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Abstract: Three mathematical model structures, namely: ARMAX, OE and a SSIF are first formulated followed by the 

formulation of their respective model predictors for the model identification and prediction of power transmission and 

distribution within Akure and its environs. A total of 51,350 data samples from the Power Holding Company of Nigeria were 

collected for thirteen different parameters that influences the evaluation and analysis in the case study area. The performances 

of these three model predictors are validated by one-step and five-step ahead prediction methods as well as the Akaike’s final 

prediction error (AFPE) estimates. The results obtained from the application of these three model structures and their 

predictors for the modeling and prediction of power transmission and distribution as well as the validation results show that 

the OE model predictor outperforms the ARMAX and SSIF model predictors with much smaller prediction errors, good 

prediction and tracking capabilities and that the OE model structure and its predictor structure can be used for power 

transmission and distribution modeling and predictions in real scenarios. 

Keywords: Auto-regressive moving average with exogenous input (ARMAX) model, output-error (OE) model, state-space 
innovations form (SSIF) model, mathematical modeling, model predictor, model structure, power distribution, 
power transmission. 

 

1. INTRODUCTION 

Electrical energy is produced at power stations. It is 

transmitted to long distance and distributed to loads using 

transmission lines and transformers. Power is the bulk 

transfer of electrical energy, from generating power plant to 

electrical substations located near demand centres. This is 

distinct from the local wiring between high-voltage 

substations and customers which are typically referred to as 

electric power distribution. Transmission lines, when 

interconnected with each other become transmission 

networks. The combined transmission and distribution 

network is known as the power grid.  

Power distribution is the final stage in the delivery of 

electricity to end users. A distribution system's network 

carries electricity from the transmission system and 

delivers it to consumers. Typically, the network would 

include medium-voltage (2kV to 34.5kV) power lines, 

substations and pole-mounted transformers, low-voltage 

(less than 1 kV) distribution wiring and sometimes meters. 

Due to huge structure of the area of power transmission 

and distribution systems, it is too difficult to observe 

behaviour of all the equipment used. Therefore, reliability 

and performances of the system become poor and to take an 

action for any fault can be very late. In this case, some fatal 

problems can occur. In the electricity supply  

industry, it is important to determine the future demand for  

 

power as far in advance as possible. If accurate  

estimates can be made for maximum and minimum load for 

each hour, day, month, season and year, utility companies  

can make significant economics in areas such as setting the 

operating reserve, maintenance scheduling and fuel 

inventory management [1, 2]. Thus, electric load prediction 

is performed over long, medium and short terms, to ensure 

that the resources are made available to match the demand. 

Long term prediction gives an insight into the future and 

helps in investment planning over years. Medium term 

prediction predicts months ahead and is needed to support 

energy procurement, energy marketing, tariff management, 

maintenance planning and network design functions. 

Short-term prediction is the prediction of load demand, 

hours or days into future and is required to support energy 

trading and network control functions. The factors that 

affect short term prediction were well discussed by [3]. The 

prediction procedure depends on the manner in which 

historical data is analysed and on the type of information 

available at the time the forecast is prepared [4]. 

Various techniques have been applied to the problem of 

power transmission and distribution modeling and 

prediction. The statistical techniques that were widely used 

in short term electric load prediction are regression, time 

series analysis and general exponential smoothing. 

Papalexopoulos and Hesterberg [5] described a linear 
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regression model for short term load prediction while Haida 

and Muto [6] presented a multivariate linear regression-

based peak load prediction with a transformation technique. 

The transformation function is used to deal with non-linear 

relationship between temperature and load and the 

performance of the technique have been verified with 

simulations of actual load data from Tokyo Electric Power 

Company. Charytonuik and co-workers [7] proposed a 

novel approach to load forecasting by the application of 

non-parametric regression. The dual work of [8] and [9] 
developed novel approaches for short term load forecasting, 

which incorporates the time series modeling of the ARIMA 

(autoregressive integrated moving average) with the 

knowledge of experienced human operators. Although 

these statistical techniques are reliable, they fail to give 

accurate results when quick weather changes occur which 

form a non- linear relationship with daily load. 

Nevertheless, various techniques have been applied to 

the problem of power transmission and distribution 

modeling and prediction. The authors in [6] presented a 

multi-variance linear regression-based peak load prediction 

with a transformation technique. The transformation 

reaction is used to deal with non-linear relationship 

between temperature and load. Performance of the 

technique is verified with simulations of actual load data of 

Tokyo Electricity Power Company. 

 

2. FORMULATION OF THE RESEARCH PROBLEM 

AND EXPERIMENTAL DATA AQUISITION 

2.1 Formulation of the Research Problem 

A case study of Akure 132KV Transmission Station was 

chosen for this work. The transmission station is in general, 

nonlinear, time-varying multivariable system, subject to 

large disturbances where different physical and weather 

phenomena takes place. Many strategies have been 

proposed to analyze issues concerned with power 

transmission and distribution, but their evaluations and 

comparisons are difficult. This is partly due to the 

variability of the parameters, the complexity of the physical 

and weather phenomena, and the large range of time 

constants inherent in the work station. Additional difficulty 

in the evaluation is the lack of standard evaluation criteria 

to ascertain how being generated are transmitted and 

distributed from source to destination. 

 The aim of this study is on the development of 

mathematical models and model predictors for the 

prediction of power transmission and distribution within 

Akure and its environs using efficient modeling algorithms. 

This is achieved through: 1). Data collection and data pre-

processing to remove outliers; 2). The development of three 

model predictors ARMAX, OE and SSIF model predictors 

for the modeling and prediction of present and future power 

transmission and distribution within Akure and its 

environs; and 3). The validation of the efficiency of the 

ARMAX, OE and SSIF model predictors for the prediction 

of expected future power transmission and distribution in 

real scenarios to ascertain the best model structure and 

predictor for future use. 

 

2.2 Experimental Data Acquisition 

The data used in this study have been collected from 

Power Holding Company of Nigeria (PHCN), Akure which 

is now Benin Electricity Distribution Company (BEDC), 

from the Omotosho Work Centre, Akure, Ondo State, 

Nigeria. The measurement data of the transmitted and 

distributed power parameters are recorded on hourly basis 

as shown in Fig. 1 from PHCN. Although, the “Hourly 

Reading Sheet” as shown in Fig. 1 has 47 parameters across 

the 47 columns, only data 13 parameters are of interest in 

the present study based on the scope of the study and their 

impact on the intended power transmission and distribution 

analysis. Thus, a total of 51,350 six months hourly data 

from 1st October, 2012 to 31st March, 2013 was obtained 

for the 13 parameters each having 3,950 data for the 

present study. The thirteen parameters includes: 1). Total 

voltage transmitted from Osogbo (TVFO); 2). Total voltage 

received in Akure (TVRA); 3). Total current transmitted 

from Osogbo (TCFO); 4). Total current received in Akure 

(TCRA); 5). Total power transmitted from Osogbo (TPFO); 

6). Total power received in Akure (TPRA); 7). Total power 

distributed to Akure Area 1 in terms of current 

(T2B_Akure); 8). Total power distributed to Akure Area 2 

in terms of current (T2C_Akure); 9). Total power 

distributed to Oba-Ile in terms of current (Oba_Ile); 10). 

