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 Research Article 
Abstract 

In this paper, a meta-heuristic Small Population Particle Swarm Optimization (SPPSO) is proposed for Distributed Generation 

(DG) integration with the objective of power loss reduction and system voltage profile improvement. One of the major setbacks 

of classical particle swarm optimisation (PSO) is its computational complexity and the SPPSO is employed to address this 

setback. The classical PSO is also implemented in this study to provide a realistic and feasible comparison for the performance 

of the two algorithms (Classical PSO & SPPSO) in optimal DG integration problem. The algorithms are tested on two standard 

33 and 69 bus radial distribution systems.  In each test network, two scenarios are considered for DG sizing and location; DG 

operation at unity power factor (fit and forget approach) and DG operation at pre-specified practical power factor less than 

unity. The SPPSO algorithm finds the optimal or near optimal solution to the problem at less computational cost associated with 

the use of the classical version of the algorithm. The connection of DG to 33bus network reduced the power loss by 47.40% at 

unity p.f and 67.71% at 0.85 lagging p.f. While, for the 69bus, the reduction in power loss at unity power factor and 0.85 p.f are 

respectively 63.11% and 89.4%. Thus, demonstrating the benefits accrue to Distribution Network Operators to operate their 

generators at a pre-specified practical power factors less than unity. 
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1. Introduction 

Central power stations for electricity generation are always 

sited closed to their energy sources, thus are naturally located 

far away from load centers. Therefore, they are characterized by 

environmental impacts (such as carbon dioxide emission), high 

cost of Transmission and Distribution (T&D) upgrades, long 

gestation period for new plant stations and exposure of the 

transmission facilities to natural hazard such as wind, snow and 

storm. The last decade has seen an increased penetration level 

of Distributed Generation (DG) in in the power distribution 

networks. Unarguable, this has brought a tremendous alteration 

to the structure of a typical distribution system. Onsite 

generation and ancillary of supports are tenable from 

Distributed generation energy technologies at substations. 

These include reactive power enhancement of voltage profile, 

peak load shaving, power loss reduction, and congestion 

management (Chowdhury, et al., 2009). 

The problem of DG integration is known to be a combinatorial 

nonlinear problem that requires the determination of the optimal 

or near optimal overall combination of locations and capacities 

(Neeraj, et al., 2015) in a network made up of n buses. Arriving 

at the best solution is a significant effort beyond the reach of 

manual searches not even for a small distribution network. The 

optimum placement and sizing problem is done to achieve 

different objectives. In Prasanna, et al., (2017) a hybrid 

technique based on PSO is proposed for placing distributed 

generation with optimal power injections on power distribution 

systems for loss reduction. The technique involves calculating 

the optimal P (real power) and Q (reactive power) injections of 

DG system. The modelling of DG bus as PQ injection, will 

results in uncontrolled Q injection. Thus, alter the voltage 

profile along the feeder and decrease the power flow in the 

HV/MV transformer thus, decreasing the load compensation 

(Maurizio, et al., 2014). 

An application of Bat algorithm for optimal allocation of Solar 

based distributed generators is presented in Sudabattula and 

Kowsalya (2016) for minimizing distribution network power 

losses.  In Korra and Vivekananda,  (2020), the Siting and 

Sizing of DG and Shunt Capacitor Banks in Radial Distribution 

System Using Constriction Factor Particle Swarm 

Optimization, to alleviate the power losses, revamp the voltage 

profile, inflate the voltage stability index, shrink the total 

voltage deviation, and acquire more energy savings is 

presented. The DG integration is based on the fit and forget 

approach with the reactive power support for the system 
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provided by the shunt capacitor. In addition, the computational 

complexity associated with the metaheuristics algorithms used 

in the comparisons were not considered.  

In Pushpendra, et al., (2020) a hybrid Elephant Herding 

Optimisation (EHO)-PSO method is proposed to solve the DG 

allocation problem of distribution systems. The study 

considered single and multiple DG locations at unity and non-

unity power factor based on multi-objective. The objective 

functions considered are power loss minimization, voltage 

deviation minimization, and voltage stability improvement. 

