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  Abstract 

Various techniques have been adopted in the past, in translating nested and 

multiple stochastic integrals to the Wiener functional space. However, this 

paper considers a new method of moving nested and multiple stochastic 

integrals into the Wiener functional space. Based on the existence of nested 

integrals and multiple stochastic integrals in moment inequalities, we derived a 

means of representing and expressing them in the Wiener functional space 

which is referred to as the moment inequalities formula. Hence, this paper 

established that the multiple stochastic nested integrals in Moment inequalities 

are one translating formula onto the Wiener functional space. This result was 

achieved by showing that the log-Sobolev inequality implies the exponential 

integrability of the square of the Wiener functional whose derivatives are 

essentially bounded. 

 

Keywords: Nested integrals, multiple stochastic integrals, moment 

inequalities, log-Sobolev inequality, exponential integrability and essentially 

bounded. 

 

Introduction 

The Wiener process plays a vital role in both 

pure and applied mathematics. In pure 

mathematics, Wiener process engenders the 

study of continuous time martingales. It is a 

key process whereby most complicated 

stochastic processes can be described and as 

such, it is very essential in the study of 

stochastic calculus, diffusion processes and 

even potential theory. It is in fact the driving 

process of Schramm-Loewner evolution. In 

applied mathematics, it is used to represent 

the integral of white noise, Gaussian 

process, and also very useful as a model in 

electronics engineering (Kloeden and Platen, 

1991). 

 

The Wiener process is applicable in all areas 

of Mathematical sciences. In physics, it is 

used to study Brownian motion, the 

diffusion of minute particles suspended in 

fluids and other types of                            

diffusion via the Fokker-Planck and 

Langevin equations. It also forms the basis 

for the rigorous path integral formulation of 

quantum mechanics by the Feynman-Kac 

formula, a solution to the Schrodinger 

equation can be represented in terms of the 

Wiener process. It is also important in the 

mathematical theory of finance, in particular 

the Black-Scholes option pricing model, 

according to Badri and Omar (2018). The 

Wiener process is used to denote the integral 

of a white noise Gaussian process and so it 

is useful as a model of noise in electronics 

engineering. The Wiener process denoted by 

𝑊𝑡 is the so called Levy characterization 

which says that the Wiener process is an 

almost surely continuous martingale with 

𝑊0 = 0 and quadratic variation (𝑊𝑡, 𝑊𝑡) =
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𝑡  (which means that 𝑊𝑡
2 − 𝑡 is also 

martingale) (Kloeden and Platen, 1991) and 

Ojo-Orobosa, 2018). Also, the Wiener 

process has a spectral representation as a 

sine series whose coefficients are 

independent 𝒩(0, 1) random variables 

which can be obtained by using the 

Karhunen-Loeve theorem. Furthermore, the 

Wiener process could be described from the 

perspective of the definite integral (from 

time zero 𝑡o time) of a zero mean, unit 

variance, delta correlated (“white”) 

Gaussian process according to Badri and 

Omar (2018). 

 

In mathematics, classical Wiener space is 

the collection of all continuous functions on 

a given domain (usually a subinterval of the 

real line), taking values in a metric space 

(usually 𝑛 -dimensional Euclidean space). 

This is very important in the study of 

stochastic processes with continuous 

functions sample paths (Revuz and Yor, 

1999).  

 

The concept of an abstract Wiener space is a 

mathematical construction developed by 

Leonard Gross to enhance the understanding 

of the structure of Gaussian measures 

especially on infinite-dimensional spaces. 

This projection emphasizes the fundamental 

role played by the Cameron-Martin space. 

The Wiener space is described with the 

following associated properties:  

 

i.   It has uniform topology where the 

vector space S is closely related to a uniform 

norm,‖𝑓‖: = sup
𝑡𝜖[0,𝑇]

|𝑓(𝑡)| transforming it 

into a normed vector space otherwise known 

as the Banach space and induces a metric on 

S taking the form 𝑑(𝑓, 𝑔): = ‖𝑓 − 𝑔‖. The 

topology established by the open set in this 

metric is that of a uniform convergence on 

[0, 𝑇], or uniform topology.  

 

ii.  The classical Wiener space has a 

separability and completeness property. It is 

stated here that S is both a separable and 

complete space; separability is a 

consequence of the Stone-Weiestrass 

theorem while completeness is a 

consequence of the fact that the uniform 

limit of a sequence of continuous functions 

is itself continuous.  

