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Abstract

Geophysical data is often collected at irregular intervals along a profile or over a surface area.
But most methods for the treatment of geophysical data often require that any data collected at
irregular intervals have to be interpolated to obtain values at reqular grid. Unlike the common
2-dimensional interpolation procedures, the Laplace (finite-difference) method can be applied to
regions of figh data gradients without distortions and smoothing. However, by itself, this
method is not convenient for the interpolation of geophysical data, which often consists of
regions of widely variable data densities. In this paper a procedure is developed which allows
that by combining it with the method of quadratic weighting, the Laplace method can be
successfully applied to interpolate two-dimensional geopfiysical data. ~ These methods were
applied to some geopotential data. The results show that there is no significant difference
between aeromagnetic maps derived from data as observed and maps obtained when the data is
interpolated in a region of thick sedimentary formation. This is attributed to the fact that the
magnetic body in such region are deeply buried. However, inteérpolated aeromagnetic map over a
region of outcropping granitic bodies exposes more shallow features which are otherwise not seen
on the map derived from the observed data that are not interpolated. Similar observation was
recorded for a gravity anomaly map produced from data collected in basement terrain. It was
concluded that since it is impossible to observe every point in a given surface area in order to
produce an accurate map that will reflect the distribution of the various shallow subsurface
anomalies, it is better to interpolate the observed data prior to the production of the desired|
geopotential map.

Keywords:  Geophysical, geopotential, Lapalce interpretation, finite difference, quadratic
| weighting. '

Introduction

We sometimes know the value of a function at
a set of points, but we do not have an analytic
expression that tells us how to calculate its
value at an arbitrary point. In geophysics, the
function values result from the measurements
of physical quantities e.g. potential fields,
electric currents, ground movements, radiation
intensities etc. The task of interpolation is to
estimate the function at various points within
the range of known values. Most of the

- (e.g. mathematical

accurate and- reliable methods available for
the quantitative analysis of geophysical data
filtration  techniques,
equivalent source schemes, modelling
procedures, efc.) are suitable only for equally
spaced data. Interpolation is sometimes
employed to fill gaps in a set of otherwise
evenly spaced seismograms (Cabrera and
Levy, 1984; Ronen, 1987). Recently, a
method has been developed for the
computation of Fourier transforms of
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unequally spaced data (Press et al., 1992).
But this method is not only computationally
cumbersome but, most importantly, it
sidesteps the use of the Fast Fourier
Transform algorithm - the main attraction for
the use of Fourier methods in the analysis of
geophysical data. Unfortunately, for reasons
of technical feasibility, geophysical data is
often collected at irregular intervals. Thus
reliable interpolation schemes are necessary
prior to the interpretation of such data. The
earliest (and still widely usec¢) form of
interpolation is by 'hand'. This consists of
plotting measured values on a graph or sheet
and establishing a regular grid at :+hich points,
function values are visually decuced. The
major setbacks in this method e:e the lack of
objectivity and slowness. With the advent of
high speed calculating machines, the
interpolation of geophysical data is more
reliably done by using mathem=tical functions
and numerical procedures.

The Laplace interpolation tect iique is a two
dimensional Finite Difference method (Taylor,
1976), which falls under the category that is
usually described as ‘'numsrical surfaces'
(Crain, 1970). In our treatmeiit of gravity and
magnetic data we found that the use of
common interpolation schemes, e.g. bicubic
spline interpolation (Bhattacharyya, 1969;
Press ef al, 1992), frequency domain
methods (Ronen, 1987), leads to the distortion
of the data. A good method like Quadratic
Weighting leads to smoothing of data in
regions of high field gradients (Crain and

(a) Top Viey
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Bhattacharyya, 1967; Davis, 1973). We have
found that Laplace Interpolation is fast and
reliable and that in regions of high data
density it preserves certain important features
of the original data such as: resolution and
shapes of individual anomalies, magnitudes
and location of peaks and troughs, and
steepness of field gradients. Details of the

-technique and its application are given below.

Laplace Interpolation

Like other Finite Difference methods, Laplace
Interpolation is based on the assumption that
the desired surface satisfies the differential
equation of static equilibrium (minimization of
the potential energy). This equation is then
approximated by finite differences and then
solved iteratively. The iterative nature of the
solutions makes the method highly suitable to
computer application. In his formulation of the
method, Taylor (1976) likened the two-
dimensional function surface to a network of
rigid bars and elastic springs intersecting at
the grid points as shown in Figure 1. Between
each pair of bars there are two connecting

-springs that meet end-to-end at a grid point

(Figure 1) and apparently holding the bars in a
straight line. The grid points that are also data
points are constrained, while the others which
are not data points can be pulled up or down.
The equilibrium position of the net, under the
influence of the elasticity (of springs) and
tension (in bars), and constrained at the data
points, gives the z(ij) values generated for the
non-data points by this method.
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(b) Side View (Along x - direction)
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Fig. 1: Network of rigid bars and elastic springs

A parameter k is defined for the force due to
the springs such that by varying this
parameter, a trade-off between smoothness of
the surface and avoidance of overshoots in
region of sparse data can be obtained. But,
because of the requirements of smoothness
at data points, the avoidance of over or under-
shoots in regions of sparse data is not usually
successful. To minimize this effect,
appropriate regions of the grid should be
blanked out (left undefined). This is a major
weakness of the Laplace method for its
application to geophysical data.

