
Nigerian Journal of Science and Environment 2024 Volume 22 (3) 44 – 58  ISSN: 3043 – 4440  

https://doi.org/10.61448/njse223244 

 

44 

 

Power Series Variational Iteration Method for Fractional Order 

Boundary Value Integro-Differential Equations with certain Orthogonal 

Polynomials 

 

Johnson, E.K. and Njoseh, I.N. 

Department of Mathematics, Delta State University, Abraka 

 

ABSTRACT 

The motivation behind this work is the recent advances in literature for seeking numerical 

techniques for fractional order boundary value integro-differential equations. The Power 

Series Approximation Method (PSAM) is a new approach for the numerical solution of 

generalized Nth-order boundary value problems. The proposed method is structurally simple 

with well-posed mathematical formulas. It involves transforming the given boundary value 

problems into a system of Ordinary Differential Equations together with the boundary 

conditions prescribed. Thereafter, the coefficients of the power series solution are uniquely 

obtained with a well-posed recurrence relation along the boundary, which leads to the 

solution. The unknown parameters in the solution are determined at the other boundary. This 

finally leads to a system of algebraic equations, which, upon solving, yields the required 

approximate series solution. We hence extend the Power Series Variational Iteration Method 

through systematic modification for the solution of fractional order boundary value integro-

differential equations with Mamadu-Njoseh polynomials as basis functions. Two examples 

of the Fredholm type with resulting numerical evidence show that the method is accurate 

and reliable with an excellent convergence rate for both illustrations considered, with results 

presented in graphs and tables.  
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INTRODUCTION 

A fractional Fredholm integro-differential equation has the form 

   𝐷𝛼𝑢(𝑥) = 𝑟(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,   𝑥 ≥ 𝑎, 𝑡 ≤ 𝑏,
𝑏

𝑎
                        (1.1) 

with conditions 

   𝑢𝑖(0) = 𝛽𝑖,    (𝑛 − 1, 𝑛] ∈ 𝛼, 𝑛 ∈ ℕ,                                       (1.2) 

where 𝐷𝛼𝑢(𝑥) denotes the 𝛼𝑡ℎ Caputo 

fractional derivative of 𝑢(𝑥), 𝑟(𝑥) is the 

source term, 𝑘(𝑥, 𝑡) is the kernel, 𝑥 and 𝑡 

are variables defined in [𝑎, 𝑏], and 𝑢(𝑥) is 

the required function to be estimated 

(Mohammed, 2014). 

Most real-life situations are modeled using 

the concept of fractional differentiation. 

For instance, the earthquake model, 

dynamic models for traffic flow, evaluation 

of viscoelastic material properties, etc, are 

all models of fractional derivatives 

(Oyedepo et al, 2016). Analytic methods 

for solving these problems exist, such as, 

the Laplace transform method. However, 

the process of execution seems complex 

and elaborate.  Furthermore, most 

fractional derivative models cannot be 

explicitly solved analytically due to the 

many weak assumptions and 

transformations. The need for numerical 

methods to solve fractional differential 

equations cannot be over-emphasized due 

to its great importance to engineers, 

mathematicians, and physicists. Over the 

years, researchers have developed and 

implemented various numerical schemes 

for solving fractional integro-differential 

equations of various types. These include 
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the variational iteration method (VIM), 

variational iteration decomposition method 

(VIDM), finite difference methods, etc.  

Integro-differential equations are usually 

difficult to solve analytically; it is, 

therefore, required to obtain an efficient 

approximate solution (Agarwal, 1983; 

Borzabadi et al., 2006; Babolian et al., 

2007). Recently, several numerical 

methods to solve IDEs have been proposed 

such as the Wavelet-Galerkin method 

(Avudainayagam and Vani, 2000), 

Lagrange interpolation method (Rashed, 

2004), Variational Iteration Method 

(Mamadu and Njoseh, 2016a), orthogonal 

collocation methods (Mamadu and Njoseh, 

2016b), Variation Iteration Decomposition 

Method (Njoseh and Mamadu, 2016a), 

Modified variational homotopy 

perturbation method (Njoseh and Mamadu, 

2016b), Homotopy Perturbation Method 

(Khader, 2012), Tau method (Hosseini and 

Shahmorad, 2003), Adomian’s 

decomposition method (Hashim, 2006), 

Taylor polynomials (Maleknejad and 

Mahmoudi, 2003), power series variation 

iteration method  (Njoseh and Mamadu, 

2017), etc. The optimal homotopy 

asymptotic method (OHAM), introduced 

by Marica and Herisanu (2008), has found 

application in obtaining approximate 

solutions for a broad range of integral, 

differential, and challenging Integro-

differential equations. The approach yields 

a solution in a series that converges rapidly, 

with each component elegantly computed. 

Its primary advantage lies in its direct 

applicability, as it does not require any 

assumptions or transformations to be 

employed. 

We this research, the Power Series 

Variational Iteration Method (PSVIM) is 

considered for the fractional order 

boundary value integro-differential 

equation of the form (Khalid et al., 2014):   

 𝐷𝑢𝛼(𝑡) = 𝑓(𝑡) + 𝛼𝑢(𝑡) + ∫ (𝑔(𝑡)𝑢(𝑡) + ℎ(𝑡)𝑓(𝑢(𝑡)))𝑑𝑡
𝑡

0
 (1.3) 

with the boundary conditions  

, , , ,   

 

where 𝛼 ∈ (0,1) is Caputo fractional order, 

𝑡 ∈ (𝑡0, 𝑡𝑓) and 𝑓 is a real non-linear 

continuous function and 𝛼, 𝛼0, 𝛼1, 𝛽0 and 

𝛽1 are given real constants that can be 

estimated. Power Series Approximation 

Method (PSAM) in 2016 was first 

developed and presented by Njoseh and 

Mamadu (2016) by merging and applying 

both the power series and approximation 

method for the numerical solution of 

generalized Nth order boundary value 

problems. This method is straightforward 

in structure, employing well-defined 

mathematical formulas. It involves 

transforming the given boundary value 

problems into a system of Ordinary 

Differential Equations (ODEs) along with 

the prescribed boundary conditions. The 

coefficients of the power series solution are 

then uniquely determined through a 

recurrence relation along one boundary 𝜏0, 

leading to the overall solution. The 

remaining unknown parameters in the 

solution are determined at the other 

boundary 𝜏1, resulting in a system of 

algebraic equations whose solution yields 

the required approximate series solution. 

