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Abstract 

Artificial Prosthesis Systems assists injured patients to improve their quality of life. For proper utilization of these artificial 

systems, accurate estimation of external forces and state vectors are required for feedback control. Existing works estimate 

ground reaction forces using load cells and extended Kalman filter. However, load cells are expensive, bulky and prone to 

errors, whereas the filter has some inherent limitations which occur as a result of the truncation of higher order terms brought 

about by local linearization using first-order Taylor-series approximation and also requires Jacobian computation. We propose 

a robust Kalman filtering approach known as an optimized derivative-free Kalman filter for the estimation of states and ground 

reaction forces of a prosthesis system for transfemoral (TF) amputees. The system has four degrees of freedom (vertical 

displacement, thigh angle, knee angle and ankle angle). The plant is transformed to its linear equivalent using differential 

flatness. Grasshopper optimization algorithm was employed to optimize the parameters of the derivative-free Kalman filter by 

minimizing the root mean square estimation error of the nonlinear filter. Four measurement sensors were used (vertical 

displacement, thigh angle, knee angle and ankle angle) and the performance of the prosthesis system in normal gait mode was 

examined. The designed filter was simulated on Matlab R2018a and the results are compared with extended Kalman filter and 

unscented Kalman filter. The superiority of our method in estimating the joint angle reference, the GRFs and the reduction of 

material cost are shown when compared with existing methods. The optimized derivative-free Kalman filter recorded an average 

RMSE improvement of 99.85% and 99.77% estimation in joint angles and GRFs when computed and compared to existing 

methods. 
Copyright © Faculty of Engineering, Ahmadu Bello University, Zaria, Nigeria. 
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1. Introduction 

Advances in technology continues to improve the quality of life 

of patients in various forms and degrees. Artificial prosthetic 

systems continue to make themselves relevant in the life of 

patients that have suffered injuries as they significantly ease the 

effects on patients that have suffered amputation. The main aim 

of every prosthetic leg is to provide a gait similar to that of a 

normal person. To achieve this aim, accurate estimation of the 

system states and ground reaction forces (GRFs) are needed for 

feedback control (Fakoorian et al., 2017). From being used 

mainly as cosmetic purposes in ancient Egyptians to 

rehabilitation purposes in prosthetic, transfemoral amputees, 

derivative-free Kalman filter, state estimation, grasshopper 

optimization, ground reaction force Roman civilization, 

prothesis systems have gained considerable attention in recent 

times where advances in microelectronics and robotic 

technologies have become the order of the day (Moosavi et al., 

2017). From passive prosthesis systems, semi-active artificial 

limb prosthesis have been developed (Awad et al., 2016; Zhang 

et al., 2021). Nowadays, researchers’ attention has been turned 

to active prosthetic systems (Varol and Goldfarb, 2007; Geng 

et al., 2010; Geng et al., 2012; Behera and Indalkar, 2020). The 

main difference between active and semi-active prosthetic 

systems is that the former has an inherent capability of 

autonomous generation of forces (Varol and Goldfarb, 2007; 

Windrich et al., 2016). Indeed, considerable efforts have been 

made by researchers in order to rehabilitate walking in patients 

who have suffered from amputation as recently reviewed by 

Windrich et al. (2016). 

The robots/prosthetics leg model are non-linear systems (Ron 

Davis, 2014), hence they are usually linearized before 

appropriate estimation method and control measures are 

applied. Phong et al. (2015) proposed a novel method for 

estimating external forces acting on a 4-DOF robot 

manipulator’s end effector using information from joint torque 

sensors (JTS). The algorithm combined time delay estimation 

(TDE) and input estimation technique with external forces as 

unknown input to the end effector to perform estimation. A 

modeling, parameter estimation and control of a robot with two 

degrees of freedom has been developed (Richter et al., 2015). 

