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ABSTRACT 

Phase transformation involves the formation of new phases or constituents through re -arrangement of atoms in a material 
microstructure. It often results in the production of new precipitates that may enhance/degrade the overall physical and 
mechanical properties of the parent material. In the present study, the non-linear martensitic phase transformation (or Allen-
Cahn) equation was analyzed numerically using both Galerkin’s Finite Element Method (FEM) and Fourier Spectral Method 
(FSM). Material properties corresponding to zirconia ceramic was selected for the analysis. The results from both the FEM 
and FSM were critically analyzed and compared in terms of computational intensity, efficiency and accuracy. The dependence 

of the computation on grid size and time step was also studied. The results show that it is more effective to model phase 
transformation using FSM.  
Keywords: Computational material science, phase transformation, materials engineering, Fourier spectral method, finite 

element method, phase field model. 
 

INTRODUCTION 

Materials science/engineering is a broad scientific field that 
deals with the study of the correlation between the structure, 
properties and processing of materials. Through material 
science, researchers are able to identify suitable material 
processing methods which can result in unique structures (or 
arrangement of atoms) and desirable properties. 

Consequently, a wide variety of modern materials which can 
be used to produce modern day products are designed. For 
several centuries, material science has led the foundation for 
technological advancement and progress of humanity. It 
started right from the stone and iron age where man was able 
to process natural rocks and minerals into products for daily 

use. Today, we have gone beyond the nanoscale, where man 
can produce certain miniature materials having unique 
properties through which special products with astonishing 
performance can be manufactured. Due to advancement in 
computer technology, materials science is rapidly 
progressing through modeling and computation. As opposed 

to conventional scientific methodology, the first step of 
material design often involves using powerful computers 
which have very fast and efficient computational capabilities 
to simulate the structure-property-processing relationship 
before the experimental fabrication and testing of such 
materials. Consequently, a substantive amount of time, 

energy and resources is saved. Phase transformation (or 
separation) studies is among the fundamental topics of 
material science where computational modeling is essential 
in relating the material properties with microstructure 
evolution (Chen, 2002; Moelans et al., 2008). 
 

Computational modeling of phase transformation was 
previously carried out using the sharp-interface model. The 
method is strictly applicable to very simple multi-phase 
system due to high computational intensity resulting from 
numerical solution of sets of interfacial boundary conditions 

at the sharp interface. Variety of sharp interface models for 

phase transformation in alloys can be found in DICTRA 
(Moelans et al., 2008), (Kobayashi, 1993). A more recent 
approach, which defines the interface as a 2D object of finite 
thickness is called the diffuse-interface model (Moelans, 
2006). With this method, the numerical difficulty associated 
with the sharp-interface model is avoided as phase-field 

variables are used to represent interface zones with the 
evolving microstructure. The most popular diffuse-interface 
models are (Raabe, 1998): Cellular Automata, Level Set 
Method and the Phase Field Method. 
 
The phase field method (PFM) is the most recent and fully-

developed diffuse-interface method of simulating phase 
transformations. It uses a set of phase field variables (with 
smoothly varying interfacial properties) in tracking the 
evolution of the coexisting phases. The method can 
accurately predict the complete thermodynamics and 
kinetics of phase transformations in materials (Moelans et 

al., 2008). PFM has wide applications such as microstructure 
evolution, solidification dynamics, viscous fingering and 
vesicle dynamics, fracture/crack dynamics, dislocation 
dynamics, etc. Phase field equations are derived from 
thermodynamic principles through minimization of the free 
energy functional. The popular ones are sets of partial 

differential equations (PDEs) developed by Cahn and 
Hilliard (Cahn and Hilliard, 1958) and Allen and Cahn 
(Allen and Cahn, 1979) theorems for diffusional and 
martensitic material transformations respectively. The 
numerical solution of the PDEs gives the evolution of the 
coexisting phases in terms of space and time at less 

computational cost. It is more powerful than other diffuse-
interface methods, since various energy contributions (such 
as chemical, elastic, electrostatic and magnetostatics 
energies) can be naturally integrated into the model. 
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Recently, popular numerical methods such as finite 
difference method (FDM), finite element method (FEM), 
and Fourier spectral method (FSM) have been used to solve 
the phase field equations. Voyiadjis and Mozaffari 