Notably, this method is accurate and 

efficient for linear and non-linear boundary 

value problems, requiring no discretization, 

linearization, or perturbation while 

avoiding computational and rounding-off 

errors. 



Nigerian Journal of Science and Environment 2024 Volume 22 (3) 44 – 58  ISSN: 3043 – 4440  

https://doi.org/10.61448/njse223244 

 

46 

 

FRACTIONAL CALCULUS 

Here, we present some definitions and 

properties of the Liouville fractional 

integrals and Caputo fractional derivatives 

for functions defined on the real line ℝ = 

(−∞, ∞). 

 

Liouville Fractional Integrals 

  The left-sided and right-sided Liouville 

fractional integrals are defined as (Leibniz, 

1695; Mohammed, 2014) 

 

(𝐼+
𝛼𝑈)(x) =

1

Г(𝛼)
∫

𝑢(𝑡)𝑑𝑡

(𝑥−𝑡)1−𝛼

𝑥

−∞
 ,                                         (2.1)                                         

                      (𝐼−
𝛼𝑈)(x)=

1

Г(𝛼)
∫

𝑢(𝑡)𝑑𝑡

(𝑡−𝑥)1−𝛼

−∞

𝑥
        (2.2) 

When ℝ (x)> 0 and x∈ ℝ, The left-sided and right-sided fractional derivatives corresponding 

to (2.1) and (2.2) are given by 

(𝐷+
𝛼𝑈)(x) =

1

Г(𝑚−𝛼)
(

𝑑

𝑑𝑥
)

𝑚

∫
𝑈(𝑡)𝑑𝑡

(𝑥−𝑡)𝛼−𝑚+1  ;
𝑥

−𝛼
                            (2.3) 

(𝐷−
𝛼𝑈)(x)=

1

Г(𝑚−𝛼)
(−

𝑑

𝑑𝑥
)

𝑚

∫
𝑈(𝑡)𝑑𝑡

(𝑡−𝑥)𝛼−𝑚+1
 ,

𝛼

𝑥
                          (2.4) 

where 𝑚 =1+ ℝ(𝛼), ℝ(𝛼) ≥ 0,and x ∈ ℝ. 

When 𝛼 = 0, then, (Caputo and  Mainardi, 1971) 

(𝐷+
0𝑈)(𝑥) = (𝐷−

0𝑈) (𝑥) = 𝑈(𝑥). 

On the other hand, when 𝛼 is an integar, say, 𝛼 = 𝑛 ∈  ℕ, then 

(𝐷+
𝑛𝑈)(𝑥) = 𝑈(𝑛)(𝑥), (𝐷−

𝑛𝑈) (𝑥) = (−1)𝑛𝑈(𝑛)(𝑥), (𝑛 ∈  ℕ),             (2.5) 

where 𝑈(𝑛)(x) =
𝑑𝑛𝑢

𝑑𝑥𝑛. In particular, if 𝛼 ∈ (0,1), then  

 (𝐷+
𝛼𝑈)(x)=

1

Г(1−𝛼)

𝑑

𝑑𝑥
∫

𝑈(𝑡)𝑑𝑡

(𝑥−𝑡)𝛼−[𝑅(𝛼)] ; 
𝑥

−𝛼
                                (2.6) 

(𝐷−
𝛼𝑈)(x)=

1

Г(1−𝛼)

𝑑

𝑑𝑥
∫

𝑈(𝑡)𝑑𝑡

(𝑡−𝑥)𝛼−[𝑅(𝛼)]

𝛼

𝑥
                                    (2.7) 

Property 1 

Let ℝ (N) > 0. The following exist 

(a) If ℝ (𝛼) ≥ 0, then (𝐷−
𝛼𝑒𝜆𝑡)(x)=𝜆𝛼𝑒𝜆𝑥        (2.8) 

      (b) If ℝ(𝛼) ≥ 0, then (𝐼+
𝛼𝑒𝜆𝑡)(x)=𝜆−𝛼𝑒𝜆𝑥        (2.9) 

Caputo Fractional Derivatives 

Let [𝑎, 𝑏] ∈ ℝ, Da+
α [𝑈(𝑡)](𝑥) ≡  ( Da+

α U)(𝑥), and  Db−
α [𝑈(𝑡)](𝑥) ≡ ( D−b

α U)(𝑥) be the 

Reimann - Liouville (R−𝐿) fractional derivatives of order 𝛼. The fractional derivatives of order 

(cDa+
α U)(𝑥) and (cDb−

α U) (𝑥) of order 𝛼 on [𝑎, 𝑏] ∈ ℝ > 0, are as (Gao and Yang, 2016; 

Oldham and Spanier, 1974) 

    (cDa+
α 𝑈)(𝑥) = ( 𝐷𝑎+

𝛼 [𝑢(𝑡) − ∑
𝑢(𝑘)(𝑎)

𝑖!

𝑚−1
𝑖=0 (𝑡 − 𝑎)𝑖])(x);                              (2.10) 

    (cDb−
α 𝑈)(𝑥) =  ( 𝐷𝑏−

𝛼 [𝑢(𝑡) − ∑
𝑢(𝑘)(𝑏)

𝑖!

𝑚−1
𝑖=0 (𝑏 − 𝑎)𝑖])(x),                             (2.11) 

respectively, where 𝑚 = [ℝ(𝛼)] + 1 for 𝛼 ∉ ℕ0, 𝑚 = 𝛼 for 𝛼 ∈ ℕ0. 

The above equations (2.10) and (2.11) are called left - and right – sided Caputo fractional 

derivatives of order 𝛼. 

