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Abstract 

Conventional Power Distribution Networks (PDNs) are passive in nature. With the incorporation of distributed generations 

(DGs) in electric power systems, such distinctive feature of a traditional PDN is being distorted. DG penetration into the power 

distribution networks leads to serious technical problems in their operations. In order to effectively control a modern PDN, it 

is imperative to ascertain the state of that network. Existing works on state estimation as applied to PDNs are mostly hindered 

by the unbalanced nature of the network and inadequate real-time measurements which lead to poor estimation of the network. 

In this paper the state (voltage magnitude and angle) of PDNs are estimated using a Deep Feed-Forward Neural Network 

(FFNNSE) technique which was then compared with two estimators in Ahmad et al., 2019 using Mean Absolute Deviation 

(MAD) as well as Mean Square Error (MSE) state performance metrics for testing on a local network. The proposed estimator 

was tested on the 33-bus and 69-bus IEEE standard networks as well as the Zaria local distribution network under Normal and 

Dynamic conditions. The Simulation was implemented in MATLAB 2019a environment for both 69-bus and 33-bus Networks 

with 7.41% and 12.0% MAD reduction respectively.  As it was clearly observed from the obtained results FFNNSE outperformed 

Artificial Neural Network State Estimator (ANNSE). It was however, performed excellently than WLSSE with the reduction of 

66.0% and 78.0% MAD for both Networks. The Performance of the FFNNSE was tested on a 50-bus local distribution network 

under normal and dynamic conditions (Bad data and Load Variation) the performance was good for all conditions with minimal 

MAD of 0.0045, 0.0049 and 0.0051 for normal, Bad Data and Load Variation conditions respectively. However, MSE for all 

cases were computed as 0.000176, 0.000202 and 0.000215 or normal and two dynamical operations respectively. The State 

Estimation approach results show the viability of the FFNNSE for real-time distribution networks. 
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1. Introduction 

Distribution System State Estimation (DSSE) is a process of 

determining the values of a system’s state variables using a 

limited number of measured data at certain locations in the 

system (Dehghanpour et al., 2018). Estimation in a power 

system has been considered as the most important part of the 

operation and management of a transmission system (Sandhya 

et al., 2018). It is used to determine, to some certain high degree 

of accuracy, the state of the network based on some real time 

measurement data using some estimation criteria (New York 

State Energy Research and Development Authority 

(NYSERDA), 2018). With the expansion of distribution 

networks, increase in number of nodes and their measurement 

data, the computing scale of state estimation is increasing (Chen 

et al., 2019). Voltage magnitude and phase angle are considered 

as the state variables in a power system network (Sandhya et al., 

2018).  Other network parameters like power flows and currents 

can then be computed using the estimated network state (Amor 

et al., 2018). 

The state of a network can only be estimated if that network is 

both observable and controllable  (Gelagaev et al., 2010). In the 

former, column rank of the Jacobian matrix is analyzed, while 

a spanning tree of full rank is formed in the topological method 

(Brinkmann & Negnevitsky, 2017).  Large amount of 

renewable energy is being integrated in the networks, thereby 

making demand response popular between utilities and 

consumers. Under such situations, the distribution grid becomes 

active (Liu et al., 2018). DG penetration into the distribution 

network can decrease power loss caused by long-distance 

power transmission, and can improve power quality as well as 

network reliability to a certain extent (Zhu & Ramachandran, 

2020). 

 

2. State Estimation Techniques 

State estimation (SE) is a technique used to ascertain the values 

of the state variables from some noisy measurements. The main 

function of the technique is error reduction that may be 

contained in the data (Baran & Kelley, 1994).  Weighted least 

square (WLS) is one of the most common methods employed 

in the reduction of such inconsistencies (Gao & Yu, 2017). 
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2.1 State Estimation Approaches 

Many approaches were introduced to solve the problems of S.E 

some of them are: Weighted Least Square (WLS), Kalman 

Filter (KF), Extended Kalman Filter (EKF), Unscented Kalman 

Filter (UKF) and Deep Learning approaches. 

