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Abstract

In this study, load frequency control (LFC) of the 330kV, 50H= Nigerian Power System (NPS) is studied. The aim of the work is
to develop a control scheme that maintains near-zero steady state errors for deviation in system frequency and that of net inter-
area power flow within an acceptable limit in a deregulated environment. The entire NPS network, comprising of 11 distribution
companies (DISCOs) and 8 generation companies (GENCOs) is partitioned into seven control areas (CAs). The control scheme
is developed with distributed control architecture. Each of the seven CAs (CA;, CA,, ... CA47) is equipped with a proportional
integral (PI) controllers. These local PI controllers (slave controllers) compute the optimal control signal for appropriate valve
positioning of all the generators in its CAs, which in regulate the frequency and tie-line powers. In addition, each of the slave
controllers exchange the information about their control action with the neighboring controllers as well as a central master
controller located at the National Control Center (NCC), Osogbo, Osun State. The local PI controllers are optimally tuned
using moth flame optimization (MFO) algorithm by minimizing the Integral Square Error (ISE) of the state errors. 4 model
predictive controller (MPC) applied as the master controller is used to establish the optimal set-points of the slave PI controllers.
The effectiveness of the developed scheme is verified by implementing it on the seven-CA Nigerian deregulated power system
perturbed with a step load demand. From the simulations carried out in MATLAB environment, it is established that the
developed scheme is not capable of maintaining near-zero steady state errors for deviation in system frequency and tie-line

powers but outperformed the present conventional control scheme in optimality and stability.
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1. Introduction

In order to maintain steady frequency in power system, active
power generation and demand must always match. When the
demand changes, the generation must also change in order
balance up with the new demand. Mismatch in generation-
demand balance deteriorates the system performance severely
via incessant variations in the tie-line power, frequency and
voltage levels, among others. The severity of the deterioration
worsens if the PS has multiple control areas (CA) due to the
increased nonlinearities of the system (Sujan, 2017; Daneshfar
& Hosseini, 2012). A small perturbation in generation-demand
balance in one CA of the MAPS can lead to frequency deviation
in that particular CA as well as its neighbors. Active load
disturbance is the major cause of generation-demand mismatch
as such electrical power generation is carefully monitored
(Gupta, 2008; Saxena, 2019). Unless the generation-demand
balance is regained, the frequency and tie-line powers keep
deviating from the corresponding nominal values (Wadhwa,
2010; Chidambaram & Velusami, 2005). If these undesirable
deviations persist, the system generators (mostly synchronous)
no longer be coherent, hence the system collapses. The ancillary
service applied to maintain the frequency by continuously
changing the generation due to the change in the demand is

referred to as load frequency control (LFC). It is the most
perplexing task in the control of power system (Kunya, ef al.,
2019; Anne Mai Ersdal, 2015). Earlier frequency control
scheme used flyballs to activate a hydraulic system for adjusting
the throttle valves of the system prime movers. Modern
generators use electronic governors to accomplish the same task
(Zhang, et al., 2017; Stil & Mehmedovic, 2018).

There are numerous research works carried out on LFC, which
mainly applied modern optimal control (Saxena & Shankar,
2022; Pradhan & Bhende, 2019), adaptive and sliding model
variable structure methods (Liu, et al., 2022; Zhu, et al., 2021),
robust approaches (Khajehoddin, 2016; Ejegi, et al., 2016), and
intelligent approaches (Sahoo, et al., 2018; Rahmani & Sadati,
2013). While in some studies apply classical control such PI in
(Guolian et al., 2011; Simhadri & Mohanty, 2019) and PID
controllers (Abd-Elazim, 2010; Mehta, ef al., 2017; Hota &
Mohanty, 2016). This family of controllers has been applied
widely not only for LFC application but control of other
dynamic systems, largely owing to the simplicity of the concept
and ease of implementation. However, the robustness of
classical controllers worsens greatly with the nonlinearities
increases (Machowski., 2008). As such, numerous studies paid
considerable attention to improve their robustness and stability.
Like in (Abd-Elazim, 2010), a bacterial foraging optimization
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algorithm (BFOA) was applied to optimize the gains of the PI
and revealed its improved performance compared to that
optimized using Genetic Algorithm (GA) in a two-area non-
reheat system. Application of Grey Wolf Optimization is
demonstrated in (Saikia, 2015) for LFC in MAPS based on the
minimization of the Integral of Time Multiplied by Absolute
Value of Error (ITAE) of the some selected states.

In a similar study, application of fuzzy PI controller for
frequency control of a linear and nonlinear MAPS is
investigated in (Satapathy, et al., 2018). The gain of the
controller in tuned using Jaya optimization algorithm with and
without the effect of governor dead band (GDB). In (Pradhan &
Bhende, 2019), same algorithm is applied to tune a fuzzy
controller online for LFC of WT integrated MAPS.