However, the DG locations are preselected in multiple DG 

integration thus, the obtained solutions might not be optimal.  

A heuristic approach for the planning of Distributed Generator 

(DG) to minimize annual system energy loss is proposed in 

Manoj, et al. (2017). The optimization tool is based on PSO and 

time-varying characteristics of electrical load demand was 

considered to mimic real load scenario in the electrical 

distribution system. The study considered both the fit and forget 

approach and the operation of DG at non unity factor. The DG 

at non-unity power factor was operated to inject uncontrolled 

reactive power support resulting in an appreciable energy loss 

reduction but with the consequence of violating the voltage 

limits constraints.  

 Genetic and Ant Colony algorithms for optimal distributed 

generation allocation and sizing is presented in Yousef, et al., 

(2020) with the objective of diminishing the power losses and 

improving the system voltage.  

The effectiveness of PSO in solving the optimal DG placement 

problem has been reviewed in Niazi and Lalwani, (2017). The 

PSO methods categorized were the simple PSO method, 

advanced PSO method, hybrid PSO method and other methods 

combined with PSO. It was evident from the study that the 

nature and complexity of the problem to be solved can help in 

determining the PSO variants to be used. 

 In most of these reviewed studies, the complexity of the PSO 

algorithms in terms of the computational cost are not 

considered. Thus, drawing conclusion on the performance 

between any two metaheuristics algorithms without an 

objective function evaluations make such comparisons 

infeasible (Maurice, 2006). The computational cost of an 

algorithm is a very important factor not just for online 

operations but also, to free computer time. 

This paper presents a DG optimum sizing and location study 

based on a variant PSO algorithm SPPSO. The major aim of 

which is to enhance network power loss reduction and voltage 

profile by considering DG reactive power capability. This 

SPPSO algorithm significantly reduces the execution time in 

terms of function evaluations and accelerates convergence. The 

study is carried out on 33 and 69-bus benchmark networks 

showing significant reductions in power loss and improvement 

in the system voltage profile.  

The main contributions of this study are:  
• The implementation of the SPPSO algorithm to address 

issue of Computational complexity associated with the 

classical PSO. To the best knowledge of the authors, the 

algorithm is first reported in this study for optimal DG 

integration. Its implementation allows realistic and valid 

comparison of the results and performance of the two 

algorithms considered.  

• The consideration of DG reactive power capability in 

accordance with the IEEE standard 1547 for DG 

interconnection. Thus, demonstrating the benefits accrue to 

Distribution Network Operators to operate their generator in 

a non-fit and forget approach. 

  

2. Problem Formulation 

The optimal sizing and placement of DG problem 

formulation presented in this paper involve minimizing the 

total real power loss of the distribution system for efficient 

operation of the power system.  

The IEEE standard 1547 for DG interconnection shows that 

DG with a capacity less than 10 MW may not to take part in 

network regulation at a node of common coupling and should 

operate at predefined power factor (Meena, et al., 2017). 

Therefore, in this study Connection of a DG unit to a bus is 

modeled as a negative PQ load at unity power factor or a 

minimum pre-define leading power factor of 0.85 

(generating VArs).  

The objective function to be optimized can be written as: 

Minimize  
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where: 

PLoss is the total real power loss in the network,  L is the total 

number of branches, Lossl is the power loss at branch l, 
l

jiP  is the active power flow injected into branch l from 

bus i and
l

ijP   is  the active power flow injected into branch 

l from bus j.   

 

Subject to the constraints: 
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Equations (2), (3) and (4) show power, voltage and line 

current constraints, respectively.  

where:  

n is the total number of nodes, L is the total number of 

branches, PGi is the real power generated at bus i and PDi is 

the real power demand at bus i. 
min

iV and 
max

iV are the 

minimum and maximum allowable voltages at node i. Iij is 
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the current between nodes i and j and 
max

ijI is the maximum 

allowable line current between nodes i and j.  

The constraint on power balance requires that the total 

generation of power from the grid and distributed energy 

resources must be equal to the summation of load demand 

and power losses of the system. This constraint is normally 

enforced by the power flow algorithm.  