Total power distributed to Iju in terms of current (Iju); 11). 

Total power distributed to Owena in terms of current 

(Owena); 12). Total power distributed to Owo in terms of 

current (Owo); and 13). Total power distributed to Igbara-

Oke in terms of current (Igbara_Oke).   

Thus, the first step is to gather historical information or 

data about the total voltage (KV) transmitted from Osogbo 

(TVFO) and that received in Akure (TVRA); the total 

current (AMP) transmitted from Osogbo (TCFO) and the 

total current received in Akure (TCRA); and total power 

(MW) transmitted from Osogbo (TPRO) and the total 

power received in Akure (TPRA). The study also considers 

the current distribution to two sub-stations in Akure 

metropolis (T2B_Akure and T2C_Akure) and five sub-

stations around Akure environs which includes Oba-Ile, Iju, 

Owena, Owo and Igbara-Oke as mentioned above. 

  
3. PROBLEM FORMULATION FOR THE POWER 

TRANSMISSION AND DISTRIBUTION IN 

AKURE AND ITS ENVIRONS 

3.1 Total Power Transmitted from Osogbo, Osun State 

and Received in Akure, Ondo State 

From the historical data collected from Akure 132KV 

Line Transmission Station, the following results were 

collected after simulation using MATLAB. Fig. 2(a) shows 

the total voltage (in kilo-Volt, KV) transmitted from 



Nigeria Journal of Pure & Applied Physics, Vol. 6, No. 1, pages 6 – 25, 2015 

 
www.njpap.futa.edu.ng 

8 

Osogbo (TVFO) while Fig. 2(b) show the total voltage 

received in Akure (TVRA). It is obvious from the graphs of 

Fig. 2(a) and (b) that the voltage received is almost half of 

the transmitted voltage from Osogbo. The total current (in 

amperes, AMP) as transmitted from Osogbo (TCFO) and 

the total current received in Akure (TCRA) are shown in 

Fig. 2(c) and (d) respectively. It can be seen that the total 

current from Osogbo and that received in Akure are both 

the same. This can easily be verified from Fig. 1 because 

the addition of all the currents distributed to Akure and its 

environs sums up to the total current transmitted from 

Osogbo which is equally received in Akure. Fig. 2(e) and 

(f) presents the total power (in mega-Watt, MW) 

transmitted from Osogbo (TPFO) and the total power 

received in Akure (TPRA) respectively. It can be observed 

from the graphs that the total power from Osogbo is higher 

than the total power received in Akure. The observed drop 

in power in Akure transmission station is specifically due 

to the voltage as well as some factors explained in the next 

two sub-sections. 
 

3.1.1 Factors Affecting Transmission 

1). Generation cost: The cost of fuel to generate electric 

power is a major factor influencing the flow of power 

into the grid. Under generation will cause the entire 

system to be slow, i.e. frequency drop and over 

generation will cause the system to behave in the other 

way round. 

2). Grid: A big factor affecting the flow of power through 

the grid is the grid itself. As power grid age, many 

portions of it are at maximum transmission capacity. As 

demand for energy increases, some areas may 

experience energy demand that exceed the capacity of 

the existing transmission lines to deliver. 

Fig. 1: A Sample of the hourly reading sheet for Sunday 1st October, 2012 showing detail information on transmission to Akure and 

distribution from Akure. 
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3). Weather and Climate: Weather conditions can have a 

serious effect on the flow of power in the electric grid. 

Summer heat waves increases the peak demand for 

energy to such high level that many businesses and 

factories must shut down during peak demand hour. 

Thunderstorms and winter weather can cause downed 

power lines and loss of power to whole communities. 

In addition to the regular seasonal weather related 

energy problems, global climate change could also 

influence power flow in the grid. According to Dotto 

[10], global climate change can cause serious increase 

in demand for electric power as summer temperature 

increase. 
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Fig. 2: Graph of total voltage (V), current (A) and power (MW) transmitted from Osogbo and received in Akure: (a) TVFO, (b) 

TVRA, (c) TCFO, (d) TCRA, (e) TPFO and (f) TPRA. 
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4). Line Temperature: The principal limitation on the 

capacity of a line is its temperature. As a line gets 

warmer, it sags and in worst cases, it can touch trees or 

ground thereby causing earth fault. 

5). Distance: Long distance transmission causes significant 

loses especially during hot weather. This follows the 

fact that the resistance of a metallic conductor increases 

proportionally with length. 

6). Power Factor: This is the cosine of the phase difference 

between voltage and current. For purely resistive load, 

the voltage and current are in phase and power factor is 

1. For a purely reactive load, the voltage and current are 

out of phase and power factor is 0. The power factor is 

leading if current leads voltage (capacitive load) and is 

lagging if the current lags voltage (inductive load). Most 

domestic loads (such as washing machines, air 

conditioners and refrigerators) and industrial loads 

(such as induction motors) are inductive and operate at a 

low lagging power factor. Loads with low power factors 

are costly to serve because they require large currents 

and invariably results in increased power loss. In view 

of this, power companies often encourage their 

customers to have power factors as close to unity as 

possible and penalized some customers who do not 

improve their load power factor. One of the ways for 

increasing power factor is the addition of a reactive 

elements usually static capacitor in parallel with the 

load in order to make the power factor closer to unity. 

 

3.1.2 The Physics of Power Loss in the Transmission 

and Distribution Lines 

Voltage drops in an electrical circuit normally occur 

when current is passed through the cable. Cables used to 

distribute power throughout the transmission and/or 

distribution lines have resistance associated with them. The 

longer the cables the larger the resistance and the larger the 

resistance the greater the voltage drop. Hence, voltage drop 

is inevitable if it has to carry current. There are many 

causes of voltage drop but the four fundamental causes of 

voltage are [11]: 1). Material: copper is a better conductor 

than aluminium and will have less voltage drop than 

aluminium for a given length and cable size; 2). Cable Size: 

Larger cable size will have less voltage than smaller cable 

size of the same length; 3). Cable Length: shorter cables 

will have less voltage drop than longer cables of the same 

size (diameter); and 4). Current Being Carried: Voltage 

drop increase with an increase in the current flowing 

through the cable. 

In alternating current circuits, opposition to current flow 

does occur because of resistance (just as in direct current 

circuits). Alternating current circuits also present a second 

kind of opposition to current flow: reactance. This “total” 

opposition (i.e. the sum of resistance and reactance) is 

called impedance. The impedance in an alternating current 

circuit depends on the spacing and dimensions of the 

elements and conductors, the frequency of the alternating 

current, and the magnetic permeability of the elements, the 

conductors, and their surroundings. The voltage drop in an 

alternating current circuit is the product of the current and 

the impedance of the circuit. Electrical impedance, like 

resistance, is expressed in ohms. Electrical impedance is 

the vector sum of electrical resistance, capacitive reactance, 

and inductive reactance. 