Property 2 

Let 𝑟(𝑥) ∈ 𝐶−1
𝑛 , n ∈ ℕ ∪{0}. Then the caputo fractional derivative of 𝑟(𝑥) is given as𝐷𝛼𝑈(𝑥) 

= 𝐼𝜆−𝛾𝐷𝑛𝑈(𝑥), 𝑠atisfying the following properties: 
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(a)  𝐷𝛼(𝐼𝛼𝑈(𝑥))  =  𝑈(𝑥) 

(b)   𝐼𝛼(𝐷𝛼U(x) = 𝛾(x)− ∑ 𝑈𝑘(0+) (
𝑥𝑖

𝑖!
)𝑚−1

𝑖=1  

(c)  𝐷𝛼𝑥𝛾={
0, 𝛾 ∈ ℕ𝑎, 𝛾 < 𝛼𝑎

Г(𝛾+1)

Г(𝛾−𝛼+1)
𝑥𝛾−𝑎, 𝛾 ∈ ℕ𝑎, 𝛾 ≥ 𝛼𝑎

                                                                       (2.12) 

(d) 𝐷𝛼(𝐴) = 0, A is a constant. 

where 𝛼𝑎 ≥ 𝑎 and ℕ𝑎={0,1,2,3, ...}. 

VARIATIONAL ITERATION 

METHOD 

The variational iteration method (VIM) 

established by He (2007) (Also see, 

Abbasbandy and Shivanian, 2009; Ali, 

2009; Mamadu and Njoseh, 2017) is now 

used to handle a wide variety of linear and 

nonlinear, homogeneous and 

inhomogeneous equations. The method 

provides rapidly convergent successive 

approximations of the exact solution if such 

a closed form solution exists, and not 

components as in Adomian decomposition 

method. The variational iteration method 

handles linear and nonlinear problems in 

the same manner without any need to 

specific restrictions such as the so called 

Adomian polynomials that we need for 

nonlinear problems. Moreover, the method 

gives the solution in a series form that 

converges to the closed form solution if an 

exact 

solution exists. The obtained series can be 

employed for numerical purposes if exact 

solution is not obtainable. In what follows, 

we present the main steps of the method. 

Let the generalized form of a differential 

equation be given as 

 𝐿[𝑢(𝑥)] = 𝑔(𝑥), 𝑢(𝑎1) = 𝑎,   𝑢(𝑎2) = 𝑏,    (3.1) 

where 𝐿 is considered as differential operator, 𝑢(𝑎1) = 𝑎, 𝑢(𝑎2) = 𝑏, are boundary or initial 

conditions. 

Now, a correction functional for Equation (3.34) is constructed as follow: 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜆(𝑠) (𝐿𝑢𝑛(𝑠) − 𝑔(𝑠))
𝑥

0
𝑑𝑠, 𝑛 ≥ 0,              (3.2) 

where λ is a general Lagrange’s multiplier, 

noting that in this method λ may be a 

constant or a function, and ˜unis a restricted 

value that means it behaves as a constant, 

hence δ˜𝑢𝑛 = 0, where δ is the variational 

derivative. Also, the Lagrange multiplier 

𝜆(𝑠) (Abbasbandy and Shivanian 2009) 

can be estimated using the formula 

      𝜆(𝑠) = (−1)𝑛 (𝑠−𝑥)(𝑛−1)

(𝑛−1)!
,              (3.3) 

where n is the order of the derivative. 

POWER SERIES VARIATIONAL ITERATION METHOD (PSVIM) 

Let consider the differential equation of the form 

   𝑦(5)(𝑥) = 𝑟(𝑥)𝑦(𝑥) + 𝑓(𝑥), 0 < 𝑥 < 1,              (4.1) 

subject to the boundary conditions          

  𝑦(0) = 𝐴0, 𝑦′(0) = 𝐴1, 𝑦"(0) = 𝐴2, 𝑦(1) = 𝐵0, 𝑦′(1) = 𝐵1 ,                               (4.2) 

where 𝑓(𝑥), 𝑦(𝑥), and 𝑟(𝑥)are assumed real and continuous on [0,1], 𝐴𝑖, 𝑖 = 0(1)2, and 

𝐵𝑖, 𝑖 = 0,1, are finite real constants in [0,1]. 
PSAM requires transforming the equation (3.47) into system of ordinary differential equations  

 𝑦 = 𝑦1,
𝑑𝑦1

𝑑𝑥
= 𝑦2 ,

𝑑𝑦2

𝑑𝑥
= 𝑦3 ,

𝑑𝑦3

𝑑𝑥
= 𝑦4 and

𝑑𝑦4

𝑑𝑥
= 𝑦5 = 𝑓(𝑥) + 𝛼(𝑥)𝑦(𝑥),  (4.3) 

subject to the conditions in (3.48). 

Theorem 1 (Njoseh and Mamadu, 2016) 

Using PSAM, the approximate solution to (4.1) is given as 
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𝑦(𝑥) = ∑ 𝑦(𝑖)(𝑥)𝑥𝑖
𝑛−1

2

𝑖=0
,  𝑦(𝑖)(𝑥) =

𝐴𝑖

𝑖!
            (4.4) 

subject to  

  𝑦(0) = 𝐴0, 𝑦(1)(0) = 𝐴1, 𝑦(2)(0) = 𝐴2, 𝑦(3)(0) = 𝐴3, 𝑦(4)(0) = 𝐴4       (4.5) 

Proof:  

Let the approximate solution be given as 

     𝑦(𝑥) = ∑ 𝑦(𝑖)(𝑥)𝑥𝑖𝑛−1
𝑖=0 ,               (4.6) 

Hence, substituting (3.52) into (3.49), and using the prescribed boundary at 𝑥 = 0, we have  

   𝑦(𝑥) = 𝑦(1)(𝑥) + 𝑖 ∑ 𝑦𝑖(𝑥)𝑥𝑖−1𝑛−1
𝑖=2 ,    (4.7) 

But, 𝑦(1)(0) = 𝐴1, which implies 

𝑦(𝑥) = 𝐴1 + 𝑖 ∑ 𝑦𝑖(𝑥)𝑥𝑖−1𝑛−1
𝑖=2 .              (4.8) 

Similarly, 

𝑦(𝑥) = 2𝑦(2)(𝑥) + 𝑖(𝑖 − 1) ∑ 𝑦(𝑖)(𝑥)𝑥𝑖−2

𝑛−1

𝑖=3

. 