It is intuitive that DG placement leads to voltage rise and 

thermal rating effects with the consequences of spreading    

across the entire network. Supplying customers within a 

specified voltage limits is an obligation which every 

distribution network operator must fulfil. This voltage limits 

is typically around ±5% of nominal (Jenkins et. al., 2010). 

Thus, violations of these constraints may result in reverse 

power flow from DG source and overloading of network 

branches which are undesirable for efficient distribution 

network operation.  

The power loss reduction is evaluated from the ‘per-unit line 

loss reduction’ (PULR) defined as the ratio of loss reduction 

(LR) to the line loss without DG (LLwoDG) and is given by 

Equation (5). The LR is the difference in the line loss 

reduction with and without DG. While the percentage of line 

loss reduction is given by Equation (6) (Chiradeja, 2005). 

woDGLL

LR
PULR      (5) 

 

100*% PULRLR      (6) 

 

The cost function is computed using MATPOWER AC 

power flow with network data modeled as in Zimmerman, et 

al., (2011). MATPOWER can solve distribution system 

power flow and have been used in Musa, et al., (2016). 

 

3. Small Population Particle Swarm 
Optimisation 

PSO is a cooperative population based stochastic 

optimization technique based on the behavior of swarms such 

as fish schooling and bird flocking developed by Kennedy 

and Eberhart in 1995 (Yuhui, 2004). Instead of using 

evolutionary operators to manipulate individuals as in other 

evolutionary computation algorithms such as GAs, each 

individual in a PSO swarm moves in the search space with a 

velocity which is dynamically adjusted according to its own 

previous experience and the experience of other members of 

the swarm. Each particle keeps track of its coordinates in the 

search space associated with the best fitness it has achieved 

so far (pbest) and the overall best value, and its location, 

obtained so far by any particle in the population (gbest). Each 

particle moves towards its pbest and gbest locations with each 

time step in accordance with the following velocity and 

position equations: 
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where: k
idv and 

k
idx  are the current velocity and position, 

respectively, of the ith particle along a given dimension at 

iteration k, 
1k

idV  and 
1k

idx  are the new velocity and position, 

respectively, of the ith particle along a given dimension at 

iteration k+1, rand1 and rand2 are random numbers between 0 

and 1, pbesti is the best position to-date of particle i, gbest is the 

global best position of the group to-date, c1, c2 are constants 

(weighting functions) determining the relative influences of 

pbesti and gbest and w is an inertia constant (or weighting 

function) determining the relative influence of the particle’s 

own velocity. d is the number of dimensions in the search 

space.  

In this algorithm implementation, PSO with a varying inertia 

w (Yuhui, 2004; Riccardo, et al., 2007) is employed. For the 

kth iteration, the value of w is given by: 

k
k

ww
wwk 
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max                                     (9) 

where, wmin and wmax are the minimum and maximum 

weights, respectively, and kmax is the maximum allowable 

number of iterations before the search is aborted. This allows 

the particles to move freely within the search space at the 

beginning of the search process while giving greater 

significance to pbesti and gbest during the later stages of the 

search.  

If the search space is not infinite, it is necessary to confine 

the search space to prevent a particle leaving the search space 

all together. A simple mechanism for such confinement is 

represented by equation (10) (Maurice, 2006): 
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The particle velocity may also be limited to a maximum 

value vmax. 

The SPPSO is a classical PSO algorithm using a small 

population (Das, et. al., 2008) based on concept of algorithm 

regeneration. The algorithm regeneration was introduced to 

give the particles the ability to keep carrying  out the search 

despite a small population. The particles are regenerated  

after every N iterations retaining their previous global best 

(gbest) and personal best (Pbest) fitness values and 

positions. The selection of the value of N is crucial in the 

realizing an efficient SPPSO algorithm. If the value of N is 

low, the new particles may be regenerated too quickly and in 

turn disturb the search process. Thus the particles will move 

erratically in search space. On the other hand, if the particles 

are regenerated at a higher value of N the search process will 
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be delayed. Randomizing the positions and velocities of the 

particles every N iterations aids the particles in avoiding 

local minima and finding the global minimum.The 

regeneration concept drastically reduces the number of 

evaluations required to find the best solution and each 

evaluation is less computational intensive compared to the 

classical PSO algorithm.  
 

