5941 3.7672 6.5250 0.2021 101 7.0076 6.2032 

 34.9137 2.5674 5.1349 0.2021 103 7.1908 5.8912 

 48.4287 1.8778 3.7557 0.2021 111 7.5215 5.3847 

 62.6298 1.4819 3.3136 0.2021 112 8.0295 4.7250 

Ag0.01/ZrS 19.6836 4.5059 7.8046 0.2032 101 6.9251 6.3518 

 33.8347 2.6468 5.2936 0.2032 103 7.1318 5.9890 

 44.5183 2.0332 4.0665 0.2032 111 7.3727 5.6042 

 63.3158 1.4674 3.2814 0.2032 112 8.0163 4.7406 

Ag0.02/ZrS 19.6836 4.5059 7.8046 0.2235 101 6.2961 7.6843 

 33.8347 2.6468 5.2936 0.2235 103 6.4841 7.2453 

 44.5183 2.0332 4.0665 0.2235 111 6.7031 6.7798 

 63.3158 1.4674 3.2814 0.2235 112 7.2882 5.7351 

Ag0.03/ZrS 19.6836 4.5059 7.8046 0.2300 101 6.1182 8.1377 

 33.8347 2.6468 5.2936 0.2300 103 6.3009 7.6728 

 44.5183 2.0332 4.0665 0.2300 111 6.5136 7.1798 

 63.3158 1.4674 3.2814 0.2300 112 7.0823 6.0735 

 

Scanning electron microscopy (SEM) of 

ZrS and Ag/ZrS  

Figure 2 displays the microstructure of 

Ag/ZrS. The micrograph of the ZrS material 

shows a presence of hexagonal structure 

material along with precipitate. The presence 

of various silver concentrations results in 

particle clumping and a uniformly coated 

substrate surface. The contact between the 

chalcogenide material and transition metal 

results in the formation of silver precipitate, 

and ZrS exhibits visible indications of 

material sublimation. SEM micrographs 

reveal the formation of diversely shaped 

nanoparticles, a consequence of the Ag/ZrS 

reaction. The synthesized material, at a 

quantity of 0.01 mol, illustrates the 

transformation of the silver precipitate by the 

dopant, showing compatibility between the 

two materials. However, increasing the 

dopant molarity to (0.02 mol) caused the 

nanoparticles to restructure, showing that 

exceeding (0.03 mol) would cause material 

reversal. The XRD findings show that the rise 

in silver molarity directly correlates with the 

growth of crystallite size. The results show 

that film syntheses hold promise for solar cell 

and photovoltaic use. Figure 3 shows the 

elemental dispersive X-ray (EDXs) analyzes 

of the material. Zirconium, sulfur, and silver 

are the basic elements showed by the spectra. 
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Figure 2: SEM micrograph of ZrS and Ag/ZrS 
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Figure 3: EDXs spectrum of ZrS and Ag/ZrS 

Optical analysis of ZrS and Ag/ZrS  

The absorbance of Ag/ZrS is shown in Figure 

4 (a). As the wavelength of the films 

increases, the material's absorbance 

decreases. In the visible region, the Ag/ZrS 

material displays a distinct absorption band, 

which is attributed to the silver surface 

plasmon resonance. The wavelength of the 

surface plasmon resonance band is 

ZrS  Ag0.01/ZrS 

Ag0.02/ZrS 
 

Ag0.03/ZrS 
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determined by the size, shape, and dielectric 

properties of the silver material and the 

surrounding ZrS material. Analyzing the 

absorption spectra allows for determining the 

properties of Ag/ZrS material, such as silver 

size and shape, ZrS dielectric properties, and 

material interaction. Ag/ZrS material finds 

applications in various fields like 

photocatalysis, solar cells, and sensors 

(Malumi et al., 2023; Ojegu, Odia, et al., 

2023; Ojegu, Samuel, et al., 2023; 

Okeoghene et al., 2023; Rufus et al., 2023; 

Samuel, Ojoba, et al., 2023; Samuel, et al., 

2023; Sarwar et al., 2023; Shah et al., 2023; 

Udofia et al., 2023; Udofia and Ikhioya, 

2018). By examining the absorption spectra 

of Ag/ZrS material, its optical characteristics 

improve its functionality for specific uses. 

