
45 

 

 

 

 

 

PREDICTION OF UNCONFINED COMPRESSIVE STRENGTH OF TREATED EXPANSIVE  

CLAY USING BACK-PROPAGATION ARTIFICIAL NEURAL NETWORKS 

 

A. B. Salahudeen*
1
, J. A. Sadeeq

2
, A. Badamasi

1
 and K. C. Onyelowe

3
 

 
1
Department of Civil Engineering, University of Jos, Jos, Nigeria. 

2
Department of Civil Engineering, Ahmadu Bello University, Zaria, Nigeria. 

3
Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria. 

*Corresponding Author’s Email: bunyamins@unijos.edu.ng 

 

ABSTRACT 

The multilayer perceptrons (MLPs) artificial neural networks (ANNs) that are trained with feed forward back -propagation 

algorithm was used in this study for the simulation of unconfined compressive strength (UCS) of cement kiln dust-treated 
expansive clay. Artificial neural networks (ANNs) are yet to be efficiently extended to soil stabilization aspect of geotechnical 
engineering. As such, this study aimed at applying the ANNs as a soft computing approach to predict the UCS values of 
Nigerian expansive clay. For each of the three ANN model development, eight inputs and one output data set were used. The 
mean squared error (MSE) and R-value were used as yardstick and criteria for acceptability of performance. In the neural 
network development, NN 8-11-1 that gave the lowest MSE value and the highest R-value were used for all the three outputs in 

the hidden layer of the networks architecture which performed satisfactorily. For the normalized data set used in training, 
testing and validating the neural network, the performance of the simulated network was satisfactory having  R values of 
0.9812, 0.9783 and 0.9942 for the 7, 14 and 28 days cured UCS respectively. These values met the minimum criteria of 0.8 
conventionally recommended for strong correlation condition. All the obtained simulation results are satisfactory and a strong 
correlation was observed between the experimental UCS values as obtained by laboratory test procedures and the predicted 
values using ANN. 
Keywords: Artificial neural networks, cement kiln dust, expansive clay, multilayer perceptrons, soil treatment, unconfined 

compressive strength. 
 

INTRODUCTION 
Unconfined compressive strength (UCS) test is used to 
obtain the shear strength parameters of cohesive (fine 

grained) soils either in undisturbed or remoulded state. The 
test is not applicable to cohesionless or coarse grained soils. 
The results of UCS test provide an estimate of the relative 
consistency of the soil. UCS is used in all geotechnical 
engineering designs (e.g. road pavements, foundations, 
retaining walls, slopes and embankments) to obtain a rough 

estimate of the soil strength and viable construction 
techniques (Salahudeen et al., 2014). It is also used to 
determine the undrained shear strength or undrained 
cohesion of fine grained soils. UCS is strain controlled and 
when the soil sample is loaded rapidly, the pore pressures 
undergo changes that do not have enough time to dissipate. 

Hence, the test is representative of soils in construction sites 
where the rate of construction is very fast and the pore 
waters do not have enough time to dissipate.  
 
The conventional method of soil modification for flexible 
pavements constructed on soft soil consists of providing a 

stiffer load bearing base over the soft subgrade. The required 
thickness of the base is determined from the unconfined 
compressive strength (UCS) and/or CBR of the subgrade. 
For very soft to soft subgrade like that of black clays used in 
this study, the required base thickness often becomes high. 
In such situation the use of chemical 

modification/stabilization can result in substantial reduction 
of base thickness. This improves the performance of the 
geotechnical structure by preventing loss of base material 
into subgrade (Khan et al., 2016). Cement kiln dust (CKD) 
was used in this study to treat expansive clay. CKD is the 

fine grained, solid highly alkaline waste removed from 
cement kiln exhaust gas by air pollution control devices. The 
physical and chemical properties of CKD can vary from 

plant-to-plant, depending on the raw materials used and type 
of collection process in the plant (Rahman et al., 2011). 
 