⟹ 𝑦(𝑥) = 𝐴2 + 𝑖(𝑖 − 1) ∑ 𝑦𝑖(𝑥)𝑥𝑖−2

𝑛−1

𝑖=3

, 

where 𝑦(2)(𝑥) =
𝐴2

2!
. 

Continuing this process, we arrive at  

𝑦(𝑖)(𝑥) =
𝐴𝑖

𝑖!
,𝑖 ≥ 0.              (4.9) 

Thus,   

     𝑦(𝑥) = ∑
𝐴𝑖

𝑖!
𝑥𝑖𝑛−1

𝑖=0 .              (4.10) 

Now, for 𝑛 = 5 in (4.3), we have 

   𝑦(𝑥) = 𝑦(0) + 𝑦(1)(0)𝑥 +
𝑦(2)(0)

2
𝑥2 +

𝑦(3)(0)

6
𝑥3 +

𝑦(4)(0)

24
𝑥4.            

(4.11) 

subjecting (3.57) to (3.51), we have that 

   𝑦(𝑥) = 𝐴0 + 𝐴1𝑥 +
𝐴2

2
𝑥2 +

𝐴3

6
𝑥3 +

𝐴4

24
𝑥4,              

(4.12) 

which is equivalent to the initial 

approximation. 

Thus, the PSAM is employed here in 

estimating the initial approximation by 

subjecting the approximate solution (4.3) to 

the prescribed boundary conditions at 𝑥 =
0. 

Remark 1:  

Equation (4.4) is equivalent to the initial 

approximation as earlier said. This 

approximation is however obtained at the 

boundary 𝑥 = 0. From equation (4.2), we 

are given the following boundary 

conditions at 𝑥 = 0, 

𝑦(0) = 𝐴0, 𝑦(1)(0) = 𝐴1, 𝑦(2)(0) = 𝐴2, 

which are inadequate or insufficient in 

regard to the order of the boundary value 

problem. Thus, we define  

𝑦(3)(0) = 𝐴3, 𝑦(4)(0) = 𝐴4, 
so as to correspond to the order of the BVP.  

The 𝐴0, 𝐴1, 𝐴2 are given; while 𝐴3 and 𝐴4 

are unknowns which are computed at the 

boundary 𝑥 = 1 in equation (4.2). 

Having obtained the initial approximation, 

we next apply the variational iteration 

method.  

The variational iteration method requires 

the construction of a correction functional 

for equation (4.1) subject to the conditions 

in (4.2). 
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 𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ 𝜆(𝑠) (
𝑑5

𝑑𝑠5 𝑦𝑛(𝑠) − 𝑟(𝑠)𝑦𝑛(𝑠) − 𝑓(𝑠)) 𝑑𝑠,
𝑥

0
𝑛 ≥ 0,           (4.13) 

where 𝜆(𝑠)is the general Lagrange 

multiplier, which can be obtained optimally 

via variational theory and 𝑦̃𝑛(𝑠) = 0.The 

Lagrange multiplier, 𝜆(𝑠) can be obtained 

using the formula in  

 

   𝜆𝑛(𝑠) = (−1)𝑛 (𝑠−𝑥)(𝑛−1)

(𝑛−1)!
  ,                                           (4.14) 

Where 𝑛 is the order of the derivative.  

Hence, the PSVIM for (4.15) becomes 

    𝑦0(𝑥) = 𝐴0 + 𝐴1𝑥 +
𝐴2

2
𝑥2 +

𝐴3

6
𝑥3 +

𝐴4

24
𝑥4,             

(4.15) 

  𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ 𝜆(𝑠) (
𝑑5

𝑑𝑠5 𝑦𝑛(𝑠) − 𝑟(𝑠)𝑦𝑛(𝑠) − 𝑓(𝑠)) 𝑑𝑠,
𝑥

0
𝑛 ≥ 0,       (4.16) 

for the computation of  

𝑦𝑛(𝑥), 𝑛 ≥ 1. 

The unknowns in each iterate are computed at 𝑥 = 1. 

Theorem 2 (Error Analysis and Convergence Theorem) 

Let 

𝑒𝑛(𝑥) = 𝑦(𝑥) − 𝑦𝑛(𝑥),      (4.17) 

be an error function of the approximate solution  𝑦𝑛(𝑥) to the exact solution 𝑦(𝑥). 
This implies that 𝑦𝑛(𝑥)  satisfies  

𝑦𝑛
(5)(𝑥) = 𝑟(𝑥)𝑦(𝑥) + 𝑓(𝑥) + 𝐻𝑛(𝑥), 0 < 𝑥 < 1,   (4.18) 

subject to the boundary conditions  

𝑦(𝑚)(0) = 𝐴𝑚, 𝑚 = 0,1,2.                                              (4.19) 

𝑦(𝑚)(1) = 𝐵𝑚, 𝑚 = 0,1.                   (4.20) 

𝐻𝑛(𝑥)  in equation (4.18) is called the perturbation term, and is given as 

 𝐻𝑛(𝑥) = 𝑦𝑛
(5)(𝑥) − 𝑟(𝑥)𝑦(𝑥) − 𝑓(𝑥) .                                          (4.21) 

Transforming the set of equations (4.18) - (4.20) and finding an approximant 𝑒𝑛
(5)(𝑥) to the 

error function 𝑒𝑛(𝑥),  

 the error function therefore satisfies 

𝐻𝑛(𝑥) = 𝑟(𝑥)𝑦(𝑥) + 𝑓(𝑥)−𝑦𝑛
(5)(𝑥), 0 < 𝑥 < 1, 

with conditions  

𝑦(𝑚)(0) = 0, 𝑚 = 0,1,2.    

𝑦(𝑚)(1) = 0,   𝑚 = 0,1.  
Lemma 1  

Suppose that the boundary value problem (4.1) satisfy the condition in Lemma (3.2), and 

𝑦(𝑥), 𝑦𝑛(𝑥)  ∈ 𝐶5[0,1], 𝑛 = 1,2, ⋯.  then the sequence {𝑦𝑛(𝑥)}𝑛=1
∞  defined by (4.16) 

converges to the solution of (3.47). 