Start

Update positions & velocities 

compute new fitness value

Stop  criterion 

satisfied ?

Increment iteration 

counter

Return final Results (DG size

 & location)

Stop

Define PSO parameters,

Set initial particle positions & 

velocities and calculate initial 

fitness values & set SPPSO 

parameters for regeneration

No

Yes

Regenerate particles

Regeneration  

criterion satisfied ?

Yes

No

Figure 1: SPPSO algorithm flow chart 

In Das, et al., (2008) the algorithms was used for the Design 
of Multiple Optimal Power System Stabilizers. A survey of 
the available literature shows that the algorithm has not been 
used for problem of optimal DG integration. 

Thus, in this paper, the algorithm is employed to solve the 

DG placement and sizing problem. This study involves a 

solution vector X in a three-dimensional search space 

represented as  3,2,1 ixixixiX  . For a single distributed 

generator placement problem considered in this study, x1, x2, 

x3 represent generator location, generator output power and 

VArs respectively. The SPPSO algorithm implementation 

flow chart is shown in Figure 1.   
 

4. Test Scenarios and Simulation Results 

The proposed SPPSO algorithm is tested on two standard 

benchmark networks commonly used by researchers (Abu-

Mouti and El-Hawary, 2011; Acharya, et al., 2006; Baran 

and Wu, 1989a; Baran and Wu, 1989b; Amin & Ehsan, 

2008; Shukla, et al., 2010) for power system optimization 

problems. 

4.1 Test Case Systems 

Network I: This proposed test system is a 12.66 kV 33bus 

primary radial distribution system with one feeder substation, 

32 busses and 5 tie lines (Amin & Ehsan, 2008) as shown in 

Figure 2. The total substation load is 3.72MW and 2.3MVAr. 

The network power loss and reactive power loss are 0.211MW 

(about 6% of the total load) and 0.14MVAr, respectively as 

summarized in Table 1. 

 

 

 

 
 

Figure 2: Single line diagram for 33 bus distribution system I (Amin & Ehsan, 2008) 

 

Network II: This is a 12.66-kV radial distribution system 

comprising one sub-station, 7 laterals, 69 nodes and 68 

branches including normally open tie lines (Baran and Wu, 

1989) as shown in Figure 3. 

The details for both networks can be obtained from Amin & 

Ehsan, (2008) & Baran and Wu, (1989a). The maximum and 

minimum voltage limits for this study are set to 1.06 p.u. and 

0.94 p.u for all nodes of both networks. In both test networks, 

the voltages at some nodes are lower than the minimum limit 

of 0.94p.u. The allocation of DG would normally be expected 

to improve the voltage profile of the network. Thus, making 

the current study a single objective function. 
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Figure. 3: Single line diagram for 69 bus distribution system II (Baran and Wu, 1989a) 

 

4.2 Simulation Results 

In these optimization studies, DG sizes are considered in the 

range 0kW to 5MW. DG output reactive power is considered 

within the range 0 to a pre-specified maximum value 

corresponding to the minimum operating power factor of the 

machine. For a grid connected generator, this corresponds to 

operation at its continuous power output rating at a range of 

possible lagging power factors up to a maximum reactive 

power output limited by the current rating of the stator or rotor 

windings.  
 

Table 1:  summary of results base case (No DG) 

 

System Parameters 

Test systems 

33- bus network 69- bus network 

Real  Power Loss (MW)
 

0.2112 0.225 
Reactive Power Loss (MVAr)

 
0.1432 0.102 

Min bus voltage (pu) 0.9040 0.9090 

Max bus voltage (pu) 1.000 1.000 

Total Real Load (MW)
 

3.72 3.802 
Total Reactive Load (MVAr)

 
2.30 2.690 

 

For each benchmarking network two scenarios are considered. 

The first is with the generator operated at unity power factor 

(PF) and the second when operating with a minimum lagging 

power factor of 0.85. Results of the optimization process for 

unity power factor operation are presented in Tables 2 & 3, 

using a swarm population of 20 particles for the classical PSO 

and 20 particles (with only 5 selected at each iteration for 

evaluation) for the SPPSO with N (no of iteration before 

regeneration occurs) selected as 10 and a stop criteria of 50 

iterations where the objective function value remains within a 

margin of 109 or a maximum number of 1000 iterations.  