Their system is composed of a prosthetic leg with vertical 

displacement and hip angle attached to the robot and force 

plates were used for external force estimation. SonoMenegaldo 

(2009) presented a myoelectric hand prosthesis force control 
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through servo motor current feedback. DC motor actuator 

current was measured for real-time estimation of prehension 

(external) forces. This approach provided more accurate force 

estimation compared to open loop control, but the real-time 

estimation depended on the accuracy of the DC motor current 

which is prone to fluctuation.  

Conventionally, heavy load cells are being employed to capture 

the ground reaction forces (GRFs) and moments in robotic and 

prosthesis leg during gait (Gonzalez, 2014). Using impedance 

controls, these data are used as feedbacks to control prosthetic 

legs of patients. However, the mammoth disadvantages of using 

load cells ranging from cost, integration difficulties, overload 

possibilities to high consumption of electric power has led many 

researchers to consider other ways of measuring parameters in 

prosthesis (Azimi et al., 2018). Angle sensors are much more 

reliable, inexpensive and have accurate high resolution 

encoders (Fakoorian et al., 2017). Hence, researchers are now 

considering angle sensors and other ways of estimating the 

system parameters from measurements of the output (Azimi et 

al., 2018; Hamza et al., 2020).  

Generally, the Kalman filter (KF) and the extended Kalman 

filter (EKF) are frequently applied to these (nonlinear) systems 

to estimate the systems’ state vectors from output 

measurements. Atkeson (2012) presented a technique that 

evaluated two approaches of developing Kalman filter for gait 

systems. The first model was referred to as LIPM KF (Linear 

Inverted-pendulum model Kalman filter) model and the second 

was planer Kalman filter model. Results obtained showed that 

the later slightly outperformed the former, although both were 

not optimal. The EKF is based on the linearization of the 

dynamics of the prosthesis systems utilizing Taylor series 

expansion. It is a good estimator and performed satisfactorily 

well in the speed estimator of an induction motor drive (Shi et 

al., 2002), and to estimate values descriptive of the pack’s 

present operating conditions in battery management systems 

(Plett, 2004). Therefore, a continuous time Extended Kalman 

Filter (EKF) has been proposed to estimate both the state 

vectors and ground reaction forces (GRFs) acting on a 

prosthetic foot (Fakoorian et al., 2016). Though EKF estimation 

method performs well in some systems, it is prone to cumulative 

errors due to the gradient-based linearization it performs 

(Rigatos, 2011). It is also difficult to implement and only 

reliable for systems which are almost linear on the time scale of 

the update intervals (Julier and Uhlmann, 1997). 

To mitigate the errors of the EKF method, Fakoorian et al. 

(2017) used unscented Kalman filter (UKF) to estimate the 

states and ground reaction forces acting on a prosthetic leg. The 

UKF outperformed EKF because it does not require the 

computation of Jacobian matrices and it is not based on local 

linearization of nonlinear dynamics. But the UKF updates 

sigma points at each iteration, as such it has a high 

computational cost. To overcome the drawbacks inherent in the 

aforementioned methods, Rigatos (2011) had introduced a 

derivative-free Kalman filtering (DKF) suitable for state 

estimation-based control of a class of nonlinear systems and 

capable of estimating the state vectors of the nonlinear system 

without on-line derivative and Jacobian calculations. Moosavi 

et al. (2017) used a derivative-free Kalman filter (DKF) for state 

estimation-based control for a n-DOF prosthetic system along 

with PD and PI disturbance compensators, as supervisory 

control terms for the rejection of disturbances. Due to the 

profound negative effect of Kalman filter’s process - noise 

covariance matrix (Q) and measurement noise covariance 

matrix (R) - on the filter’s performance, some authors have 

proposed an intelligent way of determining these covariance 

matrices using optimization techniques. Such as: a Genetic 

Algorithm optimized extended Kalman filter (EKF) for speed 

estimation of an induction motor drive (Shi et al., 2002), and a 

fruit fly optimized Kalman filter algorithm for pushing distance 

estimation of a hydraulic powered roof support through tuning 

covariances (Zhang et al., 2016). The potentials of bio-inspired 

optimization algorithms are yet to be fully utilized in human 

prosthetic systems.  