(Voyiadjis and Mozaffari, 2013) solved the phase field 
equations for non-local damage in linear elastic isotropic 
material using both explicit and implicit finite element 
schemes. They showed that the highly non-linear phase field 
equations are best solved by Crank Nicholson or other 
implicit schemes. Furihata and Matsuo (Furihata and 

Matsuo, 2003) developed a highly stable, convergent and 
conservation finite difference scheme for the numerical 
solution of Cahn-Hilliard equation. Benjamin et al. 
(Vollmayr-Lee and Rutenberg, 2003) also developed an 
unconditionally-stable and efficient finite difference scheme 
for numerical solution of phase field equations as applied to 

coarsening simulation. In the literature, very few recent 
works can be found on the use of FDM to solve the phase 
field equations. Apart from high computational costs, it is 
often difficult to solve realistic phase transformation 
problems with FDM due to numerical difficulties associated 
with the high non-linearity, instability and complicated 

periodic boundary conditions of phase field equations. 
Consequently, FEM is used more recently to solve the phase 
field equations. In this regards, Danilov and Nestler 
(Danilov and Nestler, 2005) used an adaptive finite element 
scheme to simulate growth of dendrites in binary and ternary 
eutectic alloys. Zaeem et al. (Zaeem, 2010) developed 

mixed-order finite element scheme for numerical solution of 
solid-state phase transformation in thin films subjected to 
diffusion couple. Abubakar et al. (Abubakar et al., 2015) 
used a second-order finite element scheme for numerical 
modeling of V2O5 hot corrosion in thermal barrier coatings 
using the phase field equations. Many other research works 

related to numerical solution of phase field equation with the 
FEM can be found in literature. The stability, convergence 
and implementation difficulties encountered with FDM are 
handled well by FEM. One unique advantage of the FEM is 
that, it can easily be used to define boundary condition on 
any boundary bounding highly complex computational 

domain. However, computation often becomes too intensive 
for problem involving 3D phase transformation. 
Consequently, FSM is used in many recent works to solve 
the phase field equations. The advantage of FSM is that, 
periodic boundary conditions come naturally with the 
method. Also, it results in least computational cost and high 

accuracy since computation is done in Fourier space. The 
only shortcoming of the method is that, it is not very stable 
especially when solved in irregularly-shaped domains. Due 
to its high computational efficiency, many recent works have 
focused on improving the stability of spectral methods. For 
instance, Vidyasagar et al. (2017) recently used fourier 

spectral scheme with improvement in stability (based on 
finite difference approximations) to model electro-
mechanically coupled phase transformation in ferroelectric 
ceramics. Also, Lee et al. (2017) developed a more 
computationally efficient and highly accurate operator 
splitting Fourier spectral scheme for numerical modeling of 

phase transformation in epitaxial thin film. Similarly, Li et 
al. (2017) developed a unconditionally-stable semi-implicit 
Fourier spectral scheme for numerical solution of Cahn-
Hilliard equation. It can be seen that, FEM and FSM have 
been extensively used to model phase field (transformation) 

equations. However, quantitative analysis of computational 
efficiency and resources associated with both schemes is 
lacking. 
 

In the present study, the non-linear martensitic phase 
separation equation (developed based on Allen-Cahn theory) 
is analyzed numerically using Galerkin’s Finite Element 
Method (FEM) and Fourier Spectral Method (FSM). 
Material properties corresponding to a famous ceramic 
material (zirconia) is used for the analysis. The results from 

both the FEM and FSM are critically analyzed and 
compared. The dependence of the computation on grid size 
and time step is also studied. 
 