 

iii.  The Wiener space is also known with 

the property of tightness; this is evident on 

the application of the Arzel𝑎̂-Ascoli 

theorem, it was shown that a sequence 

(𝜇𝑛)𝑛=1
∞  of probability measures on classical 

Wiener S is tight if and only if the following 

conditions are met: 

 

 

lim
𝑎→∞

lim
𝑛→∞

𝑠𝑢𝑝𝜇𝑛{𝑓𝜖𝐶|𝑓(0)| ≥ 𝑎} = 0, and lim
𝛿→0

lim
𝑛→∞

𝑠𝑢𝑝𝜇𝑛{𝑓𝜖𝐶|𝜔𝑓(𝛿) ≥ 𝜀} = 0 for all 𝜀 > 0 

(Revuz and Yor, 1999). 

 

There is a standard measure on 𝐶0 which is 

the Wiener measure. It is also known as a 

Gaussian measure which is strictly a positive 

probability space. However, Madras and  

 

Sezer (2011) has it that all Gaussian  

measures can be represented by the abstract 

Wiener space transformation as stated by the 

structure theorem for Gaussian measures.  
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The theory of nested integrals was first 

introduced by Chen in the research work by 

Frederick et al (2015) in order to construct 

functions on the (infinite-dimension) space 

of paths on a manifold and has since become 

a prominent tool in various branches of 

algebraic geometry, topology and number 

theory. The idea behind a nested integral is 

closely connected to the concept of single-

variable calculus. Fubini’s theorem helps us 

to determine nested integrals without the use 

of limit definition, but by taking the integral 

one at a time. This is prominent in the 

application of fundamental theorem of 

calculus from single–variable calculus to 

finding the exact value of each integral, 

beginning with inner integral. The theorem 

affirms the uniqueness and consistency of 

results regardless the order of integration. 

According to Mathew et al (2022), in 

multivariable calculus, a nested integral is 

the outcome of applying integrals to a 

function of more than one variable by 

considering some of the variables as given 

constants. Also, we discussed a multiple 

integral as a function of several real 

variables; for example, 𝑓(𝑝, 𝑞) or 𝑓(𝑝, 𝑞, 𝑟). 

Integrals of a function of two variables over 

a region in 𝘙2 (real-number plane) are called 

double integrals and integrals of a function 

of three variables over a region in 𝘙3 (real-

number 3 dimensional spaces) are called 

triple integrals according to Stewart (2008) 

for multiple integrals of a single-variable 

function, thus we consider Cauchy formula 

for repeated integration.  

Operational Definition 

In this section, we shall define some 

concepts and also give a clear meaning of 

variables and notations according to their 

usage in this paper. 

Wiener Process:  The Wiener process is 

defined as 𝐸 ⊆ ℜ𝑛 and a metric space (M, 

d). The classical Wiener Space 𝐶0(𝐸; 𝑀) is 

the space of all continuous function 𝑓: 𝐸 →

𝑀 ie for every fixed 𝑡 in 𝐸, 𝑑(𝑓(𝑠), 𝑓(𝑡)) →

0 𝑎𝑠| 𝑠 − 𝑡| → 0. In almost all applications, 

one takes  

𝐸 = [0 , 𝑇] or [0,∞) and 𝑀 = ℜ𝑛 for some 

𝑛 in 𝑁.  

 

The Wiener Process, denoted by 𝑊𝑡, is 

characterized by the following properties 

(Kloeden and Platen, 1991; Ojo-Orobosa 

2018):  

i. 𝑊0 = 0 almost surely 

ii. 𝑊 has independent increment; for 

every 𝑡 > 0 the future 

increment   𝑊𝑡+𝜇 − 𝑊𝑡, 𝜇 ≥ 0 are 

independent of the past values, 

𝑊𝑠,    𝑠 < 𝑡.  

iii. 𝑊 has Gaussian increment: 

   𝑊𝑡+𝜇 − 𝑊𝑡 is normally distributed 

with mean and variance  𝜇, 𝑊𝑡+𝜇 −

𝑊𝑡~𝒩(0, 𝜇)  

iv. 𝑊 has continuous path with 

probability 1, 𝑊𝑡 is continuous in 𝑡.  

v. The independent increment means 

that if 0 ≤ 𝑠1 < 𝑡1 ≤ 𝑠2 < 𝑡2 then 

𝑊𝑡1
− 𝑊𝑠1

 𝑎𝑛𝑑 𝑊𝑠1
− 𝑊𝑠2

 are 

independent random variables, and 

the similar condition holds for 𝑛 

increments.  