Figure 4 (b) displays the transmittance of 

Ag/ZrS. The material's transmittance 

increases as the wavelength of the films 

increases. The transmittance spectral 

measure the amount of light passing through 

a material at different wavelengths. By using 

this data, the material exhibits the properties 

for specific applications, such as 

optoelectronics or energy storage. The 

transmittance spectra of Ag/ZrS can design 

optoelectronic devices, such as solar cells, 

light emitting diodes (LEDs), and 

photodetectors. The efficiency and 

performance of these devices enhanced by 

customizing their optical properties. Figure 4 

(c) displays the reflectance of Ag/ZrS. The 

material's reflectance decreases as the films' 

light radiation increases. The wavelength of 

incident light has a significant impact on the 

reflectance spectra of Ag/ZrS material. 

Ag/ZrS has strong reflectance in the visible 

region but decreases significantly in the near-

infrared region. The plasmonic resonance of 

silver in the Ag/ZrS composite is responsible 

for the behavior. The reflectance spectra of 

Ag/ZrS altered by manipulating the size and 

shape of silver. Smaller silver materials cause 

the plasmonic resonance peak to shift 

towards the blue end. The tunability of 

Ag/ZrS materials allows for designing 

specific optical properties for various 

applications. The application of Ag/ZrS 

materials with reflectance that varies with 

wavelength is versatile, spanning areas like 

photocatalysis, sensing, and optical devices. 

Ag/ZrS shows great potential for solar energy 

collection because it reflects light well in the 

visible region and has low reflectance in the 

near-infrared region, making it suitable for 

stealth technology. Figure 4 (d) displays the 

bandgap of Ag/ZrS. The Ag/ZrS material has 

a direct band gap at the UV point, making it 

ideal for optoelectronic applications. 

Efficient light emission happens when the 

valence band maximum and conduction band 

minimum align at the same k-point. The 

optoelectronic characteristics of Ag/ZrS 

material can be customized by varying the 

amount of Ag. By adjusting the Ag 

concentration, specific optical features can be 

achieved for different applications, altering 

the bandgap. The Ag/ZrS material has 

potential in optoelectronic applications as 

LEDs, photodetectors, and solar cells. Its 

potential to change its bandgap and efficient 

radiative recombination makes it a promising 

option for future optoelectronic 

devices(Kashif et al., 2022). By 

incorporating silver into the ZrS lattice, the 

energy band structure rises from 2.32 to 2.51 

eV as molarity increases. 
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Figure 4: absorbance (a), transmittance (b), reflectance (c), and bandgap (d) of ZrS and 

Ag/ZrS 

The refractive index of Ag/ZrS is illustrated 

in Figure 5 (a). As the photon energy of the 

material rises, the refractive index fluctuates. 

The refractive index spectra of Ag/ZrS 

material have important implications for its 

applications. For instance, in optoelectronics, 

the material's refractive index influences the 

performance of optical devices, such as 

lenses, prisms, and wave guides. Figure 5 (b) 

shows the extinction coefficient of Ag/ZrS. 

The increase in photon energy leads to an 

increase in the extinction coefficient of the 

material. The extinction coefficient 

quantifies how well a material can absorb and 

scatter light. By examining the spectra, 

scientists can learn about the material's uses 

in optoelectronics and other areas. 