Thus, significant voltage drop is due to long transmission 

distance of approximately 186 km from Osogbo to Akure 

neglecting the cable size. Additional voltage drop occur 

again during distribution from the 132 KV transmission 

station (Omotosho Work Centre) in Akure to major load 

centers in Akure and its environs which results in frequent 

low voltages to consumers as can be seen from Fig. 1. 
 

3.2 Individual Power Transmitted From Osogbo and 

Distributed to Akure and Its Environs. 

 Fig. 3(a) and (b) present the total current 

distributed to Akure area 1(T2B_Akure) and Akure area 2 

(T2C_Akure). It can be seen that there is power outages as 

indicated by the blank spaces in Fig. 3(a) due to several 

factors such as those shown in Fig. 1 as well as several 

other hourly reading sheets used in this study though not 

shown here for space economy. The total power distributed 

to and consumed by Akure area1 in terms of current would 

have been approximately the same as that distributed to and 

consumed by Akure area 2 (T2C_Akure) except for the 

power outage periods as shown in Fig. 3(a). According to 

the Omotosho Work Centre in Akure, the areas that make 

up Akure area 1 (T2B_Akure) are Oyemekun and Olle-Eda 

while those that make up Akure area 2 (T2C_Akure) are 

Isinkan, Ondo road, Ajipowo and Ilesha road. 

According to the PHCN Hourly Reading Sheet, the five 

towns that make up the so-called Akure environs are Oba-

Ile, Iju, Owena, Owo and Igbara-Oke; and the total power 

distributed to these areas from the 132KV transmission 

station in Akure are shown respectively in Fig. 3(c) through 

Fig. 3(g). 

Power distribution at the 132KV transmission state from 

the Omotosho Work Centre in Akure are as follows: Akure 

Area 1 (T2B_Akure) and Akure Area 2 (T2C_Akure) share 

a common 30MVA transformer called T2A and the total 

current distributed to Akure area 1 and 2 are as follows: 1). 

the total current distributed to Akure area 1 (T2B_Akure) is 

250 AMP; and 2). the total current distributed to Akure 

area 2 (T2C_Akure) is 250 AMP. Thus, the total current 

distributed within Akure is from T2A is 500 AMP. 

Owena and Igbara-Oke share a 30 MVA transformer 

called T1A and the total current distributed to these areas is 

as follows: the total current distributed to Owena is 150 

AMP; the total current distributed to Igbara-Oke is 150 

AMP; and the total current from T1A is 300 AMP. 

However, Owo, Oba-Ile, and Iju share a separate 60MVA 

transformer called T3A and the total current distributed to 

these areas is as follows: the total current distributed to 

Owo is 300 AMP; the total current (AMP) distributed to 
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Fig. 3: Graph of total power in terms of current distributed from the 132kV Omotosho transmission station in Akure to: (a) 

T2B_Akure, (b) T2C_Akure, (c) Oba_Ile, (d) Iju, (e) Owena, (f) Owo and (g) Igbara_Oke. 

 

Oba-Ile is about 200 AMP; the total current distributed to 

Iju is 200 AMP; and the total current from T3A is 700 

AMP. 

The total current rating of the three transformers for 

power distribution to Akure area 1 (T2B_Akure) and area 2 

(T2C_Akure), Oba-Ile, Iju, Owena, Owo and Igbara-Oke is 

1500 AMP. If we compare the total current distributed to 

Akure and its environs, it can be seen that it is equal to the 

total current received in Akure. Therefore, the total current 

received is equal to the total current distributed. 
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3.2.1 Factors Affecting Power Consumption 

1). Time Factor: The time factor includes the time of the 

year, the day of the week, and the hour of the day. There 

are important differences in load between weekdays and 

weekends. The load on different weekdays can also 

behave differently. For example, Mondays and Fridays 

being adjacent to weekends, may have structurally 

different loads than Tuesdays through Thursdays. 

2). Seasonal Variation: the power consumed during one 

week in winter cold due to increasing use of electric 

heaters differs from the power consumed during one 

week in summer warm, which also increases due to the 

use of air conditioning equipments. 

3). Economic Factors: This estimates the relationship 

between energy consumption and factors influencing 

consumption. The economic approach classified 

consumers of utility industry into residential, 

commercial and industrial consumers. Electric utility 

industry is more responsive to commercial and 

industrial consumers than residential consumers. 

4). Population Size: This has to do with the numbers of 

domestic consumers of electricity. The demand for 

electricity is a function of the number of domestic 

consumers in the market. Factors such as the sizes of the 

houses, the age of equipment, technology changes, 

consumers behaviour e.t.c. influence the demand for 

electricity significantly. 

 

3.2.2 Interpretation and Discussion of the Power-

Current Relationship 

Considering the first row of Fig. 1 as an example, it can 

be seen in the first row that the expected power is 

approximately 76.23 MW while the total power transmitted 

and consumed within Akure and its environs is 31.5 MW, 

which is less than half of the expected power due to several 

factors as highlighted above. As can be seen in Fig. 2(a), 

there are periods of zero voltages which are caused by 

some factors such as the two shown in Fig. 1 and four 

others not shown here for space economy. Besides the two 

shown in Fig. 1, in the charts used for this study, we have 

the following: 1). Blackout, Loss of Supply, and/or No 

Reading which are periods when there is no power supply 

from Osogbo Area Control station.; and 2). Planned Outage 

and/or System Collapse (Unplanned Outage) which occur 

when Osogbo Area Control station is shutdown for 

transformer, equipment or routine maintenance during 

which period there is no power supply from Osogbo. 
 

4. MATHEMATICAL MODELS OF DYNAMIC 

SYSTEMS AND THE DEVELOPMENT OF THEIR 

MODEL PREDICTORS 

The method of representing the behaviour of dynamical 

systems by vector difference or differential mathematical 

relationships is well established in system and control 

theories [12–15].  These relationships constitute the so-

called mathematical model of the system. One very 

common method of modeling the behaviour of a p-input q-

output multivariable plant in the discrete time space is by 

the family of the following general mathematical 

relationship [12–15]: 
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d is the system delay, A, C, D and F are monic polynomial 

matrices in the backward shift operator
1

z
−

 Their 

dimensions are 
a an n×   , ,a d dq n q n q n× × ×  and 

fq n× and their degree , , , ,n m c l  respectively; B is a 

bn p×  stable polynomial matrix (i.e. all its zeros are all 

inside the unit circle) of degrees of degree  r . The term 

monic implies   that the leading coefficients of A, C, D and 

F are identity matrices of appropriate dimension to avoid 

division by zeros and also because the magnitude of ( )e k  

can be adjusted to compensate for this if necessary. In this 

discussion, it is assumed that: 1) the time delay d  of the 

system is known, i.e. 1d = ; 2) the coefficients of the 

polynomials matrices 1 1 1 1( ), ( ), ( ), ( )A z B z C z D z
− − − −  

and 1( )F z
−  are unknown; 3) the polynomials matrices 

1 1( ), ( ),A z B z
− −  1 1( ), ( )C z D z

− −  and 1( )F z
−  are relatively 

prime; and 4) that the upper bound on the order or each 

polynomial matrix is known or can be specified exactly. 

Since the noise term ( )e k  enters the general model 

Equation (1) as a direct error term, the model of Equation 

(1) is often called an equation error model [12, 15]. 