METHODOLOGY 

The Allen-Cahn Equation 

The Allen-Cahn equation is the time-dependent form of the 
Ginzburg-Laudau equation, i.e. non-linear reaction-diffusion 
PDE. It is a 2nd order PDE that describes the linear 
dependence of the evolution rate of the non-conserved field 
variable (commonly known as order parameter) on the 
driving force. The order parameters are used to track the 

spatial and temporal evolution of various phases within a 
given microstructure (Moelans et al., 2008). Order 

parameter ( ) have values that range from -1 to 1. Regions 

having values 1 and -1 signifies a specific sub-lattice/phase, 
while 0 signifies unstable or disordered phase. Any value 
that falls between -1 to 0 and 0 to 1 signifies an interface. 
 

Usually, the driving force for phase separation comes from 
the total free energy ( (  )) of the thermodynamic system. 
Phase transformation is only possible if transition occurs in 
such a way that the total free energy of the system decreases. 

In other words, phase transition occurs when a system tries 
to attain equilibrium by changing from state of high 
chemical potential (or higher free energy) to state of low 
chemical potential (or lower free energy). The total free 
energy ( (  )) of the system is represented as a function of 

phase field variables and their corresponding gradients as 
expressed in Equation (1) (Moelans et al., 2008). 

            (1) 

where, 

 is the bulk or local free energy of the system 

 is the Interfacial energy 

 is the free energy density 

represented by the usual double-well potential for a two-
phase system. 

 

 is the gradient energy coefficient. 

                   (2) 

where, the kinetic mobility ( ) and the gradient energy 

coefficients ( ) may be constants or functions of the phase 

field variables (Wen et al., 2012). 
 
After simplification, the Allen-Cahn equation becomes, 

                               (3) 
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As the length scale for simulation is far smaller than the time 
scale, it is necessary to normalize Equation (3) to minimize 
numerical errors during computations. Assuming the 

normalization constants for time to be  and for spatial 

variables to be , the Allen-Cahn equation reduces to: 

 

                                      (4) 

where,  
  

           
 

Note that the dependent variable ( ) does not need 

normalization, because it actual values range from -1 to 1. 
 

Geometry, Material Properties, Initial and Boundary 

Conditions 

The Allen-Cahn equation will be analyzed on a 200 μm x 
200 μm microstructural RVE for phase separation in zirconia 

ceramic with material properties,  and 

 as obtained from the works of 

(Abubakar et al., 2015).  
 
To represent the common thermal fluctuations associated 
with phase transformation, the numerical analysis conducted 

here is tested with both simple mathematical equation and 
Langevin noise as demonstrated in demonstrated in Figure 1 
(a). The mathematical expression used is expressed as: 
 

                                                                                          (5) 
 

As commonly used, the Neumann (or natural) boundary 
condition is applied at the outer boundaries of computational 
domain as expressed in Equation (6). 
 

          
                                                   (6)                                                                                                    

     

Figure 1 (a): Initial condition based on mathematical 
expression 
 

 
Figure 1 (b): Initial condition represented with Langevin 
noise 

 

The Galerkin finite element formulation 

Using mathematical procedures based on Galerkin, the PDEs 
are first expressed in their variational (or weak) form after 
which an approximate solution for the domain is sought 
using a space of continuous piecewise interpolation 

functions. The weak form PDE is obtained by multiplying 
the left and right-hand sides of the PDE by the basis 
function, , as expressed in Equation (7). 
 

1

1 1 1( , ) ( , ) ( ( ), )       ;       ( )a f H                 (7)               

where, 

 

 

 

 

 
The dependent variable in Equation xx is discretized by 
assuming the solution to be approximated with hat basis 
functions and certain number of finite elements as expressed 

Equation (8). 
 

                                                         (8)                                                                                          

where, ,  is the hat basis function and 

in the total number of nodes in mesh. 
 
Equation (9) is discretized into system of ordinary 
differential equations (ODE) by adopting the approximation 

given in Equation (10) and taking . 

Thus, the final discrete form is given as: 
 

                                                            (10) 
 

In matrix form, Equation (11) can be represented as: 
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where, 
 is the mass matrix 

 is the stiffness matrix 

 is the non-linear load vector 

 

The time dependent part of Equation (11) is discretized 
further into system of non-linear algebraic equations using 
the highly stable backward-difference formula. Thus, 
Equation (12) becomes: 

  (12) 

 where,  is the time step size and  is time step level. 
 