The study aimed at using the soil properties to develop an 
optimized neural network for the 7, 14 and 28 days cured 
UCS of natural and CKD-treated expansive clay using multi-

layer networks variety of learning technique of back-
propagation in Artificial Neural Networks (ANNs). Artificial 
Neural Networks (ANNs) is a form of artificial intelligence 
that in its architecture attempts to simulate the biological 
structure of the human brain and nervous system. In recent 
times, Artificial Neural Networks (ANNs) have been applied 

to many geotechnical engineering applications. Shahin et al. 
(2002) have used back-propagation neural networks to 
predict the settlement of shallow foundations on 
cohesionless soils. The predicted settlements found by 
utilizing ANNs were compared with the values predicted by 
three commonly used deterministic methods. The results 

indicated that ANNs are a promising method for predicting 
settlement of shallow foundations on cohesionless soils, as 
they perform better than the conventional methods that are 
empirical based. Kolay et al. (2008) made use of ANN 
programming in predicting the compressibility 
characteristics of soft soil settlement in Sarawak, Malaysia. 

Benali et al. (2013) used ANNs for principal component 
analysis and prediction of the pile capacity based on SPT 
results. ANNs was used by Salahudeen et al. (2018) to 
predict the optimum moisture content and maximum dry 
density of Nigerian black cotton soil. All these literature are 
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source of hope for the beneficial use of ANNs in 
geotechnical applications. 
 
Expansive clay is in the group of problem soils encountered 

by geotechnical engineers. The expansive clays used in this 
study are also known as black cotton soils or black clays 
which are confined to the semi-arid regions of tropical and 
temperate climatic zones and are abundant where the annual 
evaporation exceeds the precipitation (Warren and Kirby, 
2004). Black clays occur in continuous stretches as 

superficial deposits and are typical of flat terrains with poor 
drainage. The absence of quartz in the clay mineralogy 
enhances the formation of fine-grained soil material, which 
is impermeable and waterlogged (Balogun, 1991). The 
mineralogy of this soil is dominated by the presence of 
montimorillonite which is characterized by large volume 

change from wet to dry seasons and vice versa. Deposits of 
black clay, which occupy an estimated area of 104 x 10

3 
km

2
 

in North-east region of Nigeria, show a general pattern of 
cracks during the dry season of the year. Cracks measuring 
70 mm wide and over 1m deep have been observed and may 
extend up to 3m or more in case of high deposit (Salahudeen 

et al., 2019). 
 
MATERIALS AND METHODS 

Materials 

The expansive clay samples used for this study were 
obtained from Dadinkowa, Gombe State, Nigeria. The 

Cement Kiln Dust (CKD) was obtained from Sokoto Cement 
Factory, Sokoto, Sokoto State, Nigeria and was added to the 
soil at 0, 2, 4, 6, 8 and 10% of the dry weight of the soil. The 
properties of the natural expansive clay soil are summarized 
in Table 1, while the oxide compositions of the soil and 
cement kiln dust used in the study are given in Table 2. 

 

  
    
 

Table 1: Properties of the natural expansive clay soil 

Property Quantity 

Percent passing BS No 200 sieve, % 

Natural moisture content, % 
Liquid limit, % 
Plastic limit, % 
Plasticity index, % 
Linear shrinkage, % 
Free swell, % 

Specific gravity 
AASHTO classification 
USCS 
NBRRI classification 
Maximum dry density, Mg/m

3
 

Optimum moisture content, % 

Colour 
Dominant clay mineral 

73.6 

210 
48.2 
27.2 
21.0 
16.9 
80.0 

2.33 
A-7-6 (16) 
CL 
High swell potential 
1.63 
18.0 

Greyish black 
Montmorillonite 

 

 

 

 

Table 2: Oxide composition of natural expansive clay soil and cement kiln dust 

Oxide (%) Soil CKD 

CaO 
SiO2 
Al2O3 
Fe2O3 

MgO 
MnO 
BaO 
Ag2O 
SO3 
TiO2 

ZnO 
LOI (1000

o
C) 