Finite difference equations

The equilibrium condition at a grid point under
forces due to spring elasticity and tension can
be expressed as (Taylor, 1976):

5i(2)+52y(2)—k6i+52 (z)= 0 (1)
This is applied only to grid points, which are
not data points.

For such points the finite difference form of
equation (1) applied to a point and its

neighbors is of form:

kzi-2,j)-ka(i, j-2) - ki + 2, j) - ka(i, j+ 2) ++ (1 + 4K)z(i - 1, j)+ (1 + 4k)z(i, j - 1)

(1 4k)z(i + 1, j)++ (1+ 4k)z(i, j+ 1) - (4 + 12k)z(i, j)= 0

From this we get:

Y ¢
2 D=
L 1+ dk
4+ 12k

[26i-1, )+ 20 j - 1)+ 2(i + 1, j) + 263, j + )]

(2)

(-2, )+ 26, j-2)+ 2(i+2,)) + 2(1,j + 2]+

(3)
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Steps in the calculation

(i) Initially, each data point is shifted to the
nearest grid intersection. This shift will be
enhanced if the sample interval (or the grid
spacing) is appreciably smalil. If a given
intersection is nearest to two or more data
points, then z(i,j) is set as the average of the
two or more values (z,). Also, the true position

of the data point (or average of more than
one) relative to the nearest intersection is
saved in arrays thx(i,j) and thy(i,j). The
array element zth(i,j) is initially set equal to
z(ij), and the array element kz(i,j) records
the number of data points falling closest to
the mesh point (i,j) (Figure 2).

j+l
Data point <1
.‘ Z(’a]) = Zth(laj)
z,(k1)+z,(k2)
- 2
kz(i,j)=2
thy(i.j) Data point K2
J
Gy

i+l

Fig. 2: Location of the approximated non-grid point with respect to the grid
intersection

(i) Equation (3) is solved iteratively over
the net of grid points. At each grid point,
which contains no data, the new z-value is
found by solving equation (3) for it in terms
of the surrounding points. Call this valve
z'(m+1) on the (m+1)" iteration. Then the
new estimate is obtained as:

z(m+1) = z(m) + w{ z'(m+1) - z(m) |

Where w is the relaxation factor, and
should be between 1 and 2. By selecting
the value of w properly, the rate of
convergence can be greatly improved. The
optimum relaxation factor w, can be
estimated as (Taylor, 1976):
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where A is a constrained sine function given by Froberg (1974) as:

A=1-sn?| =
s (Nj

In equation (5), N is the total number of
spacing in a square grid, which has n grid
points on each side. Convergence was
conveniently obtained by taking N = (NX
+NY), where NX and NY are the total number
of grid spacing in the x and y directions
respectively. For a square grid, NX = NY =
n(n-1). The iteration process starts with w =
1.0. Every ten iterations w; is estimated using
equation (4), then the new w is calculated as
We - (2.0 - w;) x 0.25, just to keep w from
increasing too rapidly. The value of k is set at
zero for the first 10 iterations and then
changed to 10.0 for subsequent iterations.

(i) On every 5th iteration, and at every mesh
point containing one or more data points, a
paraboloid of form

fixy) =a +bx+cy+dx2+ef

is fitted through the z values at the point
(i,j) and its four neighbors to the North,
South, East and West. We then calculate

Jih=f [ thx(i,j) ,thy(i.j)]
and then adjust z(i,j) to

z(1j) = zth (i) - fth

(iv) The iteration is carried on until the
estimated error is less than 10,000™ of the
range of data (Zymax = Zomin)-

i Wi (x: y) Gi.
e y) =+
> (X, y)

i=1

(3)

Application

As stated above, the Laplace method

‘necessitates the blanking out of regions of

sparse data. Thus the method can only be
conveniently applied to data that has uniform
density. This is not usually the case with
geophysical data; for example aeromagnetic
maps often exhibit low relief over thick
sedimentary formations, whereas in.regions of
outcropping igneous rocks the maps exhibit
very high relief. In other words, digitized data
obtained from such maps are sparse over
thick sedimentary formation (due to
unavoidably large sampling intervals), but
dense over regions of outcropping igneous
rocks (because of the unavoidably small
sampling intervals).

