

DEVELOPMENT OF A BEHAVIORAL MODEL FOR THE ARM 32-BIT PROCESSOR

I. J. Umoh

Department of Computer Engineering, Ahmadu Bello University, Zaria, Nigeria

Email: ime.umoh@gmail.com

ABSTRACT

ARM microcontrollers are being applied in the design of portable devices. This paper presents the implementation of a single
processor ARM 32-bit microcontroller. The model of the processor developed using Verilog hardware description Language
was tested by compiling a factorial program written in high level C programming language. The recursive factorial program
implemented on the processor showed that the model properly references the stack memory. Results showed that the

behavioural model was a true representation of the actual processor as the programs were compiled using industry standard
tools.
Keywords: Single processor, portable devices, factorial, ARM microcontroller.

INTRODUCTION
This paper aimed at designing the behavioural model of a

single core 32-bit ARM 11 processor to be used as a
microcontroller. ARM processors support either a 16-bit or
32-bit instruction set (NXP, 2009). The proposed model was
built around the ARM 32-bit instruction set. Implementation
of the processor core isdone in high level Verilog Hardware
Description Language (HDL). Verilog HDL is industry

standard software for designing processors (IEEE, 2006).

All ARM processors are Reduced Instruction Set Computers
(RISC) (ARM7TDMI-S, 2001).Other RISC based
architecture include SPARC (SPARC, 1992), PowerPC
(Wetzel et al., 2005), MIPS (MIPS, 2014) while x86 (Intel,

2016) is a popular Complex Instruction Set Computer
(CISC). This allows for fast program implementation and
reduced code lengths. Other features of the processor include
a 32-bit architecture that supports 32-bit (word), 16-bit (half
word) and 8-bit (byte) data types (NXP, 2009). It is
programmable as either little endian or big endian data

alignment in memory. ARM processors have been
implemented in both the Princeton memory architecture
(ARM7TDMI) (ARM7TDMI-S, 2001) and the Harvard
architecture (ARM920T) (ARM920T, 2001). The
ARM7TDMI featured a 3-stage pipeline and a single
interface to memory. The ARM920T featured a 5-stage

pipeline, memory management unit, caches, single-cycle
32x16 multiplier and Jazelle technology. The Jazelle
technology enables fast Java code execution. The ARM11
series (ARM11, 2008) featured up-to 8-stage pipeline with
branch prediction. From the aspect of hardware design,
ARM processors offer smaller die size, few transistors, and

low power consumption which makes it a preferred
processor for mobile technologies. Hence, ARM processors
are extensively utilized as microcontrollers in embedded
systems.

The highlight of this paper is the design of an ARM11 based
on the Harvard architecture as shown in Figure 1. The scope

of the proposed design will be to develop the behavioural
model of a single ARM11 processor. The design will
implement interrupts in the processor. The functionality of
the proposed processor will be demonstrated using a
recursive factorial program written in C programming
language, complied with industry standard compliers for

ARM processors and the resulting hex code run on the
design.

PROGRAMMER’S MODEL

The proposed single core will be able to execute most of the
instructions supported by the ARM 32-bit instruction set.

The execution of these instructions from the fetch to execute
will complete in one clock cycle for most of the supported
instructions. Thus, the design does not implement pipelining.
Equally, demonstration of the processor was done using C
language and Assembly as such the Jazelle technology was
not implemented. For high code density, 32-bit ARM

processor allow a mixture of both the 32-bit ARM
instruction set and the 16-bit Thumb instruction set
(ARM920T, 2001) (ARM11, 2008) (ARM7TDMI-S, 2001).
The processor fetches 2 bytes in Thumb mode in place of 4
bytes in the ARM mode. These enable a 32-bit performance
to a 16-bit memory system.

In this paper, the seven modes defined in ARM architecture
are implemented. As shown in Table 1, only one mode, User
Mode (USR), is a non-privileged mode. The other six
modes, Fast Interrupt request mode (FIQ), normal interrupt
request mode (IRQ), abort mode (ABT), supervisor mode

(SVC), undefined mode (UND) and system mode (SYS) are
privileged modes. The processor will be in one these modes
at a given point in time.

Nigerian Journal of Engineering
Faculty of Engineering

Ahmadu Bello University
Samaru - Zaria, Nigeria

 Vol. 26, No. 3, December 2019
 ISSN: 0794 - 4756

19

20

 Figure 1: Diagram of a single core

 Table 1: ARM modes and identification bits

 (Sloss et al., 2004)

The design implements a total of 31 general purpose
registers. From Figure 2 there are 16 addressable registers in
USR mode and a function specific register (Furber, 2000),
Current Status Program Register (CSPR). All the flags
generated by the Arithmetic Logic Unit are stored in the

CSPR as shown in Figure 3. Also, the bits 0 to 4, M,
indicated the mode the processor is currently operating.
When M is set to 10000, the processor is in USR mode. In
FIQ mode, M is set to 10001. When in FIQ mode, USR
registers R0 to R7 and R15 are unbanked and can be
changed in this mode. However, USR registers R8 to R14

are banked and the mode has alternative registers. FIQ mode
has more banked registered than any other mode so as to
reduce the latency in servicing an interrupt. Another mode

for servicing interrupts is the IRQ mode with M set to
10010. In this mode only R13 and R14 are banked registers.
Thus, the service routine will be required to push into stack
other registers that are required. While running an Operating
System, the processor is set to SVC mode (Berger, 2005)

and M set to 10010. Here also, only R13 and R14 are banked
registers. The other two modes UND and ABT modes have
M set to 11011 and 10111 respectively. These respective
modes are entered when the processor encounters an
instruction it does not know how to execute and when there
is an illegal access to memory (Berger, 2005). The SYS

mode does not have any banked registers. This mode is the
privileged equivalent of the USR mode. In this mode M is
set to 11111.