Hence, to further improve the accuracy of the artificial 

prosthetic systems, we propose an optimized derivative-free 

Kalman filter (DKF) for the estimation of external forces and 

states of transfemoral amputees while reducing material costs. 

The system has four degrees of freedom (vertical displacement, 

thigh angle, knee angle and ankle angle). The plant, being 

nonlinear, is transformed to its linear equivalent using 

differential flatness. Optimization algorithms have been used in 

order to improve the performance of artificial prosthetic 

systems; the optimization method deployed is known as  

Grasshopper Optimization algorithm developed by Saremi et al. 

(2017). Elsewhere, Ron Davis (2014) proposed an evolutionary 

optimization of ground reaction for a prosthetic leg testing robot 

using bio-inspired optimization algorithm called biography-

based optimization (BBO) to optimize the hip motions of the 

robot. Grasshopper optimization was employed in this work to 

optimize the parameters of the derivative-free Kalman filter by 

minimizing the root mean square estimation error of the 

nonlinear filter. In our method, the process noise covariance 

matrix (Q) and measurement covariance matrix (R) which used 

to be obtained using trial and error approach was tuned using 

Grasshopper optimization algorithm, this minimizes the 

computational root mean square error. This is the main 

contribution of this paper. This significantly reduced the root 

mean square error (RMSE) of the Derivative free Kalman Filter 

making it optimal. The optimized value of Q and R were used 

in the application of the standard Kalman filtering methodology 

to estimate not just the states (joint angle displacements and 

velocities) but also the GRF’s acting on the system. The rest of 

the paper is organized as follows: Section 2 presents the system 

model and its linearization using differential flatness followed 

by the application of the Grasshopper Optimization to optimize 

the parameters of the derivative-free Kalman filtering is in 

Section 3. The application of the standard Kalman filtering 

methodology using the optimal values obtained through 

Grasshopper Optimization comes in Section 4. In Section 5, the 

simulation and results of the designed filter are presented while 

Section 6 concludes the study. 
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2. System model and linearization 

The prosthesis system for transfemoral amputees considered 

has four degrees of freedom (vertical displacement, thigh angle, 

knee angle and ankle angle). Since Kalman filtering applies 

directly to linear systems, the plant model (which is nonlinear) 

is transformed to its linear equivalent using differential flatness. 

Applying the standard Kalman filter to a nonlinear system 

through the transformation of the nonlinear system to the 

observer canonical form is called derivative-free Kalman 

filtering (DKF). The model of the prosthesis leg is based on the 

standard robotic Newtonian framework. The general dynamic 

model of the system is given as follows (Fakoorian et al., 2016): 
 

𝐷(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐵(𝑞, 𝑞̇) + 𝐽𝑒
𝑇𝐹𝑒 + 𝐺(𝑞) = 𝑢            (1)  

 

Where 𝑞𝑇 = [𝑞1, 𝑞2, 𝑞3, 𝑞4] is the vector of joint displacements, 

𝑞1 is vertical hip displacement, 𝑞2  is thigh angle,  𝑞3 is knee 

angle, and 𝑞4 is ankle angle, 𝐷(𝑞) is the inertia matrix, 𝐶(𝑞, 𝑞̇) 

is a matrix accounting for centripetal and Coriolis effects, 

𝐵(𝑞, 𝑞̇) is a nonlinear damping vector, 𝐽𝑒 is the kinematic 

Jacobian relative to the point of application of the external 

forces 𝐹𝑒, 𝐺( 𝑞)  is the gravity vector, and 𝑢  is the four-element 

vector of control signals. Equation (1) is obtained using Euler- 

Lagrange method. A treadmill is used to simulate the walking 

surface of the system. The ground reaction force (GRF) model 

is given as follows (Fakoorian et al., 2016). 