Depending on how the five parameters A, B, C, D and F 

are combined, several model structures can be obtained 

from Equation (1) 

The choice of the models that will represent the noise 

disturbances is as important as the choice of the system 

model. Depending on the different assumptions made about 

the spectral density of the noise, ( )e k  and how the noise is 

assumed to enter the system given by Equation (1); 32 

different model structures can be derived from Equation (1) 

based on the combination of the five parameters A, B, C, D 

and F [15]. However, the model structures considered in 

the present work is limited to the structures derived from 

the combination of the four parameters A, B, C and F, that 

is ignoring the D parameter in Equation (1). The reason for 

choosing these four parameters is because, as literature 
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shows, they were adequate for the modeling needs of the 

model predictive control (MPC) for a wide range of 

dynamical systems [12, 16]. The combination of A, B and C 

gives an AutoRegressive Moving Average with eXogenous 

inputs (ARMAX) model while the combination of B and F 

results in an output error (OE) model. The OE model is a 

form of equation error model [12, 13, 15] and can also take 

the form based on A, B, C and D which is widely used in 

MPC literature [12, 16, 17]. Rather than using A, B, C and 

D to describe the OE model, the choice of using B and F is 

adopted in this work for the OE model [12]. 

Let ( )kθ  be a parameter vector which encapsulates the 

model parameters given in Equation (2) and defined as: 

1 1 1

1 1

( ) , , , , , , , , ,

, , , , ,

a b c

d f

n n n

T

n n

k A A B B C C

D D F F

θ = − − 


− − − −  

… … …

… …

 (3) 

Since the exact value of the parameter vector ( )kθ  in 

Equation (3) is unknown, a parameterized set of model 

structures Θ  can be defined as a set of candidate models 

given as: 

ˆ: ( ) ( )k k
ν

θθ θΘ ∈ ⊂ ℜ →�    (4) 

where θ�  is some subset of 
νℜ  inside which the search 

for a model is carried out; ν  is the dimension of ( )kθ ; 
ˆ( )kθ  is the desired model associated with the parameter 

vector ( )kθ  and contained in the set of models 

{ }1 2( ) , ( ), , ( )k k kτθ θ θΘ = … ; 
1 2( ) , ( ), , ( )k k kτθ θ θ… } 

Each member of this set is a distinct value of ( )kθ ; and 

1,2, ,max iterτ = …  is the number of iterations required to 

determine the ˆ( )kθ  from Θ . 

Thus, the minimum variance (one-step) ahead predictor 

of Equation (1) at time k  based on the system information 

up to the time 1k −  can be expressed as 
1 1

1 1

1
1

1

( ) ( )ˆ( | 1, ( 1)) ( )
( ) ( )

( )
1 ( ) ( )

( )

d B z D z
Y k k k z U k

F z C z

D z
A z Y k

C z

θ
− −

−

− −

−
−

−


− − = 




  + −    

 (5) 

Note the inclusion of ( )kθ  as an argument to indicate that 

the model structure represents a set of models. For 

notational convenience, the 1k −  will be omitted 

henceforth. The prediction error ( , )kε θ  can be computed 

directly from Equation (1) and Equation (5) as follows: 

1 1
1

1 1

ˆ( , ( )) ( ) ( , ( ))

( ) ( )
( ) ( ) ( )

( ) ( )

d

k k Y k Y k k

D z B z
A z Y k z U k

C z F z

ε θ θ
− −

− −

− −

= −


 
= − 

 

 (6) 

By introducing  
1

1

( )
( , ( )) ( )

( )

d B z
d k k z U k

F z
θ

−
−

−
=�  (7) 

and  
1( , ( )) ( ) ( ) ( , ( ))v k k A z Y k d k kθ θ−= − ��  (8) 

and using Equation (7) and Equation (8), Equation (6) can 

be expressed as 

1

1

( )ˆ( , ( )) ( ) ( , ( )) ( , ( ))
( )

D z
k k Y k Y k k v k k

C z
ε θ θ θ

−

−
= − = �  (9) 

Let the regression vector (the so-called state vector) 

derived from the difference equation form of Equation (1) 

be: 

[

, ( )

( , ( )) ( 1), , ( ),

( ), , ( ),

( 1, ( )), , ( , ( )),

( 1, ( )), , ( , ( )),

( , ( )), , ( )

a

b

c

f

d d k

k k Y k Y k n

U k d U k d n

k k k n k

d k k d k n k

v k n k v k n θ

ϕ θ

ε θ ε θ

θ θ

θ


= − − 

− − −


− − 


− − 
− −  

…

…

…

� �…

� �…

 (10) 

Using the parameter vector given in Equation (3) and the 

regression vector in Equation (10) above, equations 

Equation (7) and Equation (9) can be expressed 

respectively as: 

1

1

( , ( )) ( ) ( )

( 1, ( )) ( , ( ))

b

f

n b

n f

d k k B U k d B U k d n

F d k k F d k n k

θ

θ θ

= − + + − − 


+ − + + − 

� �

� ��
 (11) 

1

1

( , ( )) ( 1, ( )) ( , ( ))

( , ) ( ) ( )

c

d

n c

n d

k k C k k C k n k

v k D v k d D v k d n

ε θ ε θ ε θ

θ

= − + + − 


+ + − + + − − 

�

� � ��
(12) 

Inserting ( , )v k θ�  from Equation (12) and substituting 

( , )d k θ�  from Equation (11) into Equation (6) gives 

( , ( )) ( ) ( , ( )) ( )k k Y k k k kε θ ϕ θ θ= −    (13) 

Thus, the one-step ahead predictor can then be expressed 

as: 

ˆ( , ( )) ( , ( )) ( )Y k k k k kθ ϕ θ θ=    (14) 

 

Remarks on the Disturbance Model 

The disturbance model, i.e. the second term in Equation 

(1), plays significant role in modeling the overall system 

model behaviour. Let the disturbance model be defined as 
1

1

( )
( )

( )
M

C z
D e k

D z

−

−
=     (15) 

In MPC literature, the model of Equation (15) is usually 

called CARIMA (controlled auto-regressive and integrated 

moving average) model [12, 16, 17]. In practice, ( )e k  

cannot be measured but it can be estimated as deterministic 

or stochastic noise [12, 14, 15, 18]. 
 

4.1 Autoregressive Moving Average with Exogenous 

Input (ARMAX) Model 

Considering the disturbance model in Equation (15), the 

stochastic case is somewhat more involved. Consider the 

case of modeling a stationary, zero-mean white noise 

process, namely
2 2{ ( ) }E e k σ= , { ( ) ( )} 0E e k e k λ− =  

for all 0,λ ≠  the probability distribution of ( )e k  being 

the same for all ( ),k  and each ( )e k  being independent of 

( )e λ  if kλ ≠ ; where the term { }E i  implies the 

expectation or mean value of its arguments. Then, if 
1 1( ) / ( )C z D z

− −
 is an asymptotically stable transfer 
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function, the (15) will be a stationary process with spectral 

density given by 
2

2

2

( )
( )

( )

j T

SD
j T

C e

D e

ω

ω
ω σ

−

−
Φ =     (16) 

where σ  is the spectral density. Note that since 
2

( ) ( ) ( )j T j T j TC e C e C eω ω ω− − −= ⋅ , it is always possible 

to choose 
1( )C z

−
 such that all its roots lie inside the unit 

disc, i.e. without restricting the spectral densities which can 

be modeled in this way. Also for the same reason, the 

factors of 
1( )C z

−
 do not affect the spectral density. This 

property shows and guarantees a useful way of selecting 
1( )C z

−
 to lie inside the unit circle for models with moving 

average such as ARMAX and OE models including the 

SSIF models. 