Mode Privileged Mode bits, M [4:0]

USR NO 10000

FIQ YES 10001

IRQ YES 10010

ABT YES 10111

SVC YES 10011

UND YES 11011

SYS YES 11111

 Nigerian Journal of Engineering Vol. 26, No. 3, December 2019

21

Register
Bits

User
Mode

FIQ
Mode

IRQ
Mode

SVC
Mode

UND
Mode

ABT
Mode

0000 R0

0001 R1

0010 R2

0011 R3

0100 R4

0101 R5

0110 R6

0111 R7

1000 R8 R8

1001 R9 R9

1010 R10 R10

1011 R11 R11

1100 R12 R12

1101 R13 R13 R13 R13 R13 R13

1110 R14 R14 R14 R14 R14 R14

1111 R15

 CPSR

 SPSR SPSR SPSR SPSR SPSR

 Figure 2: ARM modes and visible registers (Sloss et al., 2004)

31 30 29 28 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 0

N

Z

C V Q RES J RES GE RES E A I

F

T

M

 Figure 3: Status register

By transitioning from the USR mode to other privileged
modes the CPSR can be stored in the Saved Program Status
Register SPSR of the respective mode. In this design, the

processor uses the following flags shown in Figure 2 for
decision making; N, Z, V, C, Q, GE and E bits. N, Z, V and
C represent the negative, zero, overflow and carry flags. A
write to other bits will be ignored by the processor (Heath,
2003).

THE PROCESSOR DESIGN
The status registers enable the processor to operate in a
deterministic and predictable way. A block diagram of the

processor design can be seen in Figure 5. This design uses
the Harvard Architecture where the instruction memory uses
a separated data-bus from the data memory. In this design,
almost all the instructions are fetched, decoded and executed
in one clock cycle and pipelining is not implemented. This is
done to model the behavior of the ARM processor. Where

such a design attempted to be fabricated on chip, it will
result a large chip area.

 I. J. Umoh Development of a Behavioral Model for the Arm 32-Bit Processor

22

 Figure 4: Flowchart of sequence of operation

A flowchart shown in Figure 4 illustrates the processor
executes an instruction. Register R15 is the designs program
counter, PC, and it points to the address of the instruction to
be fetched from the instruction memory. In the fetch state,
the processor first tests the presence of an interrupt signal.
Where an interrupt is present, a context switch is made to

either IRQ or FIQ mode. The processor then executes the
service routine for the interrupt. In the absence of an
interrupt, the processor tests the condition for execution. All

the instructions are conditionally executed (Goodacre and
Sloss, 2005). Where the instruction does not satisfy the
condition for execution, the processor increments the
program counter and fetches the next instruction. Where the
instruction does satisfy the condition for execution the
processor enters the decoding state.

 Nigerian Journal of Engineering Vol. 26, No. 3, December 2019

Start

Interrupt

No

Fetch Instruction

Yes

 Save Context

Yes Service Interrupt

Yes

No

No

Branch

Execution

Increment R15 Update 15

Restore Context Enable Rs,Rn,Rd,Rm

 Executive Instruction

23

In this state, the instruction is then decoded in the Register
Read block. Respective registers represented by Rm, Rs, Rn
and Rd, shown in Figure 5, are enabled as destination
registers (Rn and Rd) or as source registers (Rs and Rm). All

instructions update the register addressed by the Rd bits
except multiplication which updates the register addressed
by the Rn bit.

The final state the processor enters is the execute state. In
this state the proposed processor design implements the
following functions; swap memory, multiplication and
multiplication and accumulate, MRS and MSR, Branch and

Branch and Link, load and store, load and store multiple,
arithmetic and logical processing.

Figure 5: Data path of processor design

Key:
ALU: Arithmetic Logic Unit
MUL: multiplication unit
S_H: barrel shifter

 I. J. Umoh Development of a Behavioral Model for the Arm 32-Bit Processor

24

 Table 2: Instruction set format
 31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0

1
COND 0 0 I OPCODE S Rn Rd Rm

2 COND 0 0 0 0 0 0 W S Rn Rd Rs 1 0 0 1 Rm

3 COND 0 1 I P U B W L Rn Rd ADDRESS MODE

4 COND 1 0 1 L SIGNED WORD OFFSET

First, in swap memory the processor swaps data between the
data memory and a register. Bits required to decode this
instruction are; 27 to 23, 21 to 20 and 7 to 4. The entire
process takes two clock cycles to implement.