𝑧ℎ = −𝑎𝐻 𝑠𝑖𝑛 (𝑞2 + 𝑞3 + 𝑞4 + (
𝜋

2
+ 𝑐𝑜𝑠−1 (

𝑎ℎ

𝑎𝐻
))) +

𝑙3 𝑠𝑖𝑛(𝑞2 + 𝑞3) + 𝑙2 𝑠𝑖𝑛(𝑞2) + 𝑞1

    

                                      (2) 

𝑧𝑡 = −𝑎𝑇 𝑠𝑖𝑛 (𝑞2 + 𝑞3 + 𝑞4 + (
𝜋

2
+ 𝑐𝑜𝑠−1 (

𝑎ℎ

𝑎𝑇
))) +

𝑙3 𝑠𝑖𝑛(𝑞2 + 𝑞3) + 𝑙2 𝑠𝑖𝑛(𝑞2) + 𝑞1

   

            (3) 
 

𝐹𝑧ℎ = −𝑘𝑏(𝑧ℎ − 𝑠𝑧) (
1+𝑠𝑖𝑔𝑛(𝑠ℎ−𝑠𝑧)

2
)                                                   (4) 

 

𝐹𝑧𝑡 = −𝑘𝑏(𝑧𝑡 − 𝑠𝑧) (
1+𝑠𝑖𝑔𝑛(𝑠𝑡−𝑠𝑧)

2
)                                         (5) 

𝐹𝑥ℎ = 𝛽𝐹𝑧ℎ                                                                               (6) 
 

𝐹𝑥𝑡 = 𝛽𝐹𝑧𝑡                                                          (7) 
 

Where 𝑘𝑏 is the stiffness of the belt,𝑙2 and 𝑙3 are the lengths of 

the thigh (link 2) and shank (link 3) respectively, 𝑠𝑧 is treadmill 

standoff, 𝑎ℎ is the height of the ankle joint above the sole of the 

foot, 𝑎𝐻is the distance from the ankle joint to the heel and 𝑎𝑇 is 

the distance from the ankle joint to the toe, 𝛽 is the coefficient 

of friction between the foot and the belt. 𝑧𝑡 and 𝑧ℎ which are the 

vertical positions of the toe and heel are shown in Figure 1. 
 

During our simulation we assumed that the prosthetic leg walks 

along x-axis. A foot with two points ground contact was used 

as shown in Figure 1, after toe-off there is no foot contact to the 

ground which implies the ground reaction force (GRF) is equal 

to zero. Assuming that after toe-off the external force𝐹𝑒 = 0, (1) 

can be transformed to its flat output as (Fakoorian et al., 2016): 
 

𝑦 = [𝑞1, 𝑞2, 𝑞3, 𝑞4] = [𝑥1, 𝑥3, 𝑥5, 𝑥7]                     (8) 

 
Figure 1: Prosthetic leg model (Fakoorian et al., 2016). 

 

All the system variables can be written as a function of flat 

output y and its successive derivatives. From the work of 

Fakoorian et al. (2016), the control input u, can also be written 

as a function of 𝑦 and its successive derivatives as given in (9). 
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(9) 

                

Considering the state vector 𝑥 ∈ 𝑅8×1, with the state variables, 

the following matrices are defined. 
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Therefore, the system satisfies the differential flatness 

properties and can be transformed into linear canonical form 

given by 
 

x Ax Bv

y cx

 


 

 

(10) 

Where the new input v is given by; 
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(11) 

The DKF can be used for estimation-based control of robots if 

the robot model is subjected to a linearization transformation 

for exact feedback linearization control and then state 

estimation is performed on the linearized model with a standard 

Kalman filter. 