Tables 4 & 5 show the corresponding results for operation with 

a minimum lagging power factor of 0.85. The results are 

compared with those obtained from the classical version of the 

PSO algorithm. The required number of function evaluations 

for SPPSO is reduced by 24.3%, 19.2%, 21.5% and 23.0% for 

scenarios in Tables 2, 3, 4 and 5 respectively compared with 

the standard PSO. The results are based on average values with 

ten independent runs of the algorithms. Nevertheless, both 

algorithms obtained the same quality of solutions, but with 

SPPSO requiring lesser no of objective function evaluations. 
 

Table 2:  Summary of results: optimal size and location for 

33-bus network DG operating at unity power factor 

System Parameters Algorithms  

Classical PSO  SPPSO 

DG optimum bus location 12 12 
DG real power generated (MW) 2.5909 2.5909 

Average  no of iterations 117 350 

Average no. of function 

evaluations 

2318 1750 

Real Power loss (MW)
 

0.1111 0.1111 

Reactive Power Loss 

(MVAr)
 

0.0817 0.0817 

Percentage power loss 

reduction (%) 

47.40 47.40 

Maximum bus voltage (pu) 1.000 1.000 

Minimum bus voltage (pu) 0.9423@ bus 33 0.9423  @ bus 33 

Average voltage (pu) 0.9720 

Table 3: Summary of results: optimal size and location for 
69-bus network DG operating at unity power factor 

 

System Parameters 

Algorithms  

Classical PSO  SPPSO 

DG optimum bus location 61 61 

DG real power  generated (MW) 1.8726 1.8726  

Average  no of iterations 116 374 

Average no of function evaluations 2314 1870 

Real power loss (MW)
 

0.0831   0.0831  

Reactive power loss (MVAr)
 

0.0405  0.0405  

Percent power loss reduction (%) 63.10 63.10  

Maximum bus voltage (pu) 1.000  1.000  

Minimum bus voltage(pu) 0.968 @ bus 

27 

0.968  @ 

bus 27 

 Average voltage (pu) 0.9874 pu 
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Table 4: Summary of results: optimal size and location for 
33-bus network DG operating at minimum pf of 0.85 

System Parameters Algorithms  

Classical PSO  SPPSO 

DG optimum bus location 12 12 

DG real power generated 

(MW) 

2.6382  2.6382  

DG reactive power  

generated (MVAr) 

1.635  1.635   

Average  no of iterations 125 413.5 

Average no of function 

evaluations 

2632 2067.5 

Real power loss (MW)
 

0.0682   0.0682  

Reactive power loss 

(MVAr)
 

0.0551  0.0551 

Percentage power loss 

reduction (%) 

67.71 67.71  

Maximum bus voltage (pu) 1.001 1.001   

Minimum bus voltage (pu) 0.958 @ bus 33 0.958  @ bus 33 

 Average voltage (pu) 0.9828  
 

From Tables 4 & 5 it is evident that significant benefits in 

loss reduction and improved network voltage profiles were 

obtained for both networks when DG is operated to support 

the reactive power requirement of the network (compared 

with its operation at unity PF, see Tables 2 & 3). For the 

33bus network, the connection of the generator reduced the 

power loss by 47.40% with a minimum bus voltage of 

0.942pu when operating at unity power factor, whereas a loss 

reduction of 67.71% was achieved with the generator 

operating at a power factor of 0.85 lagging with a 

corresponding minimum bus voltage of 0.958pu. The best of 

the mean voltage (0.9828) was obtained with the case of DG 

operating and injecting reactive power support to the network 

(scenario II, 33bus).   