As in the previous sub-section 4.1, with the assumptions 

on Equation (15) and setting 
1 1( ) ( ) 1D z F z

− −= =  in 

Equation (1), Equation (1) essentially reduces to an 

autoregressive moving average with exogenous input 

(ARMAX) model structure, which is usually unstable but 

finds applications in wide range of systems with coloured 

noise. From Equation (5), the ARMAX model predictor 

becomes: 
1

1

1

1

( )ˆ( | 1, ( 1)) ( )
( )

1
1 ( ) ( )

( )

d B z
Y k k k z U k

C z

A z Y k
C z

θ
−

−

−

−

−


− − = 




  + −    

  (17) 

where the regression vector and the adjustable parameters 

of the ARMAX model predictor are given respectively 

from Equation (10) and Equation (3) as 

1 0 0

( , ( )) [Y( 1 ( )), , Y( (k)),

( ), , ( ),

( 1, ( )), , ( , ( ))]

[ , , , B , , B , , , ]
a b c

ARMAX

c

T
ARMAX n n n

k k k k k r

U k d U k d m

k k k n k

A A C C

ϕ θ θ θ

ε θ ε θ

θ

= − −


− − − 
− − 
= − − … 

…

…

…

… …

 (18) 

Note that the moving average filter 1( )C z
−  must be 

estimated at each time step and must equally lie within the 

left-hand plane of the unit circle for stability [12]. 

 

4.2 Output-Error (OE) Model 

The OE is a special stochastic case which is achieved by 

setting 1 1 1
( ) ( ) ( ) 1A z C z D z

− − −= = =  with the assumption 

that ( )e k  is a zero-mean white noise with finite variance 

while its first few terms are made non-zero. Additional 

assumption on ( )e k  is that it is independent of past inputs 

and that it can be characterized by some probability 

function [12, 15]. With these assumptions on Equation 

(15), Equation (1) essentially reduces to an output error 

(OE) model structure, which is sometimes unstable for 

wide range of operations due to the integrator term 
1(z )F

−
 

in Equation (1). The OE model or parallel model 
structure is used if the only noise affecting the system 

is white measurement noise. Thus, from Equation (5), 

the OE model predictor becomes: 
1

1

( )ˆ( | 1, ( 1)) ( ) ( )
( )

d B z
Y k k k z U k e k

F z
θ

−
−

−
− − = +  (19) 

corresponding to the following choice of G and H given as: 
1

1

1

1

( )
( , )

( )

( , ) 1

d B z
G q z

F z

H q

θ

θ

−
− −

−

−


= 




= 

    (20) 

The OE model predictor for this system is given from 

Equation (5) and Equation (19) as: 

1

1

1 1

(z )
Ŷ( (k)) ( )

(z )

ˆ( ) U( ) [1 (z )]Y( (k))

( , ( )) ( )

d

d

T

B
k z U t

F

z B q k F k

k k k

θ

θ

ϕ θ θ

−
−

−

− − −


= 




= + − 


= 



(21) 

where the regression vector and the adjustable parameters 

of the OE model predictor are given respectively as 

0 1

ˆ ˆ( , ( )) [Y( 1 ( )), ,Y( (k)),

( ), , ( )]

[B , , B , , , ]
b f

OE

T
OE n n

k k k k k r

U k d U k d m

F F

ϕ θ θ θ

θ

= − −


− − − 


= − − 

…

…

… …

 (22) 

Therefore, for the predictions to be stable, the roots of 
F must be inside the unit circle. Note that the OE model 

predictor uses the system outputs ( )Y k  and the model 

parameters ( )kθ  to predict future outputs ˆ( )Y k . 

 

4.3 State–Space Innovations Form (SSIF) 

 The state-space description is a widely used 

alternative to the input-output model structures such as the 

ARMAX and the OE model structures described in the last 

two subsections above. For a system that can be described 

by the following set of coupled first-order difference 

equation given by: 

( 1) ( ( )) ( ) ( ( )) ( ) ( )

( ) ( ( )) ( ) ( )

x k A k x k B k U k w k

Y k C k x k v k

θ θ

θ

+ = + + 


= + 
 (23) 

where x(k) and x(k+1) are the state variables at the current 

time step (k) and the next time step (k+1) respectively, w(k) 

and v(k) are white noise signals independent of the control 

signal, U(k) and the expectation value 

 
( ( )) ( ( ))( )

( ) ( )
( ) ( ( )) ( ( ))

w wvT T

T
wv v

R k R kw k
w k v k

v k R k R k

θ θ

θ θ

      =             
E (24) 

It has been shown in [19, 20] that the optimal one-step 

ahead model predictor for system Equation (23) takes the 

following form: 

ˆ ˆ( 1, ( )) ( ( )) ( , ( )) ( ( )) ( )

( ( )) ( , ( ))

ˆ ˆY( ( )) ( ( )) ( , ( ))

x k k A k x k k B k U k

K k k k

k k C k x k k

θ θ θ θ

θ ε θ

θ θ θ

+ = +


+ 


= 

 (25) 
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where the regression vector and the adjustable parameters 

of the SSIF model predictor are given respectively from 

Equation (10) and Equation (3) as 

1 0 0

( , ( )) [Y( 1 ( )), ,Y( (k)),

( ), , ( ),

( 1, ( )), , ( , ( )),

( 1, ( )), , ( , ( )),

( 1, ( )), , ( , ( ))]

[ , , , B , , B , , , ]
a b c

SSIF

c

c

c

T
SSIF n n n

k k k k k r

U k d U k d m

k k k n k

v k k v k n k

w k k w k n k

A A C C

ϕ θ θ θ

ε θ ε θ

θ θ

θ θ

θ

= − −


− − − 
− − 


− − 
− −


= − − … 

…

…

…

…

…

… …

 (26) 

Note that the moving average filter 
1( )C z

−
 must be 

estimated at each time step and must equally lie inside the 

left-hand plane of the unit circle for stability [12]. 

Omitting θ  for notational convenience, K(θ ) can be 
found from: 

 1[ ][ ]T T
wv vK APC R CPC R

−= + +    (27) 

where P(θ ) represents the positive semi-definite solution 

to the stationary Ricatti equation given as: 

1[ ][ ] [ ]

T

T T T T
w wv v wv

P APA

R APC R CPC R APC R
−

= + 


− + + + 
 (28) 

The optimal predictor is also known as the Kalman filter 

and the matrix K(θ ) is referred to as the Kalman gain. The 

form of ˆ( 1, ( ))x t kθ+  in Equation (25) is called the state 

space innovations form. 