Moreover, robust control techniques such as sliding mode
control (SMC), model predictive control (MPC) (Ejegi, ef al.,
2016; Kunya & Argin, 2018; Anne Mai Ersdal, 2015), linear
quadratic regulator (LQR) (Kumari & Jha, 2014; Rahman, ef
al., 2018), fuzzy controller (Pradhan & Bhende, 2019; Azeer, ef

al.. 2017. Sahu. et al.. 2018) or hybrid of these schemes
(Mohamed, et al., 2015; Prasada, ef al., 2019) were proposed.

While in (Liu, et al., 2019), improved LFC based on MPC is
applied to a hybrid MAPS comprising of WT and thermal
generation system. The scheme is designed in such a way that
these hybrid sources are controlled concurrently with the MPC
generating their reference orders. Frequency regulation of
MAPS with high penetration of DGs is presented in (Yang, et
al., 2021). The frequency regulation problem is expressed as a
predictive control problem. An algorithm based on distributed
projection by means of peer-to-peer communication is then
proposed for its solution. LFC in a restructured MAPS using
LQR controller is presented (Shahalamia & Farsi, 2018). Most
of this studies is not applied on real-life systems, as such their
effectiveness and applicability in that regard cannot be
ascertained (Ansari, ef al., 2022; Lee, et al., 2022).

In this study, a distributed LFC scheme is developed and
applied to the deregulated Nigerian Power System (NPS)
portioned into seven CAs. The aim is to maintain near-zero
steady state errors in the system frequency and that of net inter-
area power flow. Each of the seven CAs are equipped with a
slave proportional integral (PI) controller as which compute the
optimal control signal for appropriate valve positioning of all
the generators that respective CAs. Moth flame optimization
(MFO) is applied to optimally tune the slave controllers, subject
to system dynamic constraints. A model predictive controller
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(MPC) applied as the master controller is used to establish the
optimal set-points of the slave PI controllers. The key
contributions of this study are itemized as: -

i- Partitioning Nigerian Transmission Network into 7 CAs.

ii- Developing the partitioned NPS network in MATLAB
simulation environment.

ifi- Developing a distributed LFC scheme for the developed
system.

iv- Demonstrating the applicability of the developed LFC
scheme on real system and its superiority over
conventional LFC as applied to the present NPS.

The remaining part of the paper is organized with the highlights
on the NPS presented in Section 2, formulation of the proposed
LFC architecture explained in Section 3. Section 4 discusses the
simulation results and the paper concluded in Section 5.

2. Nigerian Power System

Nigerian transmission network operated on 330kV, 50Hz with
a total transmission wheeling capacity of 7,500MW and
spanning over 20,000km, is faced with frequency instability due
to insufficient generation, transmission losses approximated at
7.4%, frequent system collapse (average of 35 annually) and
poor market policies, among other hiccups facing the system.
Some of these problems can be attributed to the inadequate
transmission line capacity, as the network wheeling capacity is
far below the total installed generation capacity of 12,500MW.

Presently, there are eight (8) generation companies (GENCOs)
operating twenty-five (25) grid-connected generation stations
which are either thermal or hydro (Ajimotokan, et al., 2009;
Ogbonnaya, et al., 2019). The thermal generation stations
located near to the sources of gas in the southern part of the
country contributing to about 68.30% of the total installed
capacity, while the hydroelectric stations are located further
north accounting for the remaining 31.70%. There are various
ongoing projects for the construction of new power plants

The frequency control in the NPS is carried out in a centralized,
thereby making the frequency control and economic dispatch
(ED) inefficient. The Nigerian Grid Code Frequency Standard
is 49.75Hz — 50.25Hz while the WAPP Frequency standard is
49.80Hz — 50.20Hz.

For the purpose of this study, the Nigerian transmission network
is partitioned into 7 CAs as shown in Fig. 1 and 2.
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Fig. 1: Nigerian Transmission Network Partitioned into Seven Control Areas

@ @ @ 3. Control Structure
- : 2.1 Multi-Area Power System LFC
el Zam._fara, Kano, Katsina, | | Bauchi, Plateau, The formulation of the model of the NPS is centered at
Sokoto, Niger [*{Kaduna, Jigawa Gombe, Yobe, differential equations describing the dynamics of the

Borno, Adamawa

individual components of the system like tie-line powers,
governor and turbine dynamics, among others. Fig. 3 shows
@ \lr @ the transfer function representation of a CA in a typical MAPS
Kwara, EKit], Kogi, Bene, with thermal power plants.
Ondo, Osun FCT, Nassarawa, From the block diagram depicting the dynamic model of the
@ \ CA, the state space model can be derived distinctively.
\
The frequency deviation, f; is formulated from a linearized
Lagos, Ogun, Oyo, swing equation shown in (1) (Ejegi, et al., 2016).