Theorem 3 (Njoseh and Mamadu, 2016) 

Given  

𝑦(𝑥) = ∑
𝐴𝑖

𝑖!
𝑥𝑖

𝑛−1

2

𝑖=0
, 

where 𝑦(𝑚)(0) = 𝐴𝑚, 𝑚 = 0, 1, 2, 3, 4. The PSVIM for the considered boundary value 

problem (4.1) and (4.2) converges as 𝑛 → ∞. 

Proof:  

Let the approximate solution be given as 



Nigerian Journal of Science and Environment 2024 Volume 22 (3) 44 – 58  ISSN: 3043 – 4440  

https://doi.org/10.61448/njse223244 

 

50 

 

𝑦(𝑥) = ∑ 𝑦(𝑖)(0)𝑥𝑖𝑛−1
𝑖=0 , 

then for 𝑖 ≥ 0, we have that 

𝑦(𝑥) = ∑
𝐴𝑖

𝑖!
𝑥𝑖

𝑛−1

𝑖=0

, 

which evidently is the initial approximation as shown in section 2 of this work. 

Since, the considered boundary value problem is of order 5, then 

𝑦0(𝑥) = ∑
𝐴𝑖

𝑖!
𝑥𝑖4

𝑖=0 . 

By the theorem of VIM,  

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫
(𝑠 − 𝑥)4

24
(

𝑑5

𝑑𝑠5
𝑦𝑛(𝑠) − 𝑟(𝑠)𝑦𝑛(𝑠) − 𝑓(𝑠)) 𝑑𝑠,

𝑥

0

𝑛 ≥ 0. 

When  𝑛 = 0: 

𝑦1(𝑥) = 𝑦0(𝑥) + ∫
(𝑠 − 𝑥)4

24
(

𝑑5

𝑑𝑠5
𝑦0(𝑠) − 𝑟(𝑠)𝑦0(𝑠) − 𝑓(𝑠)) 𝑑𝑠.

𝑥

0

 

When  𝑛 = 1: 

𝑦2(𝑥) = 𝑦1(𝑥) + ∫
(𝑠 − 𝑥)4

24
(

𝑑5

𝑑𝑠5
𝑦1(𝑠) − 𝑟(𝑠)𝑦1(𝑠) − 𝑓(𝑠)) 𝑑𝑠.

𝑥

0

 

⋮ 

𝑦𝑛(𝑥) = 𝑦𝑛−1(𝑥) + ∫
(𝑠 − 𝑥)4

24
(

𝑑5

𝑑𝑠5
𝑦𝑛−1(𝑠) − 𝑟(𝑠)𝑦𝑛−1(𝑠) − 𝑓(𝑠)) 𝑑𝑠,

𝑥

0

𝑛 ≥ 1. 

Thus, by Lemma (4.1), the approximate solution 𝑦𝑛(𝑥) converges to the exact solution 𝑦(𝑥) as 

𝑛 → ∞. 

Proof:  

Let the approximate solution be given as 

𝑦(𝑥) = ∑ 𝑦(𝑖)(0)𝑥𝑖𝑛−1
𝑖=0 , 

then for 𝑖 ≥ 0, we have that 

𝑦(𝑥) = ∑
𝐴𝑖

𝑖!
𝑥𝑖

𝑛−1

𝑖=0

, 

which evidently is the initial approximation as shown in section 2 of this work. 

Since, the considered boundary value problem is of order 5, then 

𝑦0(𝑥) = ∑
𝐴𝑖

𝑖!
𝑥𝑖4

𝑖=0 . 

By the theorem of VIM,  

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫
(𝑠 − 𝑥)4

24
(

𝑑5

𝑑𝑠5
𝑦𝑛(𝑠) − 𝑟(𝑠)𝑦𝑛(𝑠) − 𝑓(𝑠)) 𝑑𝑠,

𝑥

0

𝑛 ≥ 0. 

When  𝑛 = 0: 

𝑦1(𝑥) = 𝑦0(𝑥) + ∫
(𝑠 − 𝑥)4

24
(

𝑑5

𝑑𝑠5
𝑦0(𝑠) − 𝑟(𝑠)𝑦0(𝑠) − 𝑓(𝑠)) 𝑑𝑠.

𝑥

0

 

When  𝑛 = 1: 
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𝑦2(𝑥) = 𝑦1(𝑥) + ∫
(𝑠 − 𝑥)4

24
(

𝑑5

𝑑𝑠5
𝑦1(𝑠) − 𝑟(𝑠)𝑦1(𝑠) − 𝑓(𝑠)) 𝑑𝑠.

𝑥

0

 

⋮ 

𝑦𝑛(𝑥) = 𝑦𝑛−1(𝑥) + ∫
(𝑠 − 𝑥)4

24
(

𝑑5

𝑑𝑠5
𝑦𝑛−1(𝑠) − 𝑟(𝑠)𝑦𝑛−1(𝑠) − 𝑓(𝑠)) 𝑑𝑠,

𝑥

0

𝑛 ≥ 1. 

Thus, by Lemma (3.7), the approximate solution 𝑦𝑛(𝑥) converges to the exact solution 𝑦(𝑥) as 

𝑛 → ∞. 

METHOD OF SOLUTION 

Let us consider the fractional order boundary value integro-differential equation of the form  

𝐷𝛼𝜑(𝑥) = 𝑓(𝑥) + ∫ 𝜑(𝑥, 𝑡)𝑑𝑡
𝑏′

𝑎′ ,     (5.1) 

with boundary conditions  

𝑢(𝑎1) = 𝑎, 𝑢′(𝑎2) = 𝑏, 𝑢′′(𝑎3) = 𝑐, … , 𝑢(𝑛−1)(𝑎𝑛) = 𝑑, 𝑛 > 1 (5.2) 

Let an approximate solution of (4.1) be given as  

𝑢(𝑥) = ∑
𝐴1

𝑖!