 

Also, for a Wiener functional 𝐹 ∈ 𝐷𝑟,1, we 

have  
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𝑃𝑤 × 𝑃𝑧[₺(𝐹(𝑤) − 𝐹(𝑧))] ≤ 𝑃𝑤 × 𝑃𝑧 [₺ (
⩘

2
𝑙1(⍙𝐹(𝑤)(𝑧)))]                                      (1) 

where 𝑤 and 𝑧 represent two independent 

Wiener’s path, then 𝑃𝑤 and 𝑃𝑧 are the 

corresponding expectations 𝑙1(⍙𝐹(𝑤)(𝑧)) 

is the first order Wiener integral with respect 

to 𝑧 of ⍙(𝑤) and ₺ is any lower bounded, 

convex function on 𝑹. This result was 

obtained in Dominique et al (2015) as one of 

the major results in the application of 

multiple stochastic iterated integrals to 

moment inequalities for the Wiener 

functional.    

Brownian motion and Wiener measures 

Let 𝑊 = 𝐶𝑜([0 ,1]), defined 𝑊𝑡 as to be the 

coordinate functional, that is, for 𝑤 ∈ 𝑊 and 

𝑡 ∈ [0 ,1]. Let 𝑊𝑡(𝜔) = 𝑊(𝑡),  if we define  

𝐵𝑡 = 𝛾{𝑊𝑎; 𝑎 < 𝑡}, then the following 

theorem holds.  

 

Theorem 1 (Kloeden and Platen, 1991; 

Hajek and Wong, 1981).  

There is one and only one measure 𝜏 on 𝑊 

which satisfies the following properties:  

i. 𝜏(𝑤 ∈ 𝑊: 𝑊0(𝑤) = 0) = 1 

ii. For any 𝑓 ∈ 𝐶𝑏
∞(ℝ), the stochastic process, (𝑡𝑤) → 𝑓(𝑊𝑡(𝑤)) −

1

2
∫ ⍙𝑓(𝑊𝑎(𝑤))𝑑𝑎

𝑡

𝜏
 is a 

(𝛽𝑡, 𝜏)−Martingale, where ⍙ denotes 

Laplace operator. 𝜏 is called the (standard) 

Wiener measure. Hence (𝑡, 0)  ↔  (𝑤) is a 

continuous additive process with 

independent increment and (𝑊𝑡; [0 ,1]) is 

also a continuous Martingale.  

 

Stochastic Process: Hajek and Wong 

(1981) defined a stochastic process 𝑋 =

{𝑋(𝑡), 𝑡 ∈ 𝑇} as a collection of random 

variables on a common probability space 

(𝛺, 𝒜, ℱ). It can also be written as a 

function 𝑋: 𝑇𝑥 𝛺 → 𝑹 such that 𝑋(𝑡, . ) is 

𝒜: Ը-measurable in 𝜔 ∈ 𝛺 for each 𝑡 ∈ 𝑇. 

Where  𝛺 = 𝑹𝑇 is the set of all functions 

𝜔:  𝑇 → 𝑹 and express 𝑋(𝑡, 𝜔) = 𝜔(𝑡), so 

that 𝜔 becomes the sample path, while 𝒜 is 

the 𝛿-algebra generated by cylinder sets 

having the form 

𝐵 = {𝜔 ∈ 𝛺: 𝑋(𝑡, 𝜔) ∈ 𝑘𝑖𝑓𝑜𝑟 𝑖

= 1,2, … . . , 𝑛} 

where 𝑘𝑖 ∈ 𝑇 and 𝑘𝑖 ∈ Ը with assigned 

probability as  

          𝑃(𝐵) = 𝐼𝐵𝑑𝐹𝑡1,𝑡2,…,𝑡𝑛
(𝑇1, 𝑇2, . . , 𝑇𝑛)𝑘1×𝑘2,…,×𝑘𝑛

∫
                                                      (2) 

 

Stochastic Integration   

 The stochastic integration with respect to 

the Brownian motion is first defined on the 

adapted step processes and then extended to 

their completion by isometric mapping 

𝑞: [0,1] × 𝑊 → ℝ   called a step process if it 

can be expressed in the form;      

𝑞𝑡(𝑤) = ∑ 𝑎𝑖(𝑤). 𝑞(𝑡𝑖),𝑡𝑖+1

(𝑡). 𝑎𝑖(𝑤)𝜖𝐿2(𝛽𝑡𝑖
) 𝑟

𝑖=1 .                                  (3) 

For such a step process, we define its 

stochastic integral with respect to the 

Brownian motion which Hajek and Wong 

(1983) represented by  

                                                 𝐼(𝑞) = ∫ 𝑞𝑎𝑑𝑊𝑞(𝑤)
1

0
                                                                  (4) 

a.s. to be 
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                                               ∑ 𝑎𝑖(𝑤)(𝑊𝑡+𝑖) − 𝑊𝑡,(𝑤)𝑟
𝑖=1                                                            (5)                                                                                                                                                                       