Edo, Delta df, 1
ditl = H(PEG —Dify — Pf*® —PP) (1

L
) @ Where PP is the net disturbance formed by taking the

Rivers, Anambra, Akwa-Tbom, resultant effects of the sources of disturbance in the ith CA.

Abia, C/Rivers, Imo, Enu . )
= M: represents the ith CA net inertia constant. It defines the

characteristic value for each synchronous machine in each CA.
With the assumption that generators in that area form a
coherent group, it is acceptable to define a single frequency for
each area.

Fig. 2: Schematic Diagram of the Partitioned NPS Network
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Fig. 3: Transfer function representation of the CA

Not all the generators in the system participate in LFC. Only
generators providing spinning reserve at a particular time are
engaged in LFC, which for security consideration, are often
scheduled hours ahead. As modelled in (2), the generation
from this set of generators are added up as CA aggregate
generation, P¢ (Kunya & Argin, 2018).

-5

The MAPS in this study has deregulated structure, hence the
tie-line power model is obtained considering all the power
exchanges with the neighboring areas, as in (3).

(2)

dP‘fl.e
1 :
dr Z Piji; )
=2nW2(fi — f;); Py= Pwva b
dt i il PMVA ij — ijrij

j
Where WO is the synchronizing coefficient which depends on

the static transmission capacity of jjth line. In real MAPS,
CAs have different MV A rating, hence a;; defines the ratio of
the rated capacities of ith and jth CAs as shown in (4).

The system frequency is adjusted by varying the set point of
the turbine. Assuming a slight perturbation in the system, the
dynamics of gth turbine in the ith CA is modelled as (5);

D, 1 11
M, 7 M,
: 1 1
Ji 0 —— — 0
d PeGg TTi.g TTi.g
= 1 1
alpeer| 7|1, 0
P_tie RLgTGovi'g TGovilg
1
WS 0 0 0
| jeatte i
ACE;=(B; 0 0 1)(fi PS, P Pfe)  (10)

fi

G
Pi,g
P.Gov

tie
P;

12

deg

dt

= sa!: { (PGGU —Pf ig )} (5)

To adjust the set point of each generator turbine, a
supplementary optimal control signal, P obtained from the
LFC controller is used. Since the set points cannot be
adjusted instantly, additional state is added to model as speed
governor. The adjustment in the governor valve position, as
a function of frequency deviation is expressed in (6)
(Prasada, et al., 2019);

dPgy”

dt TGov,;Jg

1

1
(P,-f; _ per Eﬁ-) ©

The ith Area Confrol Error (ACE) is formulated by
combining the deviations in the frequency and tie-line power
as defined in (7) (Ejegi, et ai., 2016). The ACE forms the
feedback input signal to the controller as depicted in Fig. 2.

ACE; = B;f; + P{*® (7)

i
The LFC controller then compute the P“ based on certain

control law at a predefined time interval.

The modelling equations in (1) — (7) defining the state
variables are rearranged to a standard state-space of form (8)
as shown in (9) and (10);

{:‘cf(t) = Apxi(©) + B () + "™ (D+Fdf™ (1) ®
yi(6) = Cyx; (¢)
1 —
0 e M,
0 g""’ 0
+| 1 |P% Pt + 0 £ 9)
TGOUl“g 0 o Z VVlO
0 0 ]
jeatte
The state vector, x; is defined as [f1 Pfg P[G;" Pfie]T S

R* is the state vector, u; = P is the supplementary control
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signal, di"* = PI"* is the system disturbance within the CA,
while df** = f; is the disturbance attributed to frequency

deviations from neighboring CAs and ACE;: Vi = 1,2, ..n is
the system output.

AREA 1

optim5

loads 1

Pvp11

ACE 1

optim1

The partitioned network with the PI controller installed on each
area is developed in a MATLAB/Simulink as shown in Fig. 4.

AREA 2
refset4

loads 2 -[refset]

Pvp21

- w2
_Goto
i
+\a
A

Fig. 41 MATLAB Implementation of the Partitioned System (Only CA1 an CA2 shown for brevity)

The frequency and tie-line powers are controlled with the
application of the supplementary control action signal to the
generators. The PI controllers at this control level generates the
control signal, P7¢ for each area. Moth Flame Optimization
(MFO) (discussed in the next sub-section) is applied to tune the
controllers, based on the ISE criteria as shown in (11).
min(J;) Such that,
t
J; :f (u{‘?f—A(:EE)Z; i=1,23 (11)
0
The ISE criterion is chosen for the controller design in order to
curtail the effect of large initial errors and minimize the control
effort.
For physical consideration, the proportional gains (Kr;, Kp2
and Kp3) and integral gains (K7, K and K73) of the controller
are constrained within some upper and lower limits for
practical considerations, as shown in (12) and (13);
KR < Kp; < K

(12)

min max,
K" =Ky = K™

(13)

With the reference set points from the master MPC, the local
PIs in the lower level then generate the control signal for each
area, using (14).