 

3. Optimization of the derivative-free Kalman 
filter Parameters 

Since it is necessary to choose the process noise covariance Q 

and measurement noise covariance R in a way that our model 

will converge quickly, choosing wrong Q and R can lead to 

large estimation error or the system diverging. There are 

multiple ways of doing this. The simplest method will be to 

guess and test until we get a satisfactory result i.e., using trial 

and error. A better method will be to optimize the Q and R 

values. This is what has been chosen in this research. The 

grasshopper optimization algorithm is used to optimize the 

values of the process and measurement noise covariance 

matrices by minimizing the RMSE of the Derivative Kalman 

filter thereby making it optimal. The equation to explore and 

exploit the search space in Grasshopper optimization is given 

as (Mirjalili et al., 2017): 

 

    
2

1, 

  ˆ
ubd lbdN

j i j i

d

j j i ij

s X X X X
Xi c c T

d



 

  
  
 
 


 

 

 (12) 

  Where; 

𝑐 = 𝑐𝑚𝑎𝑥 − 𝑙 ×
𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛

𝐿
 

 

𝑠(𝑟) = 𝑓𝑒−
𝑟

𝐿 − 𝑒−𝑟   
 

𝐶𝑚𝑎𝑥 is the maximum value, 𝐶𝑚𝑖𝑛 is the minimum value, 𝑙 
indicates the current iteration, and 𝐿 is the maximum number 

of iterations, 1 and 0.00001 is used for 𝐶𝑚𝑎𝑥 and 𝐶𝑚𝑖𝑛 

respectively. 𝑓  indicates the intensity of attraction and 𝐿  is the 

attractive length scale. 𝑢𝑏𝑑is the upper bound in the 𝐷𝑡ℎ 

dimension, 𝑙𝑏𝑑 is the lower bound in the 𝐷𝑡ℎ dimension, 𝑇̂𝑑 is 

the value of the 𝐷𝑡ℎ dimension in the target (best solution found 

so far). The cost function is given by: 
 

2 1/2

min

1
[ ( ) ]Cost RMSE x x
n

  
 

   

(13) 

Where 𝑥, 𝑥 ̃and 𝑛 are actual state, estimated state and the 

number of states respectively. 

Initial values chosen for Q and R, are: 

𝑄 = ([0.0005, 0.0005, 0.0005 ,0.0005, 0.0002, 
 0.0002, 0.0002,0.0002]) 

𝑅 = 𝑑𝑖𝑎𝑔([10−3, 10−3, 10−3, 10−3]) 
The lower bound for Q and R is given by 
𝑄 = 𝑑𝑖𝑎𝑔([0.0000,0.0000,0.0000,0.0000, 

0.0000,0.0000,0.0000,0.0000]) 

𝑅 = 𝑑𝑖𝑎𝑔([10−5, 10−5, 10−5, 10−5]) 

The upper bound for Q and R will be 

𝑄 = 𝑑𝑖𝑎𝑔([100,100,100,100,100,100,100,100]) 

𝑅 = 𝑑𝑖𝑎𝑔([10−1, 10−1, 10−1, 10−1]) 

The process of calculating the fitness will be running the 

Derivative-free Kalman filter algorithm. After the DKF is run 

for all the search agents, the one that yields the least RMSE 

will be chosen as the optimal value. 

 

4. Application of Standard Kalman filtering 
methodology using the optimal values of DKF 

The Kalman filter is applied directly to linear systems. 

However, to implement a derivative free Kalman filter, a 

nonlinear system dynamic can be transformed into canonical 

form using differential flatness theory and a standard 

Kalman filtering is applied to the transformed model.  

The initial state 𝑥(0) is a random vector with covariance 

𝑝(0) 

𝑥(0) = 𝐸[𝑥(0)] 

𝑃( 0) = 𝐸[(𝑥(0) − 𝑥̂(0))(𝑥(0) − 𝑥̂(0))𝑇] 

The DFK equations are as follows  

𝑥̇ = 𝑓(𝑥̂, 𝑢, 𝑡) + 𝐾[𝑦 − ℎ(𝑥̂, 𝑡)]                         (14)       

𝐾(𝑡) = 𝑃(𝑡) 𝐶𝑇( 𝑡) 𝑅−1( 𝑡)               (15) 

𝑃̇ = 𝐴(𝑡)𝑃(𝑡) + 𝑃(𝑡)𝐴(𝑡) + 𝑄(𝑡)