To solve the sets of non-linear algebraic equations given by 
Equation (12), it is necessary to use the Newton’s-Raphson 
iterative scheme which involves solving a linearized form of 

the equation iteratively using an initial guess and Jacobian 
matrix as expressed in Equation (13). The numerical 
implementation was carried out in MATLAB. A mesh with 

parameter value, , that was used for the 

analysis (as shown in Figure 1 (b)). A time step of 

 was used for a normalized total time of 10, which 

is equivalent to 833.33 minutes of phase separation in 
zirconia. 

    (13)                                                         

where, 

  
(14) 

   
Fourier Spectral Methods 

Recently, spectral methods are widely used to solve 

nonlinear PDEs. While other schemes such as FDM and 
FEM uses local representation of the PDEs to arrive at 
numerical solution in time domain, spectral methods uses 
global representation discretized in Fourier space (having 
higher order) to arrive at numerical solution in frequency 
scale. Consequently, the spectral methods are faster, less 

intensive and exhibit a higher order of accuracy especially 
when applied to highly non-linear PDEs (Hussaini et al., 
1983). However, spectral methods are reported to have 
difficulties with boundary conditions, sometimes resulting in 
an ill-posed problem with lots numerical instabilities (Shu 
and Wong, 1996). Currently, the method is only suitable for 

problems with periodic boundary conditions applied on 
regular geometries. 
 

In the present study, the Allen-Cahn equation is discretized 
with Galerkin spectral method in which the PDE is 

expressed as a finite expansion of some sets of global basis 
function. Thus, the PDE is first transformed into the Fourier 
space by taking the Fast Fourier Transform (FFT) of both 
sides of equation as expressed in Equation (5). 
 

                                  (15) 
 

By applying the backward difference formula to the time 
derivative, Equation (16) reduces to: 

            (16) 

After re-arranging, the final form of discrete equation can be 
represented as: 
 

                                              (17)                                                                              

 

From Equation (17), the dependent variable is solved in 
Fourier space, after which the solution is in converted back 
into time space. The numerical implementation was also 

carried out in MATLAB with a grid parameter of 

and time step of  was used for the 

computation. Similarly, the PDE was solved in the domain 
for total normalized time of 10. 
 

RESULTS AND DISCUSSION 

Numerical results obtained with FEM 

Figure 3 shows the numerical value of the order parameter 
indicating the various coexisting phases existing at last time 

step (i.e. ) of computation. It can be seen from the 
figure that, the interface thickness increases with an increase 

in the normalization parameter, . This is because of the 
strong correlation between interfacial (or gradient) energy 
and interface thickness (Chen, 2002). The normalization 
parameter is a direct function of the gradient energy 
coefficient or the interfacial energy. Consequently, it is 
expected that more energy is required for the evolution or 

transformation involving thicker material interfaces (as 
depicted by Figure 3). Figure 3(a) shows the evolution of 
phases for realistic (zirconia) normalization parameter of 

 determined from the works (Abubakar et al., 

2015). Figure 3(b) and (c) shows that the phase evolution 
proceeds with thicker interfaces and higher transformation 
energy when higher numerical value of the normalization 
parameter is used. Interestingly, Figure 3 (c) shows 
reordering of phases due to high variation of interfacial 

energy during the transformation as previously found 
(Danilov and Nestler, 2005), (Zaeem, 2010). 
 
Therefore, it can be said that the Allen-Cahn equation has 
adequately captured the important role of energy state of 
interfaces on phase transformation in materials. As we 

reduced the normalization parameter (and interfacial energy) 
to very low value, we observed divergence of numerical 
solution of the non-linear PDE. This is because the 
interfacial energy is too small to create an interface that will 
drive the phase transformation as previously found (Chen, 
2002; Moelans et al., 2008).  

