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Abstract

direction as arising from s-d kybridization.

phonon density of states.

The phonon dispersion frequencies are calculated from first principles for bec Tantalum
using a resonance pseudopotential model. It was also possible, using this scheme, to account

for the anomalous feature of the Ta dispersion curve observed experimentally in the (s,0,0,)
direction where the frequencies of the transverse branch are higher than the frequencies of
the longitudinal branch. The frequencies obtained were also used to calculate the phonon
density of states by the linear — analytic tetrahedral method of zone integration. The results
of these calculations are qualitatively in good agreement with experimental data, and

provide further support to the interpretation of the anomalous befaviour in the (€,0,0,)
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Introduction

Mizuki et al. (1985), obtained experimentally
by the method of inelastic neutron scattering
the phonon dispersion curves of bcc barium.
One of the interesting features of their work
which prompted the present calculations, is
the surprising result that along the (g,0,0,)
symmetry direction, the frequencies of the
longitudinal branch were found to be lower
than those of the transverse branch, contrary
to the normal behaviour in this symmetry
direction. This anomalous feature of the
dispersion curve was attributed to the
hybridization of the free-electron-like s states
with the d bands, which in this metal are just
slightly above the Fermi level. _
Lattice dynamical studies of the body
centered cubic (bcc) Y-iron phase have been
carried out (Okoye and Pal, 1993) Amah and
Oli (2004), Ononiwu and Oli (2001), and
Zarestky and Stasis (1966) obtained the
phonon  dispersion  frequencies of face

centered cubic (fcc) Y-iron.  Usually,
theoretical lattice-dynamical studies of metals
are carried out using both phenomenological
force constant approach or first-principles
calculation = based on an appropriate
pseudopotential and dielectric function. The
pseudopotential theory for metals indicates
that the. effective interaction between atoms
contains a two-body and at least a three-
body contribution (Brovman et al., 1972)
arising from the unpaired forces. The phonon
frequencies calculated by Animalu (1967)
and Sharma (1981), using simple local
pseudopotentials gave substantially higher
frequencies than the experimental values.
Moriarity (1972) used a generalized
pseuodopotential approach which atiempied
to incorporate the effect of s-d hybridization,
however, his results also deviated by about
40% as compared to the measured values.
Recently Gupta et al (1986) have used an
optimized form of model potential to include
the influence of hybridization in the phonon
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frequencies of barium. However, we find their
potential in Y-space to be quite unrealistic. .
in the present calculation, we use a more
realistic model potential of the Heine-
Abarenkov type and include the effect of s-d
hybridization more consistently in ~ our
computation of the electronic band structure
contribution to the dynamical matrix. In
addition, we have calculated also the phonon
density of states, which is an important
quantity in elucidating the nature of electron-
phonon interaction in a given material.

2. Outline of the Microscopic Theory

In a microscopic theory of lattice dynamics,
within  the adiabatic and harmonic
approximations, the phonon-frequencies ()
are obtained by solving the dlsperswn
equations.

[Mo” 8.5 - Dog ()] €% (q) = () |

where o (or B) = 1, 2, 3; q is the phonon —
wave vector restricted just to the Brillouin
zone, €% (q) is the B - component of the
polarization vector with s as the longitudinal
or transverse index and M is the mass of the
ions. * The dynamical matrix which is the
Fourier transform of the force: constants may
be represented as a sum of the contributions
due to the direct columbic ion-ion interaction,
an -indirect ion-ion interaction via the
conduction electrons and a repulsive core . —
core contribution. Thus we can write for the
total dynamic matrix

[DuB (CI) :Paﬁ (q) +EDocB (q) + Daﬁ (q) (2)
M

where DCQB {q) is the columbic part of the
dynamical matrix due to the direct coulomb
interaction between bare ions of effective
valence z; Dy (q) is the electronic band —
structure contribution due to the polarization
of the conduction electrons by the vibrating
ions. It depends on the pseudopotential
carried by the ions; by the ions; Dy (q) is the
three-body contribution which arise due to at
least third-order terms in the pseudopotental
analysis.

3. Phonon Density of States for Tantalum
The density of phonon states N(w) is usually
defined such that N(e) do is the number of
phonon states per unit cell with frequencies
between w and o + do. It is calculate from
the expression

Q

N(w) = el ds

j Vaoj (@
» wj(q) =

where the integral is taken over the surface
of constant frequency ®, and | is the
polarization index. In the tetrahendron
method, one divides the irreducible wedge of
the Brillouin zone into tetrahedral, and the
integral in egn. (3) is then evaluated as the
sum.

()

3 . 2 Nj, i(o
| ;N((D)“ (2 Y i ), 1)
over these tetrahedral. When the frequencies
at the four corners of the ith tetrahedron are
ordered such that  ®; <o, < w3 <wy

the density of frequency states N(w) and the
number of states n(w) at frequency w from
this smgle tetrahedron are given by the
simple analytic expressions given below
(Table 1):

(4)
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Table 1: Analytic expression for'density of states from single tetrahedron

n(o1, 2, ©3, O4, Vi, ®)

n(wi, w2, ©3, ©4, Vi, ©)

2 < 0 0 0]
01< O <o) 3 v (w—ml)% f | vi  (0-0)°

: D | ((01-— G)z)Dl . F ((D]— (02)le
<0< o 3v; DiD; - (w-m) 3v;

- (o). v - ey ]
D D1D2_ - ‘ ((l) m) IE)H’DQ DD,

03 <0 < o v (000 L L

D (03;04Ds D (a)4 - 033)D ]
04 <o 0 i vi
where _ s ‘
D . = Wy + 0)3'—'(,02—‘(1.)1; s ‘M = :i}((D4Q)3—0)30)1)/D

= -M, n=1, 2, 3,4 Vi = * " Volume of the ith tetrahedron

Dn

4, Model Potential Parameters

The model potential parameters for Tantalum have been determmed and listed-in Table 2.