 Using the independence of the increment of (𝑊𝑡; [0 ,1]), it is obvious that   

 𝐸 [| ∫ 𝑞𝑎𝑑𝑊𝑎||²
1

0
] = 𝐸 ∫ |𝑞𝑎|²

1

0
𝑑𝑎                                               (6)                                                                 

that is, 𝐼 is an isometry from the adapted 

step processes into 𝐿2(𝜏), hence it has a 

unique extension as an isometry from  

𝐿2([0,1] × 𝑊, 𝒜, dt × dτ)
𝐼

→  𝐿2(𝜏), 

where 𝒜 is the sigma algebra on [0,1]  ×  𝑊 

generated by the adapted left (or right) 

continuous processes. The extension of  𝐼(𝑘)  

is called the stochastic integral of 𝑘 and it is 

written as   ∫ 𝑞𝑎𝑑𝑊𝑎
𝑡

0
.   

If we define 𝐼𝑡(𝑞) = ∫ 𝑞𝑎𝑑𝑊𝑎
𝑡

0
 as  

∫ 𝐼[0,𝑡](𝐴)𝑞𝑎𝑑𝑊𝑎
1

0
                                                                         (7) 

it follows from Doob’s inequality that the 

stochastic process 𝑡 ↔ 𝐼𝑡(𝑞) is a continuous 

square-integrable Martingale. 𝐼 can be 

extended to any adapted process 𝑞  (Kuo, 

1973) with some localization methods such 

that  

∫ 𝑞1
2(𝑤)𝑑𝑎 < ∞

1

0
.                                                                         (8)                                                                                                                                         

This means that 𝑡 ↔ 𝐼𝑡(𝑞) become a local 

martingale. There exists a sequence of 

stepping times increasing to one say, 

(𝑇𝑟 , 𝑟 ∈ 𝑅), showing that 𝑡 ↔ 𝐼𝑡⍙𝑇𝑟
(𝑞) is a 

square- integrable Martingale. 

  

 Progressive Process: A continuous-

parameter stochastic process 𝑋 adapted to a 

filtration (ℳ𝑡) is progressively measurable 

or progressive when 𝑋(𝑠, 𝑤), 0 ≤ 𝑠 ≤ 𝑡, is 

always measurable with respect to  𝛽𝑡 × ℳ𝑡  

where 𝛽𝑡 is the Borel 𝛿-field on [0, 𝑡]. If  𝑋 

has continuous sample paths, for instance, 

then it is progressive. 

 

Non-anticipating filtrations processes: Let 

𝜏 be a standard wiener process, {ℱ𝑡}, the 

right-continuous completion of the natural 

filtration of 𝜏, and ℋ any 𝛿-field 

independent of {ℱ𝑡}. Then the non-

anticipating filtrations are the ones of the 

form 𝛿(ℱ𝑡 ∪ ℳ), 0 ≤ 𝑡 ≤ ∞. A stochastic 

process 𝑋 is non-anticipating if it is adapted 

to some non-anticipating filtration.   

 

Elementary process: A progressive, non-

anticipating process 𝑋 is elementary if there 

exist an increasing sequence of times 𝑡𝑖, 

starting at zero and tending to infinity, such 

that 𝑋(𝑡) = 𝑋(𝑡𝑛) if 𝑡 ∈ [𝑡𝑛,𝑡𝑛+1) ,ie if 𝑋 is 

a step-function of time.  

 

Mean square integrable: A random 

process 𝑋 is mean square-integrable from 𝑎 

to 𝑏 if 𝐸 [∫ 𝑋 2(𝑡)𝑑𝑡
𝑏

𝑎
] is finite. The class of 

all such processes will be denoted as 

𝒮2[𝑎, 𝑏]. 

Note that if 𝑋 is bounded on [𝑎, 𝑏], in the 

sense that | 𝑋(𝑡)| ≤ ℳ with probability 1 

for all 𝑎 ≤ 𝑡 ≤ 𝑏, then 𝑋 is square-

integrable from 𝑎 to 𝑏.  

 

Multiple Stochastic Integrals in Moment 

Inequalities   

The study of multiple stochastic integrals 

related to a class of set was carried out by 

Hajek and Wong (1983) where special cases 

of multiple Wiener integral and It𝑜̇ integral 
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were analyzed. Usunel and Zakai (1992) 

extended this result in order to obtain its 

generalization through specialization of the 

class of set adequately. They constructed 

formulae for navigating a stochastic integral 

onto the space of Wiener functional and also 

transforming multiple stochastic integrals as 

nested  

integrals. 