− 𝑃(𝑡)𝐶𝑇(𝑡)𝑅−1(𝑡)𝐶(𝑡)𝑃(𝑡)           (16) 

State estimation of the system variables was performed using 

a nonlinear observer (estimator), Equations (8) and (9), then 

the estimated states of the system could be substituted into 

the GRF model Equation (2) to Equation (7) to obtain GRF 

estimates. This approach was used in this research because 

it is more flexible compared to other approaches. Four 

measurement sensors were used (vertical displacement, 

thigh angle, knee angle and ankle angle) and the 

performance of the prosthesis system in normal gait mode 

was examined. The design of an Optimized Derivative-Free 

Kalman Filter for estimation of external forces acting on a 

lower limb prosthetic leg and states of the system was 

simulated using MATLAB 2018Ra simulation environment. 

The complete simulation set up for the prosthesis system is 

shown in Figure 2. 
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Figure 2: Complete Simulink block model 

 

5. Simulation and Results 

In the prosthetic leg, we have 8 states, so the A matrix is 8x8 

as presented in Equation (10). Four states were used as 

measurements: vertical hip displacement, thigh angle, knee 

angle and ankle angle, this implies that the dimension of the 

C matrix is 4x8 as presented in Equation (11). Previous 

authors used load cells or sensors directly fixed on the 

system to obtain the external forces (Veltink et al., 2005; 

Aubin et al., 2011). The use of force sensors to obtain the 

external forces does not only make the system heavy and 

complex, but also relatively costly.  

The performance of the optimized derivative-free nonlinear 

Kalman Filter was tested in the nonlinear state estimation-

based control for a 4-DOF rigid-link prosthetic leg given in 

Figure1. The flat outputs were taken to be the prosthetic leg’s 

joint angles𝑦1 = 𝑥1,𝑦2 = 𝑥3,𝑦3 = 𝑥5 and 𝑦4 = 𝑥7. It has 

been proven that all state variables of the prosthetic model 

and the associated control inputs can be written as functions 

of the flat output [𝑦1,𝑦2, 𝑦3,𝑦4] and of the associated 

derivatives. The position and velocity variations for the first 

joint of the prosthetic leg are depicted in Figure 3. For the 

second joint of the prosthetic leg the tracking of the position 

and velocity reference is depicted in Figure 4, Figure 5 

shows the position and velocity of the third joint and Figure 

6 shows the position and velocity of the fourth joint. 

 
(a)  

 
                 (b) 

Figure 3: a) hip displacement b) hip velocity 
 

In this Optimized-DFK simulation result shown in Figure 3, 

a is the tracking of a reference data position (blue line) by 

the angle (𝑞1) of the first joint of the prosthetic leg (red 

dotted line) while b is the tracking reference data velocity 

(blue line) by the angular velocity (𝑞̇1) of the first joint of the 

prosthetic leg (red dotted line). 

From Figure 4, a is the tracking of a reference data position 

(blue line) by the angle (𝑞2) of the second joint of the prosthetic 

leg (red dotted line) and b is the tracking reference data 

velocity (blue line) by the angular velocity (𝑞̇2) of the second 

joint of the prosthetic leg (red dotted line). 
 

 
(a) 
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(b) 

Figure 4: a) Thigh angle b) Angular velocity of the thigh 

 

 
(a) 

 
(b) 

Figure 5: a) Knee angle b) Angular velocity of the knee 
 

In Figure 5, a depicts the tracking of a reference data position 

of the Optimized-DFK (blue line) by the angle (𝑞3) of the third 

joint of the prosthetic leg (red dotted line). b tracking reference 

data velocity (blue line) by the angular velocity (𝑞̇3) of the third 

joint of the prosthetic leg (red dotted line). 