3.58 
49.00 
15.10 
14.23 

- 
0.23 
- 
2.17 
- 
2.09 

- 
11.10 

44.28 
7.23 
1.90 
4.47 

0.82 
0.11 
0.10 
- 
0.13 
0.23 

0.01 
39.28 

 
 

 

 

 

 

 Nigerian Journal of Engineering                                                                                                                                                      Vol. 27, No. 1, April 2020 



47 

 

METHODS 
Laboratory Tests 

Laboratory tests were performed on the natural soil samples 
in accordance with BS 1377 (1990) and on the cement kiln 

dust treated expansive clay in accordance with BS 1924 
(1990). The tests conducted include, particle size 
distribution, specific gravity, linear shrinkage, Atterberg 
limits, compaction characteristics test to determine the OMC 
and MDD and unconfined compressive strength (UCS) test 
cured for 7, 14 and 28 days. All tests were first carried out 

on the natural soil then on the CKD-treated soils in steps of 
0, 2, 4, 6, 8 and 10% CKD content by dry weight of the soil. 
Standard laboratory procedures were used in this study to 
determine the properties of natural and CKD-treated 
expansive clay using three compactive energies. The three 
compactive energies used are the British Standard light 

(BSL), West African Standard (WAS) and the British 
Standard heavy (BSH) energies.  
 

 Artificial neural networks model development 

The types of neural networks used in this study are 
multilayer perceptrons (MLPs) that are trained with the feed 

forward back-propagation algorithm. The typical MLP 
consists of a number of processing elements (neurons) that 
are arranged in layers: an input layer, an output layer, and 
two hidden layers. Each processing element in the specific 
layer is joined to the processing element of other layers via 

weighted connections. The input from each processing 
element in the previous layer is multiplied by an adjustable 
connection weight. This combined input then passes through 
a nonlinear transfer function (TANSIG function for layer 

one and PURELIN function for layer two) to produce the 
output of the processing element. The neurons uses the 
following transfer or activation function: 
 

  ∑    

 

   

           {
         
         

                                   

 

The output of one processing element provides the input to 
the next processing elements. In this work, the ANN model 
was developed with flexible and useful software for this type 
of application; the MATLAB R2014. In this study, eight 
input and three outputs were used separately for the ANN 
model development. The input data are specific gravity 

(SG), linear shrinkage (LS), uniformity coefficient (Cu) 
coefficient of gradation (Cc), liquid limit (LL), plastic limit 
(PL), optimum moisture content (OMC) and maximum dry 
density (MDD). The outputs (targets) data are the 7, 14 and 
28 days cured unconfined compressive strength (UCS) 
values. The multilayer perceptron architecture of networks 

used for the ANN model development for the 7, 14 and 28 
days cured unconfined compressive strength (UCS) are 
shown in Figures 1 - 3 respectively. 

 

 

 
 

Figure 1: Multilayer perceptron architecture of ANN network for 7 days cured UCS 
 

 
 

 
 

Figure 2: Multilayer perceptron architecture of ANN network for 14 days cured UCS 
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Figure 3: Multilayer perceptron architecture of ANN network for 28 days cured UCS 
 

 

 

Data division and processing in artificial neural network 

In developing the ANN model, the available data were 
divided into their subsets. In this work, the data were 

randomly divided into three sets: a training set for model 
calibration, a testing set and an independent validation set 
for model verification. In total, 70% of the total data set 
were used for model training, 15% were used for model 
testing and the remaining 15% were used for model 
validation. Once available data are divided into their subsets, 

the input and output variables were pre-processed, in this 
step the variables were normalized between -1.0 and 1.0.  
 

Model performance evaluation 

The performance of the developed ANNs model was 
evaluated to ensure that the model has the ability to 

generalize its performance within the limits set by the 
training data rather than been peculiar to the input - output 
relationships contained in the training data. The 
conventional approach is to test the model performance on 
an independent validation set of data that was not used in the 
training process. In the literature, the common measures 

often used are statistical measures which include the 
correlation coefficient (R), the mean absolute error (MAE) 
and the root mean square error (RMSE). The formulas used 
for these measures are: 
 

  
∑      ̅      ̅  

      

√∑      ̅  ∑      ̅   
      

 
      

                                    

     √
∑        

  
     

 
                                                       

    
 

 
∑|     |

 

   

                                                               

 
where, N is the number of data points used for the model 

development;    and    are the observed and predicted 

outputs, respectively and  ̅ and  ̅ are the mean of observed 
and predicted outputs, respectively. 
 