A new result of analytic function on 𝑋 was 

introduced by Setsuo (2001) under the work 

frame of analytic functions on abstract 

Wiener spaces. Setsuo (2001) proved that 

stochastic line integrals of real analytic have 

1-forms along Brownian motion, revealing 

also that solutions to stochastic differential 

equations with real analytic coefficient are 

analytic Wiener functional (see Horfely, 

 2005). 

In practice, probability measures were 

applied in order to control the moments of 

Wiener integrals of fractional Brownian 

motion according to Jeong-Gyoo (2021), 

with respect to the 𝑙𝑝-norm of the integrand. 

This result was achieved by Jeong (2021) in 

a research work with the aim of generating 

inequalities for the moments of Wiener 

integral.  

In order for us to proceed in this dimension, 

we shall examine the following sub topics 

that will enhance the understanding and 

interpretation of above results.  

 

Moment Densities Integrands and 

Translating Methods 

The multiple stochastic integrals are 

isometry in nature, this property can be 

interpreted as: 

Suppose for each 𝑛 ≥ 1, and ℎ ∈ ℋ𝑚 then 

{𝜙𝑛,𝑚(ℎ): 𝑚 ≥ 1} is said to be a complete 

orthogonal basis for the space of square 

integrable 𝓕(𝐹ℎ)-measurable random 

variable. Let us assume that  

𝜙𝑛,𝑚(ℎ) is a symmetric function in ℎ, then 

the multiple stochastic integral isometry 

property is the set of “incremental’’ random 

variables. 

             [𝜙𝑛,𝑚(ℎ)𝑊(𝑑ℎ1)𝑊(𝑑ℎ2) … . . 𝑊(𝑑ℎ𝑚); 𝑛 ≥ 0, 𝑚 ≥ 1, ℎ ∈ ℋ𝑚]                               (9) 

is an orthogonal collection of random 

variables which is also orthogonal to the 

𝓕(𝐹)-measurable random variable (Young, 

2022; Ivan, 2014). 

Ojo-Orobosa (2018) and Horfely (2005) 

noted that the increments 𝑑ℎ1 in (9) are 

‘’outward’’ from (𝐹ℎ), this is reflected in the 

next Proposition, stating that the symmetries 

integrands are uniquely determined as 

moment densities. Also, the collection of 

variables in (9) in conjunction with the 

𝓕(𝐹)-measurable variable is complete in 

𝐿2(𝜂ℱ𝑊(ℋ), 𝑝) if 𝓕(𝐾) = ℱ𝑊(𝐾) for all 𝐾 

in ℜ(ℋ).   

 

Proposition 1 

Let 𝜏 ∈ 𝑐. Then for each ℎ ∈ ℋ̂𝑚,  

E[𝑊(𝑑ℎ1)𝑊(𝑑ℎ2), … . 𝑊(𝑑ℎ𝑚)𝜏0𝑊𝑛[ℱ(𝐹𝑔)]] 𝑑ℎ1𝑑ℎ2, … . 𝑑ℎ𝑚 = 𝑛!𝜏̂(ℎ)𝛿𝑛𝑚                   (10) 

Such that the linear functional 

𝑓 → 𝐸 
∫ 𝑓(ℎ)𝑊(𝑑ℎ1)𝑊(𝑑ℎ2), … 𝑊(𝑑ℎ𝑚)𝜏0𝑊𝑛

ℋ̂𝑚                                                                                                           
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defines a symmetric finite signed measure 

on the 𝛿 −algebra of subset 𝜂xℋ𝑚 

generated by ℳ-adapted atomic functions, 

the measure is absolutely (Horfely, 2005) 

continuous with respect to  𝜌𝑥𝜏2 measure, 

and the Radon-Nikodym derivatives is 

𝑛!𝜏𝛿𝑛,𝑚. 

 

In view of the definition of Randon-

Nikodym derivatives, according to Byoung 

(2021), Proposition 1 is simply a restatement 

of the isometry property of the multiple 

stochastic integral. In the next Preposition, 

𝐿𝛼
2 (𝜂𝑥ℋ̂𝑚, ℱ𝑊(. )) is defined in the same 

way as 𝐿𝛼
2 (𝜂𝑋ℋ̂𝑚), except with 𝛿-algebra 

ℱ(𝐾) replaced by ℱ𝑊(𝐾) for all 𝐾 ∈ ℜ(ℋ).   