A simple relationship between the state-space 

innovations form and the general input-output form exist 

from [15] as follows: 

[ ]
11( , ( )) ( ( )) ( ( )) ( ( ))G z k C k zI A k B kθ θ θ θ

−− = −  (29) 

[ ]
11( , ( )) ( ( )) ( ( )) ( ( )) IH z k C k zI A k K kθ θ θ θ

−− = − +  (30) 

By some matrix manipulations, it can be verified that the 

poles of the predictor are the eigenvalues of the matrix A – 

KC [19, 20]. The set Dm is thus given by: 

( ) | ( ( )) ( ( )) ( ( )),
m

k A k K k C k
D

inside the unit circle

θ θ θ θ− 
=  
 

  (31) 

When estimating state-space models, the elements in 

( ( ))K kθ  are typically estimated directly rather than the 

detour of estimating the covariance matrices and solving 

the Ricatti equation before computing ( ( ))K kθ . 

The selection of a proper parameterization, i.e., the 

structure of A, B, C and K is a problem that disfavours the 

innovations form. It is far more involved than the input-

output model structures. The problem is that a fully 

parameterized model structure, meaning that all elements in 

A, B, C and K must be estimated, is generally not 

identifiable from a set of input-output data. This is because 

such a structure contains more adjustable parameters than 

necessary: the same input-output relationship can be 

described by different choices of A, B, C and K. Sometimes 

the parameterization can be based on physical insight, 

which may remedy the problem. However, when taking a 

black-box approach some kind of “generic” identifiable 

parameterization is required. In the classical single-input 

single-output (SISO) case, a number of the so-called 

canonical forms exist and are frequently used for 

transforming a transfer function description to a state-space 

description [20]. In the modern multiple-input multiple-

output (MIMO) case, it is more complicated. Ljung [15] 

proposed MIMO extensions called overlapping forms that 

are identifiable and thus suitable in a system identification 

context. According to Ljung’s Appendix A [15] guidelines 

for selecting a parameterization are recapitulated in the 

following Corollary 1 (where n specifies the model order 

and ny specifies the number of past outputs): 

Corollary 1: 

“Let ( ( ))A kθ  initially be a matrix filled with zeros 

and with ones along the super-diagonal. Let the row 

numbers be 1 2, , , nyr r r… , where nyr n= , be filled 

with parameters. Take 
0 0r =  and let ( ( ))C kθ  be 

filled with zeros, and then let row i have a one in 

column 
1 1ir − + . Let ( ( ))B kθ  and ( ( ))K kθ  be 

filled with parameters”. 

Based on Ljung’s [15] guidelines stated in Corollary 1 

above, the structural decisions to be made are thus the 

model order (n) and a set of row indices, { }
1

1

yn

i i
r

−

=
. 

Furthermore, note that the moving average filter 
1( )C z

−
 

must be estimated at each time step and must equally lie 

within the left-hand plane of the unit circle for stability 

[12]. 

 

5. The ARMAX, OE and SSIF Model Validation 

Algorithms 

5.1 Validation of the Output Predictions of the Model 

Predictors 

Network validations are performed to assess to what 

extend the trained model predictors have approximated and 

captured the behaviour of the underlying dynamics of a 

system and as measure of how well the model being 

investigated will perform when deployed for the actual 

system modeling and future predictions [12, 15, 21]. 

The first test involves the comparison of one-step output 

predictions of the true training data using the three model 

predictors given in Equation (17), Equation (21) and 

Equation (25) and the evaluation of their respective 

corresponding prediction errors using Equation (13). 

The second test involves the comparison of one-step 

output predictions of the true validation data that was not 

used during the model predictor development and the 

evaluation of their respective corresponding prediction 

errors using Equation (13). 

 

5.2 K-Step Ahead Validation of the Output Predictions 

of the Model Predictors 

The third method is the K-step ahead predictions [12, 15] 

where the outputs of the trained network are compared to 

the unscaled output training data. The K-step ahead 

predictor follows directly from Equation (8) and for 
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( )kϕ =  ˆ( )k Kϕ +  and ˆ( ) ( )k kθ θ= , takes the following 

form: 

ˆ ˆˆ ˆ ˆ(( ) | , ) ( , ( ), ( ))NY k K k J Z k K kθ ϕ θ+ = +   (32) 

where ˆ ˆˆ( ) [ (( 1)| ), , (( ) | ),k K U k K U k K mϕ θ θ+ = + − + −…   

ˆ ˆˆ ˆ(( 1) | ), , (( 1 min( , )) | ),Y k K Y k K k nθ θ+ − + + −…

 
ˆ ˆ(( 1) | ), , (( max( ,0) | )]TY k K Y k K n kθ θ+ − + − −…

 
The mean value of the K-step ahead prediction error 

(MVPE) between the predicted output and the actual 

training data set is computed as follows: 

ˆˆ( ) (( ) | , )
100%

( )

N

k m K

Y k Y k K k
MVPE mean

Y k

θ

= +

 − +
= ×  

 
∑   (33) 

where ( )Y k  corresponds to the actual output training data 

and ˆˆ(( ) | , )Y k K k θ+  the K-step ahead predictor output. 
 

5.3 Akaike’s Final Prediction Error (AFPE) Estimate 

The fourth validation test is the Akaike’s final prediction 

error (AFPE) estimate based on the weight decay parameter 

D [12, 13, 15]. A smaller value of the AFPE estimate 

indicates that the identified model approximately captures 

all the dynamics of the underlying system and can be 

presented with new data from the real process. Evaluating 

the ˆ( , ( ))k kε θ  portion of Equation (13) using the trained 

network with ˆ( ) ( )k kθ θ=  and taking the expectation 
ˆ{ ( , ( ))}

N
J Z kθE  with respect to ( )kϕ  and ( )d k�  leads to 

the following AFPE estimate: 

ˆ ˆˆ ( ( )) ( ( ))N Na

b

N p
F Z k J Z k

N p
θ θ γ

+
≈ +

−
  (34) 

where 

{ }1 1
ˆ ˆ ˆ ˆ( ( )) ( ( )) ( ( )) ( ( ))ap V k V k D V k V k Dθ θ θ θ

− −
   = + +   tr

 
and {}⋅tr  is the trace of its arguments and it is computed as 

the sum of the diagonal elements of its arguments, 
* * 1ˆ ˆ{ ( )[ ( ) (1 ) ] }

b
p tr V V N Dθ θ −= +  and γ  is a positive 

quantity that improves the accuracy of the estimate and can 

be computed according to the following expression: 
1 1

2

ˆ( ) ˆ ˆ ˆ ˆ[ ( )] [ ( )] [ ( )] ( )
Tk D D D

R k R k R k D k
N NN

θ
γ θ θ θ θ

− −
   

= + +   
   

 

 

6. Simulation Studies and Discussion of Results 

The ARMAX, OE and SSIF mathematical models with 

their respective model predictors developed in Section 4 as 

well as the model validation algorithms discussed in 

Section 5 are applied for the modeling, prediction and 

validation of power transmission and distribution in Akure 

and its environs based on the available obtained data 

evaluated and discussed in Section 3. 