RESULTS AND DISCUSSIONS 

Data Processing for ANN 

In ANN prediction modelling, the efficiency of input data 
and their ability to accurately predict the output (target) is 
largely dependent on the relationship between the input and 
the output. In this study, eight input geotechnical soil 

parameters that have direct effects on the outputs were 
considered. In order to give a detailed insight of the general 
data used for the study, a frequency bar chart was used to 
present the research data of a total of 72 set as shown in 
Figures 4 - 14. 
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                       Figure 4: Frequency of SG  
 
 

 
                         Figure 5: Frequency of LS  
 
 

 
                        Figure 6: Frequency of Cu  
 
 

 
                       Figure 7: Frequency of Cc  
 

 
                       Figure 8: Frequency of LL  

 
                         Figure 9: Frequency of PL  
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                  Figure 10: Frequency of OMC  
 
 

 

 
          
                        Figure 11: Frequency of MDD  
 

 

 
               Figure 12: Frequency of 7 days UCS  
 
 

 
                 Figure 13: Frequency of 14 days UCS  

 

 
28 days unconfined compressive strength (kN/m

2
) 

 
                                                                    Figure 14: Frequency of 28 days UCS  
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Table 1: Descriptive statistics of experimental data used for ANN model development 

Soil parameter Minimum Maximum Mean Standard 
deviation 

Coefficient of 
variation 

SG 2.03 2.63 2.403 0.207 0.086142 

LS (%) 15.26 20.19 17.4 1.2612 0.072483 

Cu 2.83 8.96 6.61 1.6201 0.245098 

Cc 0.02 1.04 0.48 0.2489 0.518542 

LL (%) 45.5 55.94 49.43 2.8494 0.057645 

PL (%) 26.9 39.74 33.41 3.32 0.099371 

OMC (%) 13.7 21.3 17.3 1.9195 0.110954 

MDD (Mg/m
3
) 1.325 2.111 1.75 0.214 0.122286 

7 Days UCS (kN/m
2
) 210.52 571.13 333.48 86.6079 0.259709 

14 Days UCS (kN/m
2
) 163.49 562.64 305.41 86.0751 0.281835 

28 Days UCS (kN/m
2
) 160.29 567.4 281 116.4093 0.414268 

 
 
The descriptive statistics of the experimental data as 
obtained from various laboratory tests used for the ANN 

model development are presented in Table 1. 
 

The optimized network 

In this study, NN 8-n-1 network architecture was used for 
the network optimization. The first digit of the component is 
the number of input nodes, n is the number of hidden nodes 

(number of neurons) and the third digit is the number of 
output nodes. These NN 8-n-1 network architectures are 
shown in Figures 1 - 3. In this study, 15 different numbers of 
hidden nodes (NN 8-1-1 to NN 8-15-1) were tried in order to 
determine the best performing n-number. The mean squared 
error (MSE) and R-value were used as yardstick and 

criterions in this regard. The choice of 1 - 15 neurons was 
based on the study of Kolay et al. (2008) on tropical soft soil 
using ANN in which it was concluded that the use of neuron 
number above 10 could cause saturation of the network 
which results to lesser quality simulated results due to 

undesirable feedbacks to the network. This phenomenon 
may lead to network confusion that could result to lower 

accuracy in the simulated results. However, several other 
researches in the literature considered more than 10 numbers 
of neurons. Therefore, n=11 neurons that yielded the lowest 
MSE value and the highest R-value on the average were 
used in the hidden layers of the three sets of UCS prediction. 
Shahin et al. (2001), Shahin (2013) and Eidgahee et al. 