 

Proposition 2. (Hajek and Wong, 1981; 

Ojo-Orobosa, 2018; Jeong-Gyoo, 2021) 

This is mainly concerned with the 

translation formula, and it state thus; 

For each 𝜏 ∈ 𝐿𝛼
2 (𝜂  𝑥 ℋ̂𝑚) there is  𝜏̂ ∈ 𝐿𝛼

2 (𝜂 𝑥 ℋ̂𝑚, ℱ𝑊(. )) such that  

       𝜏̂(ℎ) = 𝐸[𝜏̂(ℎ)𝐼ℱ𝑊(𝐹ℎ)] for ℎ ∈ ℋ̂𝑚                                                                 (11) 

and for such 𝜏̂ and all 𝐾 ∈ ℳ 

                           𝐸[𝜏°𝑊𝑛𝐼ℱ𝑊(𝐾)] = (𝜏̂𝑛
° 𝑊𝑛)(𝐾)                                                                (12) 

 

Proof:  

By the completeness of multiple stochastic integrals in 𝐿2(𝜂, ℱ𝑊(ℋ), ƀ)  and the fact 

that 𝐸[𝜏°𝑊𝑛𝐼ℱ𝑊(𝐹)] = 0 there exist a collection {𝜙𝑚: 𝑚 ≥ 1} with  𝜙𝑚 ∈ 𝐿𝛼
2 (𝜂𝑋ℋ̂𝑚, ℱ𝑊(. ))  

such that 𝐸[𝜏°𝑊𝑛𝐼ℱ𝑊(ℋ)] = ∑ 𝜙𝑚
°∞

𝑚=1 𝑊𝑚.  

Now by proposition 1, with 𝓕 replaced by ℱ𝑊 

 E [𝑊(𝑑ℎ1)𝑊(𝑑ℎ2), … . 𝑊(𝑑ℎ𝑚)𝐸[𝜏0𝑊𝑛⃒ℱ𝑊(ℋ)⃒ℱ𝑊(𝐹𝑔)] /𝑑ℎ1, 𝑑ℎ2, . ⋯ 𝑑ℎ𝑚 = 𝑚!𝜙𝑚(ℎ) 

So that 

E [𝑊(𝑑ℎ1)𝑊(𝑑ℎ2), … . 𝑊(𝑑ℎ𝑚)𝜏0𝑊𝑛⃒ℱ𝑊(𝐹𝑔)] /𝑑ℎ1, 𝑑ℎ2, . ⋯ 𝑑ℎ𝑚 = 𝑚!𝜙𝑚(ℎ)               (13)  

On  ℋ̂𝑚. Comparison of equation (10) and (13) reveals that 𝜙𝑚(ℎ) = 𝐸 [𝜏̂(ℎ)𝛿𝑛,𝑚⃒ℱ𝑊(𝐹ℎ)] a.s 

ℎ ∈ ℋ̂𝑚. 

Thus 𝜙𝑚(ℎ) = 0 for a.s  ℎ ∈ ℋ̂𝑚 unless 

𝑚 = 𝑛.  

So, if 𝜏̂ is defined by 𝜏̂ = 𝜙𝑛 then 𝜏̂ satisfies 

equation (11) and (12) is true for 𝐾 = 𝓗.  

Since each of (12) is a martingale relative to 

{ℱ𝑊(𝐾): 𝐾 ∈ ℳ}, (12) is true for all 𝐾 ∈

ℳ. Finally, since 𝜏̂ is uniquely determined 

on ℋ̂𝑚 up to a set of ƀ ×  𝜏𝑛 measure zero 

by(11). Similarly,  𝜏̂ ∈ 𝐿𝛼
2 (𝜂  𝑥  ℋ̂𝑛, ℱ𝑊(. )) 

satisfying (11) and also (12).   

             

Log-Sobolev inequality and exponential 

integrability   

It is evident that there exists a closer 

relationship between the probability 

measures satisfying the log-Sobolev 

inequality and the exponential integrability 

of the random variables having essentially 

bounded Sobolev derivatives. We shall 

explain this in the frame of Wieners space.  

Let þ be a probability measures on 
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(𝑊, (𝑊)) such that the operator 𝛻 is a closable operator on 𝐿2(þ).   

 

Assuming  

𝐸𝒹[𝒜𝒹(𝑓2)] ≤ 𝑇𝐸𝒹[│∇𝑓│𝒜
2 ] 

is for any cylindrical 𝑓: 𝑊 → ℝ where   

𝒜𝒹(𝑓2) = 𝑓2(𝑙𝑜𝑔𝑓2 − 𝑙𝑜𝑔𝐸𝒹(𝑓2)) 

since ⍙ is closable operator, of course this 

inequality extends immediately to the 

extended 𝐿2- domain of it. A better 

understanding of this is seen in the lemma 

below.  