Table 5: Summary of results: optimal size and location for 
69-bus network DG operating at minimum power factor of 

0.85 
System Parameters Algorithms  

Classical PSO  SPPSO 

DG optimum bus location 61 61 

DG real power generated 

(MW) 

1.9040  1.9040 

DG reactive power  generated 

(MW) 
1.180  1.180 

Average  no of iterations 122 386.6 

Average no of function 

evaluations 

2510 1933 

Real power loss (MW)
 

0.0238    0.0238  

Reactive power loss 

(MVAr)
 

0.0146  0.0146  

Percentage power loss 

reduction (%) 

89.40 89.40  

Maximum bus voltage (pu) 1.001 1.001  

Minimum bus voltage (pu) 0.973 @ bus 27 0.973  @ bus 27 

 Average voltage (pu) 0.9916  
 

In the 69-bus network, a power loss reduction of 63.11% was 

achieved with a minimum bus voltage of 0.968pu for DG 

operation at unity PF, while 89.42% loss reduction was 

obtained with 0.973pu minimum bus voltage when the DG is 

allowed to operates at a lagging power factor of 0.85. The 

best of the mean voltage (0.9916) was obtained with the case 

of DG operating and injecting reactive power support to the 

network (scenario II, 69bus).   

Figures 4 and 5 show the network bus voltage profiles for 

operating at unity and 0.85 PF for both 33bus and 69bus 

networks. The improvement obtained through the connection 

of the optimally sized and located DG is evident especially 

when allowed to provide network voltage support.  
 

 
Figure. 4: 33-bus network voltage profile improvement for a 

single optimally sized DG at optimal location (bus 12) 
 

 
Figure. 5: 69-bus network voltage profile improvement for a 

single optimally sized DG at optimal location (bus 61) 
 

To allow direct comparisons of the results (not in terms of 

algorithms computational complexity) obtained from the 

SPPO algorithm with previously published solutions 

obtained using analytical techniques (Acharya, et al., 2006), 

GAs (Shukla, et al., 2010 ), and the ABC algorithm (Abu-

Mouti and El-Hawary, 2011) a simple test case using the 69-

bus network was also considered. The optimization studies in 

Abu-Mouti and El-Hawary, (2011), Acharya, et al., (2006) 

and Shukla, et al., (2010) were limited to the single objective 

function of minimizing network losses (Scenario I, with DG 

operation at unity PF). Table 6 shows the optimal solutions 
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(in terms of network loss reduction) achieved by all four 

methods. The results obtained from the four methods are 

identical in terms of the optimal location of the DG unit. But 

the application of SPPSO resulted in 63.1% power loss 

reduction compared to the three other algorithms. 
 

Table 6: Comparison of optimal DG size and location for 69-
bus network scenario I (unity p.f) with previous studies   

System 

Parameters 

Algorithms  

Analytical 

method 

(Acharya, et 

al., 2006)   

GA 

(Shukla, 

et al., 

2010 )  

ABC Algorithm 

(Abu-Mouti and 

El-Hawary, 

2011),  

Proposed 

SPPSO 

Optimum bus 

location 

 

61 

 

61 

 

61 

 

61 

Optimum DG 

size (MW) 

 

1.810 

 

1.827 

 

1.900 

 

1.873 

Percent MW 

loss reduction 

(%) 

 

62.86 

 

62.91 

 

62.97 

 

63.10 

 

 

 

 

5. Conclusion. 

An application of power system optimization tool based on a 

variant PSO (SPPSO) algorithm to solve the problem of 

optimal DG integration in power network has been 

implemented in this paper. This proposed algorithm was 

tested on two standard 33 and 69 bus medium voltage radial 

distribution networks and results are compared with those 

obtained when using the classical version of the PSO 

algorithm. Two DG operating regimes were considered: The 

first is for operation at unity power factor and the second is 

for operation at a minimum power factor of 0.85 lagging.  In 

all cases, the SPPSO algorithm was found to be effective in 

solving the optimization problem converging to an optimum 

DG size and location with lesser number of objective 

function evaluations compared to classical PSO. Thus, 

overcoming the problem of computational complexity 

associated with the classical PSO in terms of objective 

function evaluation. The results also show improvement in 

the system voltages when the DG is allowed to provide 

reactive power support. Thus, it can be concluded that the 

network power loss reduction for DG integration exercise is 

dependent on the operating power factor of the DG. Higher 

power loss reduction figures were obtained when operating 

at lagging power factors compared to unity operating power 

factor.  
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