(2018) stated that the best measure for the performance of 
the ANN developed models should be based on the lowest 
MSE values and the highest R-values. However, other 
researchers like Naderpour et al. (2010) used only MSE 
values as criterion. The MSE and the R-values that led to the 
choice of NN 8-11-1 networks for all the 7, 14 and 28 days 

curing period UCS are shown in Figures 15 - 20. It should be 
noted that in situations whereby it is difficult to make a 
reliable choice of the neuron numbers based on the R-values, 
the MSE values takes preference to yield better results. 

 

 
                         
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
Figure 15: Variation of mean squared error with number of hidden layer neurons for 7 days cured UCS 
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Number of hidden layer neurons 
 



 

 

 
Number of hidden layer neurons 

 

  Figure 16: Variation of mean squared error with number of hidden layer neurons for 14 days cured UCS 
 
 

 
 

Number of hidden layer neurons 
 

         Figure 17: Variation of mean squared error with number of hidden layer neurons for 28 days cured UCS 
 

 
 

 
Number of hidden layer neurons 

 

        Figure 18: R-values for ANN performance with number of hidden layer neurons for 7 days cured UCS 
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Number of hidden layer neurons 

 
Figure 19: R-values for ANN performance with number of hidden layer neurons for 14 days cured UCS 

 
 

 

 
Number of hidden layer neurons 

 
Figure 20: R-values for ANN performance with number of hidden layer neurons for 28 days cured UCS 

 

 
 
 

ANN model development results 

The regression values for model performance evaluation 
showing the k (slope), R-values, mean absolute error 

(MAE), mean squared error (MSE) and the root mean 
squared error (RMSE) are presented in Table 2.  It is 

obvious from these statistical results that the models 
developed in this study performed satisfactorily having high 
R-values and low error values. The statistical parameters 

give acceptable results that confirmed the best generalization 
of the developed models. 

 
 

Table 2:  Parameters and regression values for model performance evaluations 

Parameters 7 days UCS 14 days UCS 28 days UCS 

Number of neurons 11 11 11 
k 0.9629 0.9572 0.98 

MSE (ANN) 0.000473 0.002056 0.000105 
R-Training 0.9782 0.9824 0.9946 
R-Validation 0.996 0.9843 0.9992 
R-Testing 0.9711 0.9615 0.9929 
R-All Data 0.9812 0.9783 0.9942 
MAE 0.02 0.039 0.018 

MSE (Statistical) 0.001797 0.002815 0.001686 
RMSE 0.042 0.05306 0.04106 
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The variation of experimental and ANN predicted UCS 
values together with the error variations are shown in 
Figures 21 - 26. The performance of the simulated network 
was very good having k values of 0.9629, 0.9572 and 0.98 

respectively for the 7, 14 and 28 days cured UCS. k is the 

slope of the regression line through the origin in the plot of 
the experimental values to the predicted values. It was 
reported by Alavi et al. (2011) and Golbraikh and Tropsha 
(2002) that the value of k should be close to unity as a 

criteria for excellent performance. 
 
 

 
 

Figure 21: Variation of error values with data set for 7 days cured UCS 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 

 

 
 
 

 
Predicted unconfined compressive strength (kN/m

2
) 

 

Figure 22: Variation of experimental and ANN predicted UCS values (7 days curing) 
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Figure 23: Variation of error values with data set for 14 days cured UCS 
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Figure 24: Variation of experimental and ANN predicted UCS values (14 days curing) 
 

 

 
 

Figure 25: Variation of error values with data set for 28 days cured UCS 
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Figure 26: Variation of experimental and ANN predicted UCS values (28 days curing) 

 
 
Model validation 

The coefficient of correlation (R) is a measure used to 

evaluate the relative correlation and the goodness-of-fit 
between the predicted and the observed data. Smith (1986) 
suggested that a strong correlation exist between any two set 
of variables if the R value is greater than 0.8. However, Das 
and Sivakugan (2010) are of the opinion that the use of R 
value alone can be misleading arguing that higher values of 

R may not necessarily indicate better model performance 
due to the tendency of the model to deviate towards higher 
or lower values in a wide range data set.  
 