 

Lemma 1.  

Assume that 𝑓 is in the extended  𝐿 −2 domain of ⍙ such that │⍙𝑓│𝒜   is 𝒹-essentially bounded 

by one. Then 

   𝐸𝒹[𝑒ℎ𝑓] ≤ 𝑒𝑥𝑝 {ℎ𝐸𝒹[𝑓] +
𝑇ℎ2

4
}  for any ℎ ∈ ℝ                    (14) 

 

Proof:  

Let 𝑓𝑛 = 𝑚𝑖𝑛(│𝑓│, 𝑛),  then it is obvious that │⍙𝑓𝑛│𝒜 ≤ │⍙𝑓│𝒜     𝒹-almost surely.  

Let ℎ ∈ ℝ  and define 𝑆𝑛 as 𝑒ℎ𝑓𝑛. Also, let 𝜃(ℎ) be the function  𝐸[𝑒ℎ𝑓𝑛].  

Hence from the above inequality, we have  

  ℎ𝜃′(ℎ) − 𝜃(ℎ)𝑙𝑜𝑔𝜃(ℎ) ≤
𝑇ℎ2

4
𝜃(ℎ)                                                                        (15) 

If 𝛽(ℎ) =
1

ℎ
log 𝜃(ℎ),  then lim

ℎ→0
𝛽(ℎ) = 𝐸│𝑓𝑛│, then (15) implies 𝛽′(ℎ) ≤

𝑇

4
,  hence  

𝛽(ℎ) ≤ 𝐸𝒹[𝑓𝑛] +
𝑇ℎ

4
 

Therefore,  

   𝜃(ℎ) ≤ 𝑒𝑥𝑝 (ℎ𝐸𝒹[𝑓𝑛] +
𝑇ℎ2

4
)                                                              (16) 

However, from monotone convergence 

theorem, 𝐸[𝑒ℎ𝑓] < ∞, for any 𝑔 ∈ ℝ,  hence 

the function  

𝜃(ℎ) = 𝐸[𝑒ℎ𝑓]  satisfies also the inequality 

(15) which implies inequality (14).   

Now using (14) and an auxiliary Gaussian 

random variable, and also by proposition 3, 

the probability space is essentially bounded.  

 

Proposition 3.  

Assume that  𝑓 ∈ 𝐿𝑝(𝒹) has 𝒹-essentially 

bounded Sobolev derivative and that this 

bound is equal to one. Then we have for any 

𝜀 > 0,  

𝐸𝒹[𝑒𝜀𝑓2
] ≤

1

√1−𝜀𝑇
𝑒𝑥𝑝 (

2𝜀𝐸𝒹[𝑓]2

1−𝜀𝑇
)  Provided 𝜀𝑇 < 𝛿 

 

An interpolation inequality.   Another useful inequality for the Wiener 

functional is the interpolation inequality 
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which helps to control the 𝐿𝑝- norm of ⍙𝑓 with the help of the 𝐿𝑝- norm of ℱ and ⍙2ℱ 

 

Theorem 1 

For any 𝑝 > 1, there exist a constant 𝑘𝑝, such that for any ℱ ∈ Ɒ𝑝,2 one has  

‖⍙ℱ‖𝑝
2 ≤ 𝑘𝑝 [‖ℱ‖𝑝 + ‖ℱ‖𝑝

1
2‖⍙2ℱ‖𝑝

1
2] 

The prove of this theorem depend largely on the proof of another theorem, which we shall 

consider next.   

 

Theorem 2 (Ojo-Orobosa, 2018; Jeong-Gyoo, 2021; Young, 2022) 

For any 𝑝 > 1, we have 

‖(1 + 𝐿)
1
2ℱ‖𝑃 ≤

4

𝛤 (
1
2)

 ‖ℱ‖𝑃

1
2 ‖(1 + 𝐿)ℱ‖𝑃

1
2  

 

Proof:  

Let 𝓜 be the functional (𝐼 + 𝐿) ℱ, then we have 𝓕= (1 + 𝐿)−1𝓜, therefore it suffices to  

show that  

‖(𝐼 + 𝐿)
−1

2 𝓜‖𝑝 ≤
4

𝛤(
1

2
)
‖𝓜‖𝑝

1

2 (𝐼 + 𝐿)−1ℳ‖𝑝

1

2 . 

We now have  

(𝐼 + 𝐿)
−1
2 ℳ =

√2

Γ (
1
2)

[∫ ℎ−
1
2

∞

0

𝑒−ℎℳ𝑑ℎ] 

where 𝑝ℎ denotes the semi-group of orristein-uhlenbeck.  