Area Control Errors

Master MPC
Controller

@ P17 Optim7
Reference Slave PI
Setpoint Controllers
Costfunc

Fig. 5: MATLAB Implementation of the Control Architecture

t
u; = Kp;ACE; () +Kﬁf ACE; () dt; i =1,2,3 (14)
0

Similarly, the control architecture developed is also designed
in MATLAB/Simulink as shown in Fig. 5.

4. Results and Discussion

To investigate the effectiveness and superiority of the proposed
LFC scheme over conventional PI-based LFC scheme
implemented in presented Nigerian system, the seven-area
interconnected system developed is subjected to single area
step disturbance. The system is then simulated in MATLAB
(R2016a) environment.

The load demand in CA; (consisting of Sckoto, Kebbi,
Zamfara and Niger) is set to a step change of 0.1pu (10% of the
total installed capacity assumed to be S000MW). While the rest
of the control areas are maintained intact. The frequency and
tie-line power responses all the CAs obtained with the
developed control scheme are analyzed and compared with
conventional PI control scheme.

Fig. 6 — 12 show the close-loop responses of the frequency
changes in CA; to CA7 obtained with the proposed scheme as
well as the conventional control scheme. It can be seen from
the dynamic responses that the frequency change in CA; has
larger undershoot compared to the other two areas. This is an
indication that the disturbance occurred in CA;.

50.2 : : .

3 - %= Conventional LFC
homo TR Deweloped LFC

1 |
10 15 20 25
Time (sec)

Fig. 6: CA: Frequency Response
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From the trajectories of the frequency changes in all the areas,
it can be observed that the developed control schemes can
restore the system frequencies to their allowable range with
approximately zero steady state error. However, the proposed
scheme achieved better performance with reduced overshoot
and faster settling time compared to the conventional scheme.
This is due to the coordinated control action and excellent
constraints handling of the proposed scheme.

Similar improvements are observed with regards to the tie-line
powers considering their responses. Fig. 13 to Fig. 16 shows
the tie-line power responses of CA,, CA3, CAs and CA;.
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The negative undershoot in the CA; indicates that the load
disturbance occurred at that particular control area. The
overshoots of the tie-line power deviations are observed to
have reduced by 20.27%, 22.5%, 23.46% and 21.76% in the
four respective areas, when compared with the conventional
method.

The improvements in the dynamic responses is not only
noticeable in the over/undershoots of the responses, but also in
their settling times.

Following the disturbance, the frequency-responsive spinning
reserves respond by adjusting their output powers according to
the new P’¢. At steady state, only the generator(s) in the
perturbed area balance up the net disturbance. This is
established from the response of the generators shown in Fig.
17 to 19. The generators in CA; generates the load change of
0.1pu at steady state, while the generators in the other CAs
settle at zero.
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During the transient, the generators in all the CAs responded
by supplying power to the disturbed area. Then at steady state,
only the disturbed area continues to carter for its load changes.
Fig. 20 shows the generators participation from each CA.

5. Conclusion

This study presents the load frequency control (LFC) of the
330kV, 50Hz Nigerian Power System (NPS). A control
scheme that maintains near-zero steady state errors for
deviation in system frequency and that of net inter-area power
flow within an acceptable limit in a deregulated environment
is developed. It is developed with distributed control
architecture with each of CAs been equipped with a
proportional integral (PI) controllers. These local PI controllers
(slave controllers) compute the optimal control signal for
appropriate valve positioning of all the generators in its CAs,
which in regulate the frequency and tie-line powers. In
addition, each of the slave controllers exchange the
information about their control action with the neighboring
controllers as well as a central master MPC controller. The
local PI controllers are optimally tuned using moth flame
optimization (MFO) algorithm by minimizing the Integral
Square Error (ISE) of the state errors. An MPC applied as the
master controller is used to establish the optimal set-points of
the slave PI controllers. The effectiveness of the developed
scheme is verified by implementing it on the seven-CA
Nigerian deregulated power system perturbed with a step load
demand. From the simulations carried out in MATLAB
environment, it is established that the developed scheme was
able to maintain near-zero steady state errors for deviation in
system frequency and tie-line powers and outperformed the
present conventional control scheme.
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