2.2 Feed Forward Neural Network (FFNN) 

FFNN is a nonlinear function mapping a group of input 

variables to a group of output variables governed by a vector W 

of modifiable parameters. It learns by computing the output 

error for any given input data fed to the NN.  This error is 

minimized by adjusting the weight vector. FFNN have the 

capability of handling complicated problems in a variety 

application areas (Mohammed et al., 2020) 
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Figure 2: Feed Forward Neural Network (Mohammed et 

al., 2020) 

 

3. Methodology 

3.1 Feed Forward Neural Network State Estimator 

(FFNNSE) for Distribution System.  
Under this objective, Levenberg-Marquardt backpropagation 

algorithm was considered.  A 4-layers FFNN was designed with 

40 neurons in each of hidden layers. The iteration converges at 

14 epochs and 16 epochs after 100 trials for 33-bus and 69-bus 

networks models respectively. The input-output of the model 

was partition into 70%, 15%, and 15% for training, testing, and 

self-validation respectively.  

Equation 1 represents the mathematical definition of an FFNN. 
 

𝑦 = 𝑓(x, w)                                                                                     (1) 
 

An FFNN has three layers: input, hidden, and output layers.  

The number of  hidden layers may be one for shallow network 

or more for deep networks (Leverington, 2009). From Figure 

2.7, an N number of linear combinations of the input set 𝒙𝒊… 

𝒙𝑵  can be built in the form of: 
 

𝑎𝑗 = ∑ 𝑤𝑗𝑖
(1)

. 𝑥𝑖 + 𝑤𝑗𝑜
(1)𝑁

𝑖=1                                                           (2) 

Where 

 j= 1…N, aj is a nonlinear activation function, the superscript 

(1) represents the first layer, while 𝑤𝑗𝑖  and 𝑤𝑗𝑜 are the weights 

and biases respectively.  

The function 𝐚𝐣 can be sigmoid, rectified linear unit (ReLu), 

tanh etc. (Zhang et al., 2020). 
 

𝒛𝒋 = 𝜹(𝒂𝒋)                                                                                     (3) 
 

Where  

𝐳𝐣 represents the hidden unit and 𝛅 is logsigmoid. 

Similarly, output unit activations can be obtained using (4) - (6). 
  

𝑎𝑘 = ∑ 𝑤𝑘𝑗
(2)

. 𝑧𝑗 + 𝑤𝑘𝑜
(2)𝑁

𝑗=1                                                              (4)  
 

Where 

 𝑘 = 1,2, … 𝐾  which represents the number of outputs. 𝑤𝑘𝑗
(2)

 

and 𝑤𝐾0
(2)

  are the weights and biases respectively. This 

transformation matches layer number two of the network. The 

output functions converted using suitable activation function to 

give a set of network outputs yk as follows: 
 

𝑦𝑘 = 𝛿(𝑎𝑘)                                                                                            (5) 

𝑦𝑘(𝑥, 𝑤) = 𝛿(∑ 𝑤1𝑗
(2)

ℎ (∑ 𝑤𝑗𝑖
(𝐼)

. 𝑥 + 𝑤𝑗𝑜
(𝐼)𝐷

𝑖=1 )𝑁
𝑗=1 + 𝑤𝐾0

(2)
)     (6) 

 

The FFNN was designed and trained using Levenberg–

Marquardt algorithm. The FFNN synaptic weights were tuned 

based on the minimization of MAD. 

4. Results of FFNNSE Performance on IEEE 
standard Test Networks 

The developed estimator (FFNNSE) was tasted on the IEEE-33 

and IEEE-69 bus networks.  The true values for the network 

states were obtained using BFS algorithm. 

 

4.1 Performance of FFNNSE on Voltage Magnitudes for 33-

bus Network 

The FFNNSE was able to track the actual voltage magnitude 

response of the network with 98.8% fitness and MAD of 

0.0041. This shows the excellent capability of the estimator to 

learn the network behavior as illustrated in Figure 3.  

 
Figure 3: Performance of FFNNSE on Voltage Magnitudes 

for 33-bus Network 
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4.2 Performance of FFNNSE on Voltage Phase Angle for 33-

bus Network 

The actual voltage phase angle response of the network was also 

tracked by the developed state estimator with fitness of 97.4% 

and MAD of 0.0047. Figure 4, shows the estimated voltage 

phase angle profile compared to actual measurements. It is 

evident from the figure that the tracking performance of the 

FFNNSE is excellent. 

 
Figure 4: Performance of FFNNSE on Voltage Phase Angle 

for 33-bus Network 

 

4.3 Performance of FFNNSE on Voltage Magnitudes for 69-

bus Network 

The FFNNSE was able to track the actual voltage magnitude 

response of the network with 99.1% fitness and MAD of 

0.0056. This shows the excellent capability of the estimator to 

learn the network behavior as illustrated in Figure 5.  