For any 𝑎 > 0, we can write 

(𝐼 + 𝐿)
−1
2 ℳ =

√2

𝛤 (
1
2)

[∫ ℎ−
1
2

𝑎

0

𝑒−ℎ𝑝ℎℳ𝑑ℎ + ∫ ℎ−
1
2𝑒−ℎ𝑝ℎℳ𝑑ℎ

∞

0

] 

Let the two terms at the right-hand side of the above inequality be represented by │𝑎 and   ⃦𝑎 

respectively. 

Thus 

‖(𝐼 + 𝐿)
−1
2 ℳ‖𝑝 ≤

√2

𝛤 (
1
2)

[‖ │𝑎‖𝑝 + ‖ ⃦𝑎‖𝑝] 

The first term at right hand side can be upper bounded as 

‖ │𝑎‖𝑝 ≤ ∫ ℎ−
1
2‖ℳ‖𝑝𝑑ℎ = √𝑎

2
‖ℳ‖𝑝

𝑎

0

 

Let 𝑆 = (𝐼 + 𝐿)−1, then 
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∫ ℎ−
1
2

∞

0

𝑒−ℎ𝑝ℎℳ𝑑ℎ = ∫ ℎ−
1
2

∞

0

𝑒−ℎ𝑝ℎ(𝐼 + 𝐿)(𝐼 + 𝐿)−1ℳ𝑑ℎ 

                                       = ∫ ℎ−
1

2
∞

0
𝑒−ℎ𝑝ℎ(𝐼 + 𝐿)𝑆𝑑ℎ  

               ∫ ℎ−
1

2
∞

𝑎

𝑑

𝑑ℎ
(𝑒−ℎ𝑝ℎ)𝑑ℎ = −𝑎−

1

2𝑒−𝑎𝑝𝑎ℎ +
1

2
∫ ℎ−

3

2𝑒−ℎ𝑝ℎ𝑆𝑑ℎ
∞

𝑎
                (17) 

where the third equality follows from the integration by parts, therefore  

‖ │𝒂‖𝒑 ≤ −𝑎−
1
2‖𝑒−𝑎𝑝𝑎ℎ‖𝑝 +

1

2
∫ ℎ−

3
2‖𝑒−ℎ𝑝ℎ𝑆‖𝑝𝑑ℎ

∞

𝑎

 

     ≤ −𝑎−
1

2‖𝑆‖𝑝 +
1

2
∫ ℎ−

3

2‖𝑆‖𝑝𝑑ℎ
∞

𝑎
   

     = 2𝑎− 
1

2‖𝑆‖𝑝  

     = 2𝑎−
1

2‖(𝐼 + 𝐿)−1ℳ‖𝑝. 

Finally, we have  

   ‖(𝐼 + 𝐿)
−1

2 𝓜‖𝒑 ≤
2

Γ(
1

2
)

[𝑎
1

2‖ℳ‖p + 𝑎−
1

2
 ‖(I + L)−1ℳ‖p]                 (18) 

This expression attain its minimum when we take  

𝑎 =
‖(𝐼+𝐿)−1ℳ‖𝑝

⃦ℳ‖𝑝
    

 

Conclusion  

In this paper, we discussed a new translating 

method, for representing multiple stochastic 

and nested integrals onto the Wiener 

functional space by using integrand moment 

densities and translating method as one 

projection formulae for representing 

multiple stochastic integrals as nested 

integrals. To achieve our aim, we consider 

some prepositions and theorems such as the 

isometry in nature of multiple stochastic 

integral. Moreso, a closer relationship 

between the probability measures satisfying 

the log-Sobolev inequality and the 

exponential integrability of the random 

variables has essentially bounded Sobolev 

derivatives was established. This was 

explained in the frame of Wieners space. 

  
The introduction of moment inequalities as a 

means of translating multiple stochastic integral 

and representing nested integrals in the Wiener 

functional space was achieved by a cross 

examination of log-Sobolev and interpolation 

inequalities from which we established the fact 

that the log-Sobolev inequality implies the 

exponential integrability of the square of the 

wiener functional and also there exists a closer 

relationship. Hence, we conclude here that, the 

moment inequalities in stochastic integrals, is 

capable of translating and representing nested 

integrals in the Wiener functional space.  

 

This paper has examined the application of 

Stochastic multiple and nested integral to 

moment inequalities for Wiener functional 

by considering two results as stated in 

above, the combination of these results 

engenders some interesting concepts which 

can be exploited for further research. In 

actual fact, the exponential integrability of 

the square of the Wiener functional has one 
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of its most prominent applications in the 

analysis of non-linear Gaussian functional.  
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