Table 2: Model potential parameters for bee tantaium _

A A [ A A [Rm | @ Tm [ Re | « TEc\
0.900 |1.400 (1.7500 |1.410 2.00 {252.2 | 3.0 [1.00: 121 0.081 0.096
e (density) Vp(plasma frequency) a (lattice confstant) A |  WIf(F-band-width) eV
16.66 . 8698 L 3300 1.00
E((Fermi level) M(w mass) By [Ioéatioh of F-band and (Ryd)]
~_Ryd g ' L
10.438 230.59x10™ - 0.597

The mesh is now constructed and the mesh—
point numbers Ny, N,,.... N; are established
before the actual summatlon is done to give
the requwed density of phonon states.

5. Results and Discussion -

Solving the phonon dispersion eqgn. (1), the
phonon frequencies were computed along
the principal symmetry directions for metalllc
bce Ta S

The electron — phonon matrix element for thez

bare - ion ; pseudopotential between plane
wave states was screened linearly with the
Hartree type of dielectric function. Using the
Hubbard  approximation, the exchange and

correlations corrections were included. The

residual ‘_oeCillation in the large q region (q > 4
kf) which is inherent in the Heine Abarenkov
type of potentral were reduced by a damping
factor D(q) of the form (Bortolani, 1976)

D(q) = exp [0.65 (V/2kp)"] (5)
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For the present calculation, we have used the

rare — earth model potential derived from
spectroscopic term values. These values are
shown in Table 2. In order to obtain
convergence, the summations in reciprocal
space for calculating the dynamical matrices
were performed over 285 reC|proca| Iattlce
vectors.

In Fig. 1 and Table 3, we present the
numerical results obtained for phonon
frequencies of bcc tantalum and compared
them with the recent experimental resuits of
Stasis et al (1982). The agreement between
theory and experiment is good within the
framework of a microscopic theory and in
particular at the g — O limit where the velocity
of sound in a solid is reproduced by theory
and experiment.

The phonon density of states N(w) for bcc Ta
was calculated theoretically' by the method
outlined in section 3 above, and is shown in
Fig. 1. The overall width and shape of the
phonon spectrurr and the position of the
main peak (at 2.2 THz) are in relatively good
agreement with the results obtained. by
Stassis et al (1982) . using ‘the
phenomenological force constant fit method
of Gilat'and Raubenheimer (1966).

7 X

In general the microscopic theory of lattice
dynamics of the rare — earth metal Tantalum
— presented here is satisfactory enough to
justify our support of the view that Tantalum
can be regarded as an f — band metal where
d —=:f hybridization between the conduction
and unoccupied 4f band just above the Fermi
level is. of importance in understanding the
occurrence of its low melting point and high
superconducting transition temperature. This
can lead to a process of phonon softening of
modes when compared to Ce, as observed
experimentally at the L and X Zzone
boundaries by Stassis et al. (1982) and which
is.present also in our theoretically calculated
results. .= Recent experiments on the
anomalous thermal expansion of bcc Ta
below 37k supports this itinerant nature of
electrons in Tantalum (Andres, 1968) and
indicates =~ that low frequency (short-
wavelength) phonons may become even
softer with increase in pressure. This is a
feature ~ that certainly needs further
mvestlgation from a theoretical point of view,
i.e. the effect of increase in pressure on the
vibrational frequency spectrum of
superconducting Tantalum.

eTs L
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" Fig. 1: Calculated (continuous curv_e$) and me’a"s:Ljre‘d‘(V, 0, x)
phonon freauencyv dispersion curves of fcc ta at 660 K.
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Table 3: Measured and calculated phonon frequencies of bce
L.100 Ta|100]
| q Expt. Theory q Expt. Theory
0.1 0.42 0.39 0.1 0.25 0.32
0.2 0.81 0.78 0.2 0.64 0.64
0.3 1.027 1.28 0.3 0.89 0.94
0.4 % 1.59 155 [ 04 1.10 1.23
05 - 1.79 0.5 1.42 149 |
06 2.10 2.01 0.6 1.67 1.73
,,,,,,,,,,,,,,,,, 0.7 - 2.25 0.7 1.80 1.93
0.8 243 | 262 | 0.8 1.87 | 293
0.9 - | 2.73 0.9 190 | 223
10 | 256 ] 272 1.0 1.95 215 ]
L[100] T[110] » T{110]
q Expt. [ Theory | q | Expt | Theory |- g Expt. | Theory
0.1 0.70 053 |. 01 | 046 | 047 [ 04 - 0.45
02 1.34 110 | 02 0.90 092 | 0.5 0.35 -
0.3 1.83 1.70 0.3 1.40 139° | 020 | - 0.89
| 04 | 207 2.00 0.4 178J 1.66 | 030 0.75 1.29
0.5 2.20 2.28 0.5 2.00 18 1" 04 - 1.67
0.6 225 2.40 06 2.20 201 | 05 1.17 2.01
| 07 2.06 2.41 07. | 242 2200 | .06 - 2.24
| 08 2.16 239 [ 08 - 242 0.7 166 | 2.43
0.9 1.95 232 0.9 250 - 0.8 - 266
F 1.0 - 1 215 1 115 - [ 230 0.9 - 2.74
KR 1.00 260 | 220 | 10 - 272 |
{ L{I] T
q | Expt Theory q | Expt. Theory
01 0.84 070 010 | 033 056 |
0.2 1.73 1.30 020 .1 079 1.10
0.3 2.30 2.02 0.30 0.90 156 |
0.4 2.55 2.41 040 - [ 091 1.76
l 0.5 2.50 2.40 050 1" 084 175 |
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