 

 
(a) 

 
(b) 

Figure 6: a) Ankle angle b) Angular velocity of the ankle 
 

Figure 6 (a) shows  tracking of a reference data position (blue 

line) by the angle (𝑞4) of the fourth joint of the prosthetic leg 

(red dotted line), while Figure 5 (b) shows  tracking reference 

data velocity (blue line) by the angular velocity (𝑞̇4) of the 

fourth joint of the prosthetic leg (red dotted line).The results 

presented in the figures above show that the optimized-DFK 

converge to true states and was able to accurately estimate the 

displacements and velocities of the joint angles of the system. 

 
(a) 

 

 
(b) 

Figure 7: Vertical ground reaction force 
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(a) 

 
(b) 

Figure 8: Horizontal ground reaction force 
 

The ground reaction force estimation results are shown in 

figure 7 and 8. After toe-off the ground reaction force is zero 

(GRF=0) because there is no contact between the foot and the 

ground. After substituting the estimated state value into the 

GRF model, it can be observed that the optimized-DFK 

converges and accurately estimated the actual GRFs values. 
 

Table 1: Comparison of average RMSE between EKF, UKF 

and Optimized-DKF 

Nonlinear 

Filter 

Ave. RMSE of 

Positions 

Ave. RMSE of 

Velocities 

Ave. RMSE of 

GRFs 

EKF 0.0020 0.1205 11.8525 

UKF 0.0016 0.0896 7.9792 

Optimized-

DKF 

0.000005 0.2379 0.0222 

Average % 

Improvement 

99.85  99.77 

 

The average RMSE of the Optimized-DKF is computed and 

compared with that of EKF and UKF as reported in (Fakoorian 

et al., 2017). The results are shown in Table 1, and it is seen 

that the optimized-DFK outperformed both the EKF and the 

UKF in estimating the positions and the GRFs significantly. 

However, there is no improvement in the average RMSE of 

velocities compared to both EKF and UKF owing to the noise 

introduced on the system as result of the rotation of foot about 

the angle. Figure 8 depicts the zoomed region of angular 

velocity of the ankle, it can be seen that the optimized-DFK 

was able to estimate the stable part of the signal and has 

difficulty in estimating the noisy part of the signal. This is 

because of the rotation of foot about the ankle joint when the 

foot of the prosthetic leg hit the ground. Figure 6 shows the 

ankle angle (𝑞4) estimate, when the ankle angle changes, the 

foot rotates around the ankle which makes ankle angular 

velocity (𝑞̇4) noisy as depicted in Figure 9. This makes the 

estimator (optimized-DFK) relatively hard to track the angular 

velocity of the ankle owing to the difficult task in the 

compromise between noise rejection and bandwidth 

(Fakoorian et al., 2017). 
 

 
Figure 9: Zoomed region of the ankle velocity 

 

6. Conclusion 

This paper approached the problem of capturing external 

forces acting on the foot of a prosthetic leg. External force 

estimation is a better alternative than direct external force 

measurement because load cells have disadvantages of high 

cost, integration difficulty due to bulkiness and their proneness 

to errors. The differentially flat model of the prosthesis and its 

transformation to the canonical form has been analyzed. An 

optimized-DFK is developed in this work to estimate the states 

and the GRF’s. Differential control theory is applied to obtain 

a linear equivalence of the system, a recently developed 

optimization algorithm known as GOA is used to optimize the 

parameters of DFK, and these optimized parameters together 

with the standard Kalman filter algorithm were applied to the 

resulting system to estimate not just the states (joint angle 

displacements and velocities) but also the GRF’s acting on the 

system. The average root mean square estimation error 

(RMSE) of Extended Kalman Filter (EKF) for joint angles is 

0.002 rad and 11.85N for ground reaction forces (GRFs), the 

corresponding values for Unscented Kalman Filter (UKF) is 

0.0016rad and 7.9N while the values for the optimized-DFK 

are 0.000005rad for joint angle and 0.0222N for GRFs. This 

represents an average RMSE improvement of 99.85% and 

99.77% estimation in joint angles and GRFs, when compared 

to EKF and UKF respectively. 
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