𝑛
𝑖=0 𝐷𝛼𝜑𝑖(𝑥)     (5.3) 

Determination of initial approximation  

Let 𝑛 = 2 in (5.3), then  

 𝑢(𝑥) = ∑
𝐴1

𝑖!

2
𝑖=0 𝐷𝛼𝜑𝑖(𝑥)  ≅ 𝑢(𝑥)              (5.4) 

𝑢0(𝑥) =
𝐴0

0!
𝐷𝛼𝜑0(𝑥) +

𝐴1

1!
𝐷𝛼𝜑1(𝑥) +

𝐴2

2!
𝐷𝛼𝜑2(𝑥) 

            =
𝐴0

1
𝐷𝛼1 + 𝐴1𝐷𝛼𝑥 +

𝐴2

6
𝐷𝛼(5𝑥2 − 2) 

            = 𝐴1

Г(2)

Г(2 − 𝛼)
𝑥1−𝛼 +

5𝐴2Г(3)

6Г(3 − 𝛼)
𝑥2−𝛼 

Using conditions (5.2) on (5.4), we have  

𝐴1
Г(2)

Г(2−𝛼)
𝑎1

1−𝛼 +
5

6
𝐴2

Г(3)

Г(3−𝛼)
𝑎1

2−𝛼 = 𝑎   (5.5) 

𝜑0
′(𝑥) = 𝐴1(1 − 𝛼)

Г(2)

Г(2 − 𝛼)
𝑥−𝛼 +

5

6
𝐴2(2 − 𝛼)

Г(3)

Г(3 − 𝛼)
𝑥1−𝛼 

Now, 𝑢0
′(𝑎2) = 𝑏  implies  

𝐴1(1 − 𝛼)
Г(2)

Г(2−𝛼)
𝑎2

−𝛼 +
5

6
𝐴2(2−∝)

Г(3)

Г(3−𝛼)
𝑎2

1−𝛼 = 𝑏   (5.6) 

Solving (5.5) and (5.6) for 𝐴1and 𝐴2:  

𝐴1 = −
Г(2−𝛼)(𝑎2𝑎1

(𝛼−1)
𝑎𝛼+𝑎2

𝛼−1𝑎1𝑏−2𝑎2𝑎1
(𝛼−1)

𝑎)

𝛼𝑎1−𝛼𝑎2−𝑎1+2𝑎2
, 

𝐴2 =
3

5

Г(3 − 𝛼)(𝑎1
(𝛼−1)

𝑎𝛼 − 𝑎1
(𝛼−1)

𝑎 + 𝑎2
(𝛼−1)

𝑏)

𝛼𝑎1 − 𝛼𝑎2 − 𝑎1 + 2𝑎2
 

Substituting 𝐴1 and 𝐴2 into (4.4) to yield the initial approximation at 𝑛 = 2 as:  

𝑢0(𝑥) =
𝑁

𝐷
 ,      (5.7) 

where 

𝑁 = −𝑥1−𝛼𝑎2𝑎1
(𝛼−1)

𝑎𝛼 + 2𝑥1−𝛼𝑎2𝑎1
(𝛼−1)

𝑎 − 𝑥(𝛼−1)𝑎2
(𝛼−1)

𝑎1𝑏 + 𝑥2−𝛼𝑎1
(𝛼−1)

𝑎𝛼 − 𝑥2−𝛼𝑎1
(𝛼−1)

𝑎 +

𝑥2−𝛼𝑎2
(𝛼−1)

𝑏, 
  𝐷 = 𝛼𝑎1 − 𝛼𝑎2 − 𝑎1 + 2𝑎2 
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By the theorem of VIM, we have the correction functional as  

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) +
1

Г(1+𝛼)
∫ 𝜆(𝑡, 𝑥)

𝑥

0
[𝐷𝛼𝑢𝑛(𝑡) − 𝑓(𝑡) − ∫ 𝑢𝑛

𝑏1

𝑎1 (𝑥, 𝑡)] (𝑑𝑡)𝛼, 𝑛 ≥ 0,

 (5.8) 

with initial approximation given by (5.7)  

However, we need to estimate the value of 

the Lagrange multiplier 𝜆(𝑡, 𝑥). To do this, 

we apply the fractional Leibniz product law 

as follows:  

If f and g are functions that are 𝛼-order 

differentiable, then applying the 

generalized Leibniz product rule on 

𝐷𝑥
𝛼𝑢(𝑥) = lim

𝑦⟶𝑥

Г(1+𝛼)(𝑢(𝑦)−𝑢(𝑥))

(𝑦−𝑢)𝛼
, 0 < 𝛼 ≤ 1,    (5.9) 

yields  

𝑑𝑥
(𝛼)

(𝑓𝑔) = 𝑓(𝛼)𝑔 + 𝑔𝛼𝑓    (5.10) 

Also,  

𝐼𝑥
𝛼

0 𝐷𝑢
𝛼𝑢(𝑥) = 𝑢(𝑥) − 𝑢(0), 0 < 𝛼 ≤ 1 (𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝑒𝑖𝑏𝑛𝑖𝑡𝑧 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

 (5.11) 

Therefore, by integration by parts,  

𝐼𝑏
𝛼

𝑎 𝑓(𝛼)𝑔 = (𝑓𝑔)|𝑎
𝑏 − 𝐼𝑏

𝛼
𝑎  𝑓𝑔(𝛼)    (5.12) 

with the properties, from (5.9) – (5.12), 𝜆(𝑡, 𝑥) must satisfy 

 
𝜕𝛼𝜆(𝑡,𝑥)

𝜕𝑥𝛼 = 0, and1 + 𝜆(𝑡, 𝑥)|𝑥=𝑡 = 0 

Therefore, 𝜆(𝑥, 𝑡) = −1 

Thus, (5.8) can be rewritten as:  

𝑢𝑛+1(𝑥) = 𝜑𝑛(𝑥) −
1

Г(1+𝛼)
∫ [𝐷𝛼𝜑𝑛(𝑡) − 𝑓(𝑡) − ∫ 𝑢𝑛

𝑏′

𝑎′ (𝑥, 𝑡)] (𝑑𝑡)𝛼, 𝑛 ≥ 0
𝑥

0
 

 (5.13) 

subject to the initial approximation (5.7). 