 
Figure 5: Performance of FFNNSE on Voltage Magnitude for 

69-bus Network 

4.4 Performance of FFNNSE on Voltage Phase Angle for 69-

bus Network 

The actual voltage phase angle response of the network was also 

tracked by the developed state estimator with a fitness of 96.9% 

and MAD of 0.0044. Figure 6, shows the estimated voltage 

phase angle profile compared to actual measurements. It is 

evident from the figure that the FFNNSE performance was 

excellent. 

 
Figure 6: Performance of FFNNSE on Voltage Phase Angle 

for 69-bus Network 

 

4.5 Results of FFNNSE Performance on Local Networks 

The developed estimator was applied on Zaria Local Network 

(Canteen Feeder). The true values for the states of this network 

were obtained using BFS algorithm. Figure 7, shows the result 

for the case of normal operation. As it can be seen from the 

figure, the developed estimator was able to trace the actual 

voltage magnitude and angle, although it shows a better 

performance for angle than the magnitude of the actual voltage. 

The MAD for this case was computed to be 0.0045. 

 
Figure 7: 50-bus Normal condition 

Figure 8, shows the result for the case of the network operation 

under bad data condition. the figure shows that the tracking 

performance of the FFNNSE for both voltage magnitude and 

angle was not as good as the previous case, even though it 

performs better for voltage magnitude estimation than that of 

phase angle.  it has a total MAD of 0.0049.  
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Figure 8: 50-bus Bad Data Condition 

 

The result for the case of load variation on the network is shown 

in Figure 9. It is evident from the figure that the developed 

estimator has the least overall performance as compared with 

the two previous cases in tracking the actual network states. The 

MAD for this case was computed to be 0.0051. 

 
Figure 9: 50-bus Load Variation 

 

4.6 Summary of the 50-bus canteen feeder simulation 

results 

It is clear from Table 1, that the proposed estimator performs 

well for all the simulation scenarios for both condition cases. 

However, it can be noted that in load variation case state 

estimates deviation is more notable than that of other scenarios 

such as normal case and Bad data case. 

Table 1: Summary of Results for 50-bus Network. 

Case Operation 

Condition 

Mean Square 

Error 

Mean Absolute 

Deviation 

1. Normal 

Condition 

0.000176 0.0045 

2. Bad Data 0.000202 0.0049 

3. Load Variation 0.000215 0.0051 

 

In testing the FFNNSE on local network (50-bus Network) 

under normal and dynamic conditions (Bad data and Load 

Variation) the performance was good for all conditions with the 

minimal MAD of 0.0045, 0.0049 and 0.005 for normal, Bad 

Data and Load Variation conditions. However, MSE for all 

cases was computed as 0.000176, 0.000202 and 0.000215for 

normal and the two dynamical operations respectively. As such 

the FFNNSE can be implemented in a local network for 

estimating the states of the network.  

4.7 Performance of the developed FFNNSE over ANNSE 

and WLSSE 

In order to justify the effectiveness of FFNNSE, it was 

compared with the ANNSE and WLSSE used in (Ahmad et al., 

2019). The Comparison was made base on the accuracy 

performance of the estimators using MAD performance metric. 

It was observed from the results that FFNNSE gives output with 

better accuracy than the above-mentioned estimators for the 

selected Networks based on the total computed MAD for each 

network selected. The Comparison of both estimators is shown 

in Table 2. 

Table 2: Performance of the FFNNSE over ANNSE and WLSSE 

Network  

Type 

ANNSE  

(Ahmad et al., 

2019) 

WLSSE  

(Ahmad et al., 

2019) 

FFNNSE  

69-bus 0.0054 0.015 0.0050 

33-bus 0.0050 0.020 0.0044 
 

5. Conclusion 

In this work, a Feed-Forward Neural Network State Estimator 

(FFNNSE) for Power Distribution Network was developed. 

Performance of the estimator was tested on IEEE 33-bus and 

IEEE 69-bus as well as Zaria local distribution network under 

normal and dynamic conditions. It was noted that for the IEEE 

test distribution networks, the state estimates followed the true 

values pretty closely. Additionally, MAD was used to quantify 

the deviation of estimated quantities from the true values. It was 

observed that the proposed estimator demonstrated great 

effectiveness under all the considered network conditions 

thereby guaranteeing high accuracy.  
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