Optimizing devices that use the optical 

properties of Ag/ZrS requires a thorough 

understanding of its extinction coefficient 
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spectra. The optical conductivity of Ag/ZrS 

is depicted in Figure 5 (c). As the photon 

energy rises, so does the material's optical 

conductivity. The optical conductivity 

spectra of Ag/ZrS show a clear dependence 

on photon energy. At low photon energies, 

the optical conductivity is dominated by 

intra-band transitions within the valence 

band. As the photon energy increases, inter-

band transitions from the valence band to the 

conduction band become more significant, 

leading to a sharp increase in the optical 

conductivity. The optical conductivity of 

Ag/ZrS material increases with increasing 

photon energy. This is due to the increasing 

number of inter-band transitions that are 

possible in higher photon energies. The 

optical conductivity also shows a peak at 

around 2.3 eV, which corresponds to the 

bandgap of Ag/ZrS material. The optical 

conductivity spectra of Ag/ZrS material 

study the electronic structure and optical 

properties of the material. Figure 5 (d&e) 

shows the dielectric constant (both real and 

imaginary parts) of Ag/ZrS. The real and 

imaginary dielectric constant of the material 

increases as the photon energy increases. The 

real dielectric constant measures a material's 

ability to store electrical energy, while the 

imaginary dielectric constant quantifies 

energy loss from polarization. Valuable 

information about the optical properties of 

Ag/ZrS material can be obtained by 

analyzing the photon energy spectra of these 

constants. The dielectric constant of Ag/ZrS 

material increases with higher photon energy. 

The material becomes more polarizable as 

the energy levels rise. As photon energy 

increases, the dielectric constant of Ag/ZrS 

material varies. At higher energies, the 

material encounters less energy loss due to 

polarization. 
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Figure 5: refractive index (a), extinction coefficient (b), optical conductivity (c), real 

dielectric constant (RDC) (d), imaginary dielectric constant (IDC) (e) of ZrS and Ag/ZrS 

The electrical analysis of ZrS and Ag/ZrS  

The resistivity and conductivity of ZrS and 

Ag/ZrS material are shown in Table 2. 

Increasing the film thickness from 121.32 to 

129.04 nm resulted in a decrease in resistivity 

from 2.36 to 3.56 ohm/m and a drop in 

conductivity from 4.34 to 2.80 S/m. The 

films' low resistivity and conductivity make 

them perfect for photovoltaic and solar cell 

applications. Figure 6 shows that as film 

thickness increases, resistivity decreases and 

conductivity increases. The graph shows the 

lack of an ohmic relationship between 

resistivity, conductivity, and silver 

molarity.The plot illustrates how film 

thickness, resistivity, conductivity, and silver 

molarity fluctuations are interconnected. 
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Table 2: Electrical properties of ZrS and Ag/ZrS 

Film t 

(nm) 

𝛒 (Ω.m) 𝛔 (S/m)-1 

ZrS 121.32  2.36 ×  106 4.34 × 105 

Ag0.01/ZrS 123.04  3.23 ×  106 3.09 × 105 

Ag0.02/ZrS 126.13  3.43 ×  106 2.91 × 105 

Ag0.03/ZrS 129.04 3.56 ×  106 2.80 × 105 
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Figure 6: variation of resistivity and conductivity of ZrS and Ag/ZrS 

Conclusions 

The successful utilization of the 

electrochemical deposition technique 

allowed for the synthesis and study of Ag/ZrS 

thin films. The XRD patterns of ZrS and 

ZrS/Ag indicated the materials are 

polycrystalline and have well-defined phase 

orientation planes. Increasing the 2 theta 

angle leads to stronger X-ray diffraction 

peaks, suggesting larger crystallites and 

greater crystallinity. Reduced surface energy 

drives the growth of the crystallites, as they 

increase in size. As the crystallites increase in 

size, the total energy of the system 

diminishes, resulting in a reduced surface 

area. Silver dopant atoms affect the way 

crystals grow, resulting in larger crystallites. 

The increased crystallite size observed at 

higher 2 theta angles in silver-doped ZrS can 

be attributed to crystal growth, facilitated by 

lower surface energy and the impact of silver 

dopant atoms on growth kinetics. The 

resistivity dropped from 2.36 to 3.56 ohm/m 

as the film's thickness increased from 121.32 

to 129.04 nm, resulting in a decrease in 

conductivity from 4.34 to 2.80 S/m. The 

films' low resistivity and conductivity make 

them perfect for photovoltaic and solar cell 

applications. By incorporating silver into the 

ZrS lattice, the energy band structure rises 

from 2.32 to 2.51 eV as molarity increases. 
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