 
Figure 3(d) shows contour plots of order parameter and 
coexisting phases as computed by the commercial finite 
element package, COMSOL Multiphysics. The solution 
compares well with that of Figure 3(a) which was obtained 
with the FE code developed in MATLAB. The power of the 
Allen-Cahn PDEs in separating phases within a material 

microstructure can clearly be seen. Phase separation 
phenomenon is a very interesting process and modeling it 
has enabled engineers to correlate the relationship between 
the structure and properties/performance of materials more 
effectively. 
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Figure 3: Allen-Cahn order parameter after : (a)          , (b)           (c)           (d)      
    (from COMSOL) 

 

Numerical results obtained with FSM 

Figure 5 shows the numerical solution of the PDE when the 
FSM is used for the computation. It is important to mention 
that the figure shows the plot of the solution in 3D for grid 

size of h = 0.0125 and time step of k=0.01. It can be clearly 
seen that the FSM and FEM solutions look alike with very 
minor deviation of results at the interfaces.  
 

 

 
Figure 5: Allen-Cahn order parameter after using the FSM code 
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Comparison of numerical accuracy and efficiency of the 

numerical schemes 

For the purpose of evaluating the numerical accuracy of 
solution obtained with the two schemes, the variation of 

order parameter with grid size and time step is tracked at two 
points, A and B (as shown in Figure 6). Figure 6 (a) and (b) 
shows the variation of the order parameter with mesh size at 
the points A and B respectively. It can be seen that, the FSM 
scheme converges to the actual solution with less than 20 
nodes. While, the FEM scheme requires denser mesh having 

about 50-175 nodes (depending on location) for the solution 
to converge. This is because the FSM scheme was developed 
based on polynomials of higher order, O (NlogN), as 
compared to FEM, O (N2). Thus, the FSM scheme is more 
effective in modeling phase transformation problems. 
 

In a similar fashion, Figure 6 (c) and (d) shows how the time 
step size affects the solution obtained with both schemes. It 
can be seen that, the FSM is severely affected by variation in 
time step than the FEM even though Backward-Euler finite 
difference method was used to discretize both schemes. This 
happens because the stability bound of the FSM scheme 

used here is highly restricted to the time step size. Thus, we 
found that after time step of 1, the FSM scheme becomes 
highly unstable and leads to very inaccurate results as 
expected.   

 
Figure 7 (a) and (b) shows that the FSM scheme is less 
computationally intensive than the FEM scheme. 
Computation using the FSM scheme completes within 
shorter time (about 10 seconds) as compared to that of the 
FEM scheme (i.e. about 230 seconds). This is because the 

FEM scheme requires the repetitive task of assembling the 
stiffness and mass matrices. Additionally, the Newton’s 
method used for the computation involves much iteration 
that consumes longer time. But with the FSM scheme, the 
non-linearity is treated explicitly. This implies that the 
computational domain is discretized in the Fourier space 

with global basis functions of higher order. Consequently, 
the FSM code exhibits higher numerical efficiency. This is 
very advantageous when modeling highly non-linear process 
like phase transformation. 
 
 

 
 

Figure 6: Variation of the order parameter with: (a) mesh size at A, (b) mesh size at B, (c) time step at A, and (d) time step B 
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CONCLUSIONS 

Non-linear phase transformation equation based on Allen-
Cahn theory was analyzed numerically based on the 
Galerkin’s Finite Element Method (FEM) and Galerkin’s 

Fourier Spectral Method (FSM). Numerical implementation 
was carried out in the commercial package, MATLAB. The 
results show that the FSM scheme is very effective tool for 
the numerical modeling of material phase transformations 
problems due to its high computational efficiency and 
accuracy. The FEM scheme consumes higher computational 

resources due to the need for repetitive assembly of several 
matrices. Furthermore, due to discretization with 
polynomials of relatively lower order, the FEM scheme 
requires a denser mesh for successful convergence of 
numerical results. This further reduces the computational 
efficiency of the FEM scheme. However, the FSM scheme 

has drawbacks that render its applicability and efficiency 
when applied to problems of certain kind. The scheme 
becomes highly unstable and inaccurate when applied to 
problems that require larger time step and intricate 
computational domains. Therefore, more research needs to 
be carried out in developing more stable FSM schemes in 

future works. 
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