The RMSE on the other hand is another measure of error in 
which large errors are given greater concern than smaller 

errors. However, Shahin (2013) argued that in contrast to the 
RMSE, MAE eliminates the emphasis given to larger errors 

and that both RMSE and MAE are desirable when the 
evaluated output data are continuous. Consequently, the 

combined use of R, RMSE and MAE in this study was found 
to yield a sufficient assessment of ANN model performance 
and allows comparison of the accuracy of generalization of 
the predicted ANN model performance. This combination is 
also sufficient to reveal any significant differences among 
the predicted and experimental data sets.  

 
The conditions of model validity in this study are stated in 
Table 3. Based on the results of different NN 8-11-1 
networks used in this study, it was observed that the errors 
are at their best performance when they are less than 0.01 
but still yield good and acceptable performance when greater 

than 0.1 in a value range of 0 to 1. 

 
 

Table 3: Conditions of model validity 

Target Statistical 
parameter 

Condition Obtained value Remarks 

7 days 

curing 
UCS 

R > 0.8 0.9812 Satisfactory 

k Should be close to 1 0.9629 Satisfactory 
MAE Should be close to 0 0.02 Good 
MSE Should be close to 0 0.001797 Satisfactory 
RMSE Should be close to 0 0.042 Good 

14 days 
curing 

UCS 

R > 0.8 0.9783 Satisfactory 
k Should be close to 1 0.9572 Satisfactory 

MAE Should be close to 0 0.039 Good 
MSE Should be close to 0 0.002815 Satisfactory 
RMSE Should be close to 0 0.05306 Good 

28 days 
curing 
UCS 

R > 0.8 0.9942 Satisfactory 
k Should be close to 1 0.98 Satisfactory 
MAE Should be close to 0 0.018 Good 

MSE Should be close to 0 0.001686 Satisfactory 
RMSE Should be close to 0 0.04106 Good 
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Based on the suggestion of Smith (1986), argument of Das 
and Sivakugan (2010), conclusions of Shahin (2013) and 
observations in this study, it is obvious from Table 3 that the 
developed models in this study performed satisfactorily and 

have good generalization potential. The achieved high R 
values and low values of errors are highly desirable in ANN 
simulation as they indicate acceptable results. A strong 
correlation was observed between the experimental UCS 
values as obtained by laboratory tests and the predicted 
values using ANN. Ahmadi et al. (2014) and Eidgahee et al. 

(2018) reported that strong correlation exist between the 
experimental and predicted values if the R-value is greater 
than 0.8 and the MSE values are at minimum. In a related 
study by Naderpour et al. (2010), R-values of 0.9346, 
0.9686, 0.9442 and 0.944 were reported for training, testing 
validation and their combination which were concluded to 

be satisfactory and yielded good simulation results. 
 
CONCLUSIONS 

Artificial Neural Networks (ANNs) was used in this study to 
develop a predictive optimized models for Unconfined 
Compressive Strength (UCS) of a cement kiln dust-treated 

expansive clay. Based on the results of the developed ANN 
models, the following conclusions were made: 
i. The multilayer perceptrons (MLPs) ANN used for the 
simulation of UCS of CKD-treated expansive clay that are 
trained with the feed forward back-propagation algorithm 
performed satisfactorily. 

ii. The mean absolute error (MAE), root mean square error 
(RMSE) and R-value were used as yardstick and criteria. In 
the neural network development, NN 8-11-1 that gave the 
lowest MSE value and the highest R-value were used in the 
hidden layer of the networks architecture which performed 
satisfactorily.  

iii. For the normalized data used in training, testing and 
validating the neural network, the performance of the 
simulated network was very good having R values of 
0.9812, 0.9783 and 0.9942 for the 7, 14 and 28 days cured 
UCS respectively. These values met the minimum criteria of 
0.8 conventionally recommended for strong correlation 

condition. 
iv. All the obtained simulation results are satisfactory and a 
strong correlation was observed between the experimental 
UCS values as obtained by laboratory tests and the predicted 
values using ANN. 
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