 

6.1 Estimating the ARMAX, OE and SSIF Models 

The input vector to the ARMAX, OE and SSIF model 

predictors are the past values of the inputs (nb) and outputs 

(na) as well as the order of moving average filter (nc) which 

constitute the regression vector each defined from Equation 

(10) for ARMAX, OE and SSIF as [n , n , n ]ARMAX a b cϕ =  

and [n , n ]OE b fϕ =  and [n , n , n ]SSIF a b cϕ =  

respectively. Note that given A, B and C with initial 

random noise, ( )P θ  can be computed from Equation (28) 

and subsequently ( )K θ  from Equation (27). The inputs 

are the past values contained in the regression vector while 

the outputs are the predicted values of ˆ( )Y k  given by 

Equation (17), Equation (21) and Equation (25) for the 

ARMAX, OE and SSIF model predictors respectively 

while the optimal value of the adjustable parameters of the 

models ( )ARMAX kθ , ( )OE kθ  and ( )SSIF kθ  defined in 

Equation (18), Equation (22)  and Equation (26) becomes 
ˆ ( )ARMAX kθ , ˆ ( )OE kθ  and ˆ ( )SSIF kθ . 

For assessing the model prediction performances, the  

model predictors was trained for τ  = 500 epochs (number 

of iterations) with the following selected parameters: 

13p = , 13q = , 4an = , 4bn = , 4cn = , 

( , ( )) 156ARMAX k kϕ θ =  (ARMAX), ( , ( )) 105OE k kϕ θ =  

(OE) and ( , ( )) 156SSIF k kϕ θ =  (SSIF). The details of these 

parameters are discussed in Section 4; where p  and q  are 

the number of inputs and outputs of the system, ,a bn n  

and 
cn  are the orders of the regressors in terms of the past 

values, ( , ( ))k kϕ θ  is the total number of regressors (that 

is, the total number of inputs to the model predictor). 

The 3,950 data each collected for the thirteen parameters 

selected and used for the present case study is divided 

arbitrarily into two parts: 3160 (80%) to form the training 

data used for estimating the three models while the 

remaining 790 (20%) is reserved for the three estimated 

model validation. 

 

6.2 Validation of the Estimated ARMAX, OE and SSIF 

Models 

According to the discussion on model validation 

algorithms discussed in Section 5, an estimated model can 

be used to model a process once it is validated and 

accepted, that is, the model demonstrates its ability to 

predict correctly both the data that were used for its 

development and other data that were not used during the 

model development. 

The results shown in Fig. 4 having (a) to (f) and Fig. 5 

having (a) to (g) corresponds to the one-step ahead output 

predictions of the training data, Fig. 6 having (a) to (f) and 

Fig. 7 having (a) to (g) corresponds to the one-step ahead 

output predictions of the validation data, and 8 having (a) 

to (f) and Fig. 9 having (a) to (g) corresponds to the five-

step ahead output predictions or the training data 

respectively for the thirteen parameters considered, namely: 

1) TVFO, 2) TVRA, 3) TCFO, 4) TCRA, 5) TPFO, 6) 

TPRA, 7) T2B_Akure, 8) T2C_Akure, 9) Oba_Ile, 10) Iju, 

11) Owena, 12) Owo, and 13) Igbara_Oke. Their respective 

corresponding prediction errors are given in Table 1 for the 

one-step ahead training, one-step ahead validation and 5-

step ahead prediction errors. 
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6.3 Validation by the One-Step Ahead Predictions 

Simulations 

In the one-step ahead output prediction method, the 

errors obtained from one-step ahead output predictions of 

the estimated model are assessed. In Fig. 4(a)–(f) and Fig. 

(a) – (g), the graphs for the one-step ahead predictions of 

the scaled training data (blue -) against the trained network 

output predictions (red --*) using the estimated ARX and 

ARMAX models are shown respectively for 500 epochs. 

The mean value of the one-step ahead prediction errors 

are given in the 3rd, 4th and 5th columns of Table 1 for 

ARMAX, OE and SSIF respectively. It can be seen in these 

figures that the output predictions of the training data based 

on the OE model closely match the original training data 

while Fig. 4(a), (c), (d), (f) and Fig. 5(c), (e), (g) and (g) 

shows situations where the predictions based on the 

ARMAX and the SSIF models are completely out of phase 

in tracking the true training data with much larger errors 

when compared to the errors obtained based on the OE 

model as shown in the 3rd, 4th and 5th columns of Table 1. 

These small one-step ahead prediction errors are 

indications that the OE model captures and approximate the 

dynamics inherent in the data to an appreciable degree of 

accuracy and that the ARMAX and SSIF models predictor 

can be used for the future power transmission and 

distribution predictions. 

Furthermore, the suitability of the ARMAX, OE and the 

SSIF model predictors for the model identification and 

prediction for use in real power transmission and 

distribution predictions is investigated by validating the 

estimated models with the 790 validation data that was not 

used during model predictor development. Graphs of the 

performances of the estimated ARMAX, OE and SSIF 

model predictor for one-step ahead output predictions (red -

-*) of the validation data with the actual validation data 

(blue -) using the ARMAX, OE and the SSIF models are 

shown in Fig. 6(a)–(f) and Fig. 7(a)–(g) for the thirteen 

parameters considered in the present study. Again, as one 

can observe in these figures that the output predictions of 

the validation data based on the OE model closely match 

the validation data while the predictions shown in Fig. (a), 

(c), (d), (f) and Fig. 7(c), (f) based on the ARMAX and the 

SSIF models are completely out of phase with the true 

validation data with much larger errors when compared to 

the errors obtained based on the OE model as shown in the 

6th, 7th and 8th columns of Table 1. These small one-step 

ahead prediction errors of the validation data are 

indications that the ARMAX model can again be used for 

power transmission and distribution predictions in real 

scenarios. 

 

6.4 K–Step Ahead Prediction Simulations 

The results of the K-step ahead output predictions (red --

*) using the K-step ahead prediction validation method 

discussed in Section 5 for 5-step ahead output predictions 

(K = 5) compared with the original training data (blue -) are 

shown in Fig. 8(a)–(f) and Fig. 9(a)–(g) for the estimated 

ARMAX, OE and the SSIF models. Again, the value K = 5 

is chosen since it is a typical value used in most model 

predictive control (MPC) applications to investigate the 

capabilities of trained model for future distant predictions. 

The comparison of the 5-step ahead output predictions 

performance by the ARMAX, OE and the SSIF models 

indicate the superiority of the OE model predictor over the 

ARMAX and SSIF model predictors for distant predictions. 

This is further justified by the small output prediction 

errors produced by OE model when compared to relatively 

large and sometimes infinite (NaN) error produced by 

ARMAX and SSIF model as can be observed in the 9th, 10th 

and 11th columns of Table 1. 

Table 1: One-step ahead training, one-step ahead validation and 5-step ahead prediction errors. 