Equation (5.13) is the derived Power Series 

Variational Iteration Method (PSVIM) with 

Mamadu-Njoseh basis functions for 𝑛 = 2.  

Similarly for 𝑛 = 4, we have, 

𝑢(𝑥) = ∑
𝐴𝑖

𝑖!

4
𝑖=0 𝐷𝛼𝜑𝑖(𝑥)                (5.14) 

 𝑢(𝑥) = 𝐴0𝐷𝛼𝜑0(𝑥) + 𝐴1𝐷𝛼𝜑1(𝑥) +
𝐴2

2
𝐷𝛼𝜑2(𝑥) +

𝐴3

6
𝐷∝𝜑3(𝑥) +

𝐴4

24
𝐷𝛼𝜑4(𝑥) 

           = 𝐴0𝐷𝛼 . 1 + 𝐴1. 𝐷𝛼𝑥 +
𝐴2

6
𝐷𝛼(5𝑥2 − 2) +

𝐴3

30
𝐷𝛼(14𝑥3 − 9𝑥) +

𝐴4

15552
𝐷𝛼(333 − 2898𝑥2 +

3213𝑥4)(5.15) 

Applying the properties of the Caputo property on (4.15), we have 

𝑢(𝑥) = 𝐴1
Г(2)

Г(2−𝛼)

𝑥1−𝛼

+
5𝐴2

6

Г(3)

Г(3−𝛼)

𝑥2−𝛼

+
14𝐴3

30

Г(4)

Г(4−𝛼)

𝑥3−𝛼

−
9𝐴3

30

Г(2)

Г(2−𝛼)

𝑥1−𝛼

−
2898

1552
𝐴4

Г(3)

Г(3−𝛼)

𝑥2−𝛼

+
3213

15552
𝐴4

Г(5)

Г(5−𝛼)

𝑥4−𝛼

 (5.16) 

Applying conditions in (5.2) on (5.16), we obtain the following algebraic systems of equation: 

𝐴1

Г(2−𝛼)

𝑎1
(1−𝛼)

+
5𝐴2

3Г(3−∝)

𝑎1
(2−𝛼)

+
14𝐴3

5Г(4−𝛼)

𝑎1
(3−𝛼)

−
3𝐴3

10Г(2−𝛼)

𝑎1
(1−𝛼)

−
161 𝐴4

432Г(3−𝛼)

𝑎1
(2−𝛼)

+
119𝐴4

24Г(5−𝛼)

𝑎1
(4−𝛼)

= 𝑎

 (5.17) 

𝐴1(1−𝛼)𝑎2
(1−𝛼)

Г(2−𝛼)𝑎2
+

5

3

𝐴2𝑎2
(2−𝛼)

(2−𝛼)

Г(3−𝛼)𝑎2
+

14

5

𝐴3𝑎2
(3−𝛼)

(3−𝛼)

Г(4−𝛼)𝑎2
−

3

10

𝐴3𝑎2
(1−𝛼)

(1−𝛼)

𝑎2Г(2−𝛼)
− 

161

432

𝐴4𝑎2
(2−𝛼)

(2−𝛼)

𝑎2Г(3−𝛼)
+

119

24

𝐴4𝑎2
(4−𝛼)

(4−𝛼)

𝑎2Г(5−𝛼)
= 𝑏 

(5.18) 
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𝐴1(1−𝛼)𝑎−𝛼

Г(2−𝛼)
+

5

3

𝐴2𝑎2
(1−𝛼)

(2−𝛼)

Г(3−𝛼)
+

14

5

𝐴3𝑎2
(2−𝛼)

(3−𝛼)

Г(4−𝛼)
−  

3

10

𝐴3𝑎2
−𝛼(1−𝛼)

Г(2−𝛼)
− 

161

432

𝐴4𝑎2
(1−𝛼)

(2−𝛼)

Г(3−𝛼)
+

119

24

𝐴4𝑎2
(3−𝛼)

(4−𝛼)

Г(5−𝛼)
= 𝑏  

(5.19) 
1

2160

1

Г(3−𝛼)
((648𝑥3𝐴3 − 2160𝛼3𝐴1 + 3600𝛼2𝐴2𝑎3 − 805𝛼2𝐴4𝑎3 − 6048𝛼𝐴3𝑎3

2 + 10710𝐴4𝑎3
3 −

1944𝛼2𝐴3 + 6480𝛼2𝐴1 − 10800𝛼𝐴2𝑎3 + 2415𝛼𝐴4𝑎3 + 12096𝐴3𝑎3
2 + 1296𝛼𝐴3 − 4320𝛼𝐴1 +

7200𝐴2𝑎3 − 1610𝐴4𝑎3)𝑎3
(−𝛼−1)

) = 𝑐                   (5.20) 

1

2160Г(2−𝛼)
((648𝛼3𝐴3 − 2160𝛼3𝐴1 + 360𝛼2𝐴2𝑎4 − 805𝛼2𝐴4𝑎4 − 6048𝛼𝐴3𝑎4

2 + 10710𝐴4𝑎4
3 −

3600𝛼𝐴2𝑎4 + 805 ∝ 𝐴4𝑎4 + 6048𝐴3𝑎4
2 − 648𝛼𝐴3 + 2160𝛼𝐴1)𝑎4

(−𝛼−2)
) = 𝑑               (5.21) 

Solving (5.17) – (5.21) for 𝐴1, 𝐴2, 𝐴3 and 𝐴4 we obtain the estimates 𝐴1, 𝑖 = 1(2)4, with the 

help of MAPLE 18. Consequently, substituting the estimated values of 𝐴1, 𝑖 = 1(2)4, into 

(5.14), we obtained the required initial approximation for the iterative schema (5.13) when 𝑛 =
4. 

NUMERICAL EXAMPLES 

In this section we consider some numerical 

example to illustrate the accuracy and 

convergence of the method. 