In our treatment of gravity and magnetic data
we found that a faithful interpolation can be
done if we restrict the Laplace Technique to
regions of high data density. In regions of low
data density we apply the method of quadratic
weighting - (Crain and Bhattacharyya, 1967,
Davis, 1973), which is reliable when field
gradients or reliefs are low. In quadratic
weighting the function value at a point is
obtained as a weighted average, f(x,y), of (say
n’) neighbouring points. This is given by:

(6)
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where G; is the observed value at the location (x;y;) and wi(x,y) is the weighting function given by

In the algorithm that we eventually developed
for the interpolation of geophysical data, the
grid points are divided into three categories:
(i)grid points which contain data points;
(igrid points which are not data points
but, which have neighbouring data points;

(i) grid points which are not data-

points and which have no neighbouring data
points.

Points in category (iii)) occur in regions of low
function gradients and can be satisfactorily
interpolated using the weighting method. A
minimum of five and a maximum of ten
surrounding points are used for calculating the
interpolated values. Points in category (i)
need no interpolation. Points in category (ii)
are in regions of dense data and can be
rapidly and satisfactorily interpolated using the
Laplace method.

Results

A FORTRAN program (DINTL3) written by the
authors was used to carry out the interpolation
of random surface data in the manner outlined
above. The program was applied to sparse
aeromagnetic data, dense aeromagnetic and
gravity data. The sparse aeromagnetic data
was obtained by digitizing (along flight lines)
the aeromagnetic sheet No. NB-32-X-1 of the
Cameroon Department of National Resources
(Kangkolo, 1996).

The map (called here Map No. 1) extends
from Latitude 5.75°N to 6.00°N and from
Longitude 9.00°E to 9.25°E. Figure 3 shows a
contour map of the random data obtained
from Map No. 1. The data is then interpolated
on a 26 x 26 grid to get 676 equally spaced
data points. Figure 4 shows a contour map of
the interpolated data. The dense
aeromagnetic data was obtained by digitizing
(along flight lines) the aeromagnetic sheet
from the Geological Survey of Nigeria. The
map extends from Latitude 11.00°N to
12.00°N and from Longitude 8.00°E to 9.00°E.
Figure 5 shows a contour map of the random
data. The data is then interpolated on a 51 x
51 grid to get 2601 equally spaced data

(7)

points. Figure 6 shows a contour map of the
interpolated data. The gravity data is obtained
from a gravity survey carried out in the Kwello
area of Kaduna State, Nigeria Akaolisa
(1997), which was a follow-up of a gravity
survey carried out in the same area earlier
compiled by Osazuwa et al. (1994). Figure 7
shows a contour map of the random data
(taken along motorable roads in the area).
The data is then interpolated on a 41 x 31 grid
to get 1271 equally spaced points. Figure 8
shows a contour map of the interpolated data.

Discussion

There is no significant difference between the
non-interpolated map (Figure 3) and the
interpolated map (Figure 4) derived from the
grided data of aeromagnetic data over regions
of thick sedimentary formations. In such
areas, the magnetic bodies occur at
appreciable depth. Therefore, the method of
production of the required map may not alter
significantly the surface geologic boundaries.
In the case o data obtained from areas of
granitic outcrops, there is significant difference
between the aeromagnetic maps produced
from the non-interpolated data (Figure 5) and
the aeromagnetic map produced from
interpolated data (Figure 6). The implication
of this is that maps produced from interpolated
data expose the shallow (or near surface), but
high frequency geologic features. Similar
enhancement of near surface features
through interpolation is noticed in the gravity
anomaly map in Figure 8 as compared with
the non-interpolated gravity anomaly map in
Figure 7. '
While the interpolated map of the gravity data
(Figure 8) is very smooth, the interpolated
map of the aeromagnetic data (Figure 6) is
relatively noisy.

This is due to the bipolar nature of magnetic
anomalies, which is absent in gravity

~anomalies. It is essential that a smoothing

filter should still be applied to interpolated
magnetic maps in order to remove any noise
that might be present.
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Conclusion

An interpolation procedure is developed which
allows the densification of geopotential fields
in areas where the observed data are sparse.
This involves the use of quadratic weighting
in regions of low data density and the
restriction of the Laplace (finite-difference)
method to regions of relatively high data
density where the wuse of traditional
interpolation techniques would lead to
distortion of data and smoothing. The
interpolation methods are fast in operation
and can efficiently applied to aeromagnetic (or
ground magnetic) data obtained over regions,
which in some areas are characterised by
thick sedimentary cover and in other areas
where igneous rocks outcrop or occur at
shallow depths. The interpolation techniques
also apply to gravity data, which are often
collected along road networks that are not
evenly distributed in the survey area.
Comparison of the set of random maps with
the set of interpolated maps shows them to be
in reasonably good agreement. However, the
interpolated maps show better enhancement
of the near surface geologic features, which

consequently leads to higher gradient of linear
features and higher relief generally. If
interpolation is not done with care
unnecessary enhancement, in the form of
noise, can be introduced into the map. This,
however, can be removed by applying
appropriate smoothing filter.
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