  Training Errors Validation Errors 5-Step Errors AFPE 

S/N Parameters ARMAX OE SSIF ARMAX OE SSIF ARMAX OE SSIF ARMAX OE SSIF 

1. TVFO 87.6704 28.8931 -4.8525e13 89.4037 29.4414 2.7417e+03 113.9725 113.2539 274.5787 6.6244 0.5851 6.6195 

2. TVRA 46.2844 17.0458 18.0260 47.2540 17.3787 18.4159 61.3055 21.2727 61.2671 5.3343 0.3071 5.3434 

3. TCFO 120.2449 22.1596 4.7105e+236 51.3808 26.5078 5.0092e+98 475.9057 74.6507 2.1058e223 10.0144 2.9884 10.0150

4. TCRA 2.0042e+20 20.2810 136.6336 1.4761e+08 21.7391 78.6518 4.9322e+06 75.9705 474.8910 10.0092 0.9838 10.0136

5. TPFO 0.0433 3.5998e-02 11.4484 4.0586 5.6247e-03 12.2301 57.5389 37.5282 57.5694 5.7821 1.7610 5.7852 

6. TPRA 0.1706 1.3346 NaN 1.5345 0.2014 NaN 43.7927 22.7689 NaN 4.0029 0.9816 4.0101 

7. T2B_Akure 0.7435 2.5805e-02 5.5970 3.6121 0.1253 7.7175 67.0190 56.9740 67.0159 7.4276 2.4064 7.4694 

8. T2C_Akure 21.9985 17.0889 65.9152 20.4470 16.8652 60.9571 120.6421 82.6514 122.6159 8.0102 4.915e-3 8.0318 

9. Oba_Ile 3.2293 0.4425 4.0827e+14 7.5012 3.0375 8.5009e+04 72.8136 62.6882 1.7478e+03 7.4295 1.4078 7.4625 

10. Iju 3.6066 2.8008 4.6102 5.7658 2.9807 6.0487 34.9263 33.0915 34.9619 6.4340 0.4146 6.4520 

11. Owena 21.9652 5.2488 1.4228e+291 22.9434 5.6243 2.1604e+89 48.2391 29.2810 NaN 6.9458 0.9266 6.9559 

12. Owo NaN 9.0823 209.1187 1.2432e+99 10.7283 229.6607 NaN 62.6867 92.7639 7.9972 0.9765 8.0265 

13. Igbara_Oke 40.1283 4.9606 18.3602 5.6050 0.8871 20.6645 39.3378 28.2818 39.3772 6.8272 0.8040 6.8425 
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4.3.3 Akaike’s Final Prediction Error (AFPE) Estimates 

The implementation of the AFPE algorithm discussed in 

Section 5.3 for the regularized criterion for the ARMAX, 

OE and the SSIF model predictors and their respective 

AFPE estimates are given in the 12
th

, 13
th

 and 14
th

 columns 

of Tables 1. These relatively small values of the AFPE 

estimate obtained from the OE model predictor indicates 

that the OE model captures the underlying dynamics of the 

thirteen parameters under investigation to appreciable 

degree of accuracy and that the model parameters are 

suitable without the OE model being over-estimated [15, 

21]. This in turn implies that optimal OE model parameters 

have been selected including the weight decay parameters. 

Again, the results of the AFPE estimates computed for 

three model predictors based on the OE model are much 

smaller when compared to those obtained using ARMAX 

and the SSIF models. 

 

7. CONCLUSION 

This paper presents the formulation of an ARMAX, OE 

and SSIF model predictors for model identification and 

prediction of power transmission and distribution 

predictions in Akure and its environs. The 51,350 data used 

in the study has been obtained from the Power Holding 

Company of Nigeria, Akure. The results obtained from the 

application of these three model predictors for the modeling 

and prediction of power transmission and distribution 

predictions as well as the validation results show that the 

OE model outperforms the ARMAX and the SSIF models 

with much smaller predictions error and good prediction 

abilities with appreciable degree of accuracy and that the 

OE model predictor can be deployed for power 

transmission and distribution predictions in real scenarios. 

Although all three models are unstable but the relatively 

poor performances of the ARMAX and the SSIF models 

could be attributed to the poor estimation of the moving 

average filter coupled with the nonlinear nature of the 

power transmission and distribution data. Even though, it is 

assumed that the output of the OE model is unknown but 

estimated based on given inputs, the appreciable excellent 

performance of the OE model could be attributed to the 

absence of the moving average filter but with the 

availability of numerator and denominator model 

parameters which readily estimated with appreciation 

degree of accuracy. Thus, the next aspect of the work is on 

the dynamic modeling and nonlinear model identification 

of the multivariable nonlinear systems using nonlinear 

neural network-based approaches for all three model 

predictors developed here for performance comparison 

which may give much better predictions and good tracking 

of the data for much more reliable power transmission and 

distribution predictions. 
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Fig. 4: Comparison of the one-step ahead output predictions of the training data by ARMAX, OE and SSIF for: (a) TVFO, (b) 

TVRA, (c) TCFO, (d) TCRA, (e) TPFO and (f) TPRA. 
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Fig. 5: Comparison of the one-step ahead output predictions of the training data by ARMAX, OE and SSIF for: (a) T2B_Akure, (b) 

T2C_Akure, (c) Oba_Ile, (d) Iju, (e) Owena, (f) Owo, and (g) Igbara_Oke. 
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Fig. 6: Comparison of the one-step ahead output predictions of the validation data by ARMAX, OE and SSIF for: (a) TVFO, (b) 
TVRA, (c) TCFO, (d) TCRA, (e) TPFO and (f) TPRA. 
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Fig. 7: Comparison of the one-step ahead output predictions of the validation data by ARMAX, OE and SSIF for: (a) T2B_Akure, (b) 

T2C_Akure, (c) Oba_Ile, (d) Iju, (e) Owena, (f) Owo, and (g) Igbara_Oke. 
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Fig. 8: Comparison of the five-step ahead output predictions of the training data by ARMAX, OE and SSIF for: (a) TVFO, (b) TVRA, 

(c) TCFO, (d) TCRA, (e) TPFO and (f) TPRA. 
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Fig. 9: Comparison of the five-step ahead output predictions of the training data by ARMAX, OE and SSIF for: (a) T2B_Akure, (b) 
T2C_Akure, (c) Oba_Ile, (d) Iju, (e) Owena, (f) Owo, and (g) Igbara_Oke. 

 



R. A. O. Osakwe et al.: ARMAX, OE and SSIF Model Predictors for Power….. 

 
www.njpap.futa.edu.ng 

25 

[17] Normey-Rico, J. E. and Camacho, E. F. (2007): Control of 

Dead-Time Process, 2nd ed., London: Springer-Verlag.  

[18] Narendra, K. S. and Annaswamy, A. M. (1989): “Stable 

Adaptive Systems”. Englewood Cliff, NJ: Prentice-Hall.  

[19] Sӧderstrӧm,T. and Stoica, P. (1989): “System 

Identification”, Prentice Hall, London, U.K. 

[20] Kwakernaak, H. and Sivan, H. (1972): “Linear Optimal 

Control Systems”, John Wiley and Sons, New York. 

[21] Sjöberg, J. and Ljung, L. (1995): Overtraining, 

regularization, and searching for minimum in neural 

networks, International Journal of Control, vol. 62: 1391-

1408. 

  


