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1. Introduction 
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2. Nigerian Power System  

Nigerian transmission network operated on 330kV, 50Hz with 
a total transmission wheeling capacity of 7,500MW and 
spanning over 20,000km, is faced with frequency instability due 
to insufficient generation, transmission losses approximated at 
7.4%, frequent system collapse (average of 35 annually) and 
poor market policies, among other hiccups facing the system. 
Some of these problems can be attributed to the inadequate 
transmission line capacity, as the network wheeling capacity is 
far below the total installed generation capacity of 12,500MW.  

Presently, there are eight (8) generation companies (GENCOs) 
operating twenty-five (25) grid-connected generation stations 
which are either thermal or hydro (Ajimotokan, et al., 2009; 
Ogbonnaya, et al., 2019). The thermal generation stations 
located near to the sources of gas in the southern part of the 
country contributing to about 68.30% of the total installed 
capacity, while the hydroelectric stations are located further 
north accounting for the remaining 31.70%. There are various 
ongoing projects for the construction of new power plants 

The frequency control in the NPS is carried out in a centralized, 
thereby making the frequency control and economic dispatch 
(ED) inefficient. The Nigerian Grid Code Frequency Standard 
is 49.75Hz – 50.25Hz while the WAPP Frequency standard is 
49.80Hz – 50.20Hz.  

For the purpose of this study, the Nigerian transmission network 

is partitioned into 7 CAs as shown in Fig. 1 and 2. 
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Fig. 1: Nigerian Transmission Network Partitioned into Seven Control Areas 

 

 

Fig. 2: Schematic Diagram of the Partitioned NPS Network  

 

3. Control Structure 
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Fig. 3: Transfer function representation of the CA 
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Fig. 4: MATLAB Implementation of the Partitioned System (Only CA1 an CA2 shown for brevity) 

 

 
 

 
Fig. 5: MATLAB Implementation of the Control Architecture 
 

 
Fig. 6: CA1 Frequency Response 
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Fig. 7: CA2 Frequency Response 

 
Fig. 8: CA3 Frequency Response 

 
Fig. 9: CA4 Frequency Response 

 
Fig. 10: CA5 Frequency Response 

 
Fig. 11: CA6 Frequency Response 

 
Fig. 12: CA7 Frequency Response 

 

 
 

 
Fig. 13: CA1 Tie-line Power Response 

 
Fig. 14: CA3 Tie-line Power Response 

 

 
Fig. 15: CA5 Tie-line Power Response 
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Fig. 16: CA7 Tie-line Power Response 

 

. 
 

 
Fig. 17: CA1 Generators’ Responses with the Control Signal 

 
Fig. 18: CA1 Generators’ Responses with the Control Signal 

 
Fig. 19: CA1 Generators’ Responses with the Control Signal 

 

 
Fig. 20: Generators Participations from all the CAs. 

 

During the transient, the generators in all the CAs responded 

by supplying power to the disturbed area. Then at steady state, 

only the disturbed area continues to carter for its load changes. 

Fig. 20 shows the generators participation from each CA.  
 

5. Conclusion 
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