Example 1  

Consider the following linear fractional 

integro-differential equation:  

𝐷
5

6⁄  𝑢(𝑥) = −
3

91

𝑥
1

6⁄
Г(5

6⁄ )(−91+216𝑥2)

𝜋
+ (5 − 2𝑒)𝑥 + ∫ 𝑥𝑒𝑡𝑢(𝑡)𝑑𝑡,   𝑥 ≥ 0,   𝑡 ≤ 1,

1

0

 (6.1) 

subject to  

𝑢(0) = 0,    𝑢′(1) = 0,   𝑢′′(1) = −6,   𝑢′′′(1) = −6, 
The exact solution is given as:  

𝑢(𝑥) = 𝑥(1 − 𝑥2). 
See computational results in the Table of Results. 

 

Example 2 Consider the following linear fractional integro-differential equation 

𝐷
1

2⁄ 𝑢(𝑥) =
(3 8⁄ )𝑥

3
2⁄ −2𝑥

1
2⁄

√𝜋
+

𝑥

12
+ ∫ 𝑥𝑡𝑢(𝑡)𝑑𝑡

1

0
, 𝑥 ≥ 0, 𝑡 ≤ 1,          (6.2)  

with boundary conditions 

𝑢(0) = 0,    𝑢′(1) = −1,   𝑢′′(1) = 2,   𝑢′′′(1) = 0. 
The analytic solution is given as 𝑢(𝑥) = 𝑥2 − 𝑥. 
See computational results in the Table of Results. 
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Tables and Graphical Representation of Results 

Table 1:  Comparison of Results between the Exact solution and Approximate 

solution for Example 1 

 

 

𝒙 
 

Exact      

 

Error, 𝒖𝟓 

Mamadu & 

Njoseh (2023) 

Error  

Mamadu et 

al., (2021) 

Error 

0.00 0.0000000 0.0000000 3.8159e-09 0.0000000 

0.10 -0.0900000 0.0000000 3.8200e-09 0.0000000 

0.20 -0.1600000 0.0000000 3.8000e-09 0.0000000 

0.30 -0.2100000 0.0000000 4.0000e-09 0.0000000 

0.40 -0.2400000 0.0000000 4.2000e-09 0.0000000 

0.50 -0.2500000 0.0000000 4.4000e-09 0.0000000 

0.60 -0.2400000 0.0000000 4.6000e-09 0.0000000 

0.70 -0.2100000 0.0000000 5.0000e-09 0.0000000 

0.80 -0.1600000 0.0000000 5.2000e-09 0.0000000 

0.90 -0.0900000 0.0000000 5.4200e-09 0.0000000 

1.00 0.0000000 0.0000000 5.8159e-09 0.0000000 

 

 

 

Figure 1.  Approximate solution of Example 1 as compared with Exact solution. 
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Table 2:  Comparison of Results between the Exact solution and Approximate 

solution for Example 2 

 

𝒙 Exact 

Approximate 

Solution 𝒖𝟒 

Present  

Error 

Odih & 

Ojaikre 

(2024) Error  

0.00 0.0000000 3.8159e-09 0.0000000 0.0000000 

0.10 -0.0900000 3.8200e-09 0.0000000 0.0000000 

0.20 -0.1600000 3.8000e-09 0.0000000 0.0000000 

0.30 -0.2100000 4.0000e-09 0.0000000 0.0000000 

0.40 -0.2400000 4.2000e-09 0.0000000 0.0000000 

0.50 -0.2500000 4.4000e-09 0.0000000 0.0000000 

0.60 -0.2400000 4.6000e-09 0.0000000 0.0000000 

0.70 -0.2100000 5.0000e-09 0.0000000 0.0000000 

0.80 -0.1600000 5.2000e-09 0.0000000 0.0000000 

0.90 -0.0900000 5.4200e-09 0.0000000 0.0000000 

1.00 0.0000000 5.8159e-09     0.0000000 0.0000000 

 

 

 

Figure 2.  Approximate solution of Example 2 as compared with Exact solution. 

 

 



Nigerian Journal of Science and Environment 2024 Volume 22 (3) 44 – 58  ISSN: 3043 – 4440  

https://doi.org/10.61448/njse223244 

 

56 

 

DISCUSSION OF RESULTS 

The use of orthogonal polynomials as basis 

functions via a suitable approximation 

scheme for the solution of many problems 

in science and technology has been on the 

increase and quite fascinating. In many 

numerical schemes, the convergence 

depends solely on the nature of the basis 

function adopted. As shown in table 6.1, 

when 𝑥 = 0.10 the exact solution gave us -

0.0900000, same as the approximate 

solution at 𝑢5 and for 𝑥 = 0.80 the exact 

solution gave us -01600000, same as the 

approximate solution at 𝑢5 with 0.0000000 

error, this goes to show that the scheme 

attained absolute convergence at iterate 𝑢5. 

Moving to table 6.2 when 𝑥 = 0.10 the 

exact solution gave us -0.0900000 with an 

error of 3.8200e-09 at 𝑢4 and 

0.0000000 error at 𝑢7, for 𝑥 = 0.80 the 

exact solution gave us -01600000 with an 

error of 5.2000e-09 at 𝑢4 and 

0.0000000 error at 𝑢7, here, a maximum 

error of order 10−9 was obtained at the 

iterate 𝑢4, and absolute convergence at the 

iterate 𝑢7. 

The resulting numerical evidences show 

that the method is accurate and reliable with 

excellent convergence rate for both 

illustrations considered with results 

presented in graphs and Tables and is also 

compared with those available in literature. 

Specifically, for Example 6.1, the scheme 

attained absolute convergence at the iterate 

𝑢5. Also the present method performs better 

than that of Mamadu & Njoseh (2023), and 

possesses same rate of convergence as that 

of Mamadu et, al (2021). However a 

maximum error of order 10−9 was obtained 

at the iterate 𝑢4, and absolute convergence 

at the iterate 𝑢7 for Example 6.2, 

respectively. 

We have successfully implemented the 

PSVIM for the solution of Fredholm 

fractional order boundary value integro-

differential equation using Mamadu-

Njoseh polynomials as basis functions. 
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