Second, the multiplication and multiplication and
accumulate instruction is required to perform all
multiplications between two operands. In row 2 of Table 2,
the bits decoded for this instruction are 27 to 22 and 7 to 4.
A block in the processor handles the multiplication of 2
operands. The result is written to the destination register.

Third, when a context is required to be stored or retrieved,
the MSR and MRS allow the status register to be copied to
an addressed register and vice versa. The bits decoded to
carry out this function include; 27 to 23, 21 to 20 and 7 to 4.
Bit 22 being high or low determines if the SPSR or the

CPSR is to be updated.

Fourth, the branch and branch and link instructions handle
the flow control of the processor. These instructions are
decoded from bits 27 to 24 as shown in row 4 of Table 2.
The branch and link differs from branch by storing the return

address in the link register, R14. Setting bit 24 in the
instruction register high implies a branch and link operation,
and a branch instruction otherwise. Branch statements are
PC relative therefore; the processor adds the offset value to
PC and stores the result in PC. These instructions prevent
auto increment of PC.

Fifth, to save data in the memory from the register uses a
store instruction while to store data in the register from the
memory uses a load instruction. Both instructions can be
decoded from bits; 27 to 26 as shown in row 3 of Table 2.
The store instruction takes one clock cycle to execute while

the load instruction takes two clock cycles to complete. The
processor supports updating registers a byte, half-word or
word.

Sixth, a variation of the load and store instruction is the load
and store multiple. This is a single instruction that can load
or store multiple registers from or to the memory. The
instruction is decoded from the instruction register using the
bits 27 to 25.The load multiple takes additional clock cycles,

compared to just the load and store, to set the memory
address latch before loading the registers.

Final, the proposed processor can execute arithmetic and
logic operations between registers or between a register and
an immediate value embedded in the instruction. Data

processing instructions are decoded by the bits 27 to 26, 25,
and 24 to 21 as shown in row 1 of Table 2.

All instructions except the branch statements increments the
program counters by 4. If an instruction is not executed in
any of the block mentioned above, the instruction will be

treated as an undefined instruction. Also, for cases where the
condition of executing an instruction is not satisfied. The
program counter will be incremented to point to the next
instruction.

TESTING AND EVALUATION

To demonstrate the behavioral model a factorial program
was written in C language as shown in Algorithm 1.0. The
recursive property of the factorial program forces the
processor to utilize a stack. This program tests how the
processor pushes data into the stack and removes the data.
The C language code is compiled with a standard C compiler

with the target processor set as „arm4‟. The resulting object
file is shown in Algorithm 2.0, the extracted Hex file was
ran on the processor.

 Nigerian Journal of Engineering Vol. 26, No. 3, December 2019

25

Algorithm 1.0: A recursive Factorial subroutine
int factorial (int a){if (a <= 1) return 1;
else return a * factorial (a - 1);}

Algorithm 2.0: Factorial generated Assembly code

factorial.o: file format elf32-littlearm
Disassembly of section .text:
00008000 <factorial>:
8000: e92d4800 push {fp, lr}
8004: e28db004 add fp, sp, #4 ; 0x4

8008: e24dd004 sub sp, sp, #4 ; 0x4
800c: e50b0008 str r0, [fp, #-8]
8010: e51b3008 ldr r3, [fp, #-8]
8014: e3530001 cmp r3, #1 ; 0x1
8018: ca000001 bgt 8024 <factorial+0x24>
801c: e3a03001 mov r3, #1 ; 0x1

8020: ea000006 b 8040 <factorial+0x40>
8024: e51b3008 ldr r3, [fp, #-8]
8028: e2433001 sub r3, r3, #1 ; 0x1
802c: e1a00003 mov r0, r3
8030: ebfffff2 bl 8000 <factorial>
8034: e1a03000 mov r3, r0

8038: e51b2008 ldr r2, [fp, #-8]
803c: e0030392 mul r3, r2, r3
8040: e1a00003 mov r0, r3
8044: e24bd004 sub sp, fp, #4 ; 0x4
8048: e8bd8800 pop {fp, pc}

When the processor is run, the respective registers are first
initialized. In this processor, the stack pointer, R13, is set to
address locations, h‟200000ac, h‟20000044, h‟20000078,
h‟20000270, h‟200000e0 and h‟200003f8 for modes SVC,

ABT, UND, IRQ, FIQ and USR respectively. Figure 6
shows the order in which the initialization is done. After the
initialization is done, then the factorial subroutine is run.

 Nigerian Journal of Engineering Vol. 26, No. 3, December 2019

Figure 6: Initialization of special registers for the various modes of operation

To execute the factorial program the compliers uses 5 addressable registers, R0, R2, R3, R11 and R13. R11 is used as a
frame pointer, FP. Since, a recursive function calls itself; the return address is stored in the stack, R13

26

 Table 3: Data in registers in execution time

time (ns) instruction R2 R3 R11 (fp) R13 (sp) R14

167504 0x00000814 0xe000e000 0x1 0x200003d0 0x200003c8 0x00000818

189499 0xe1a00003 0x2 0x2 0x200003d0 0x200003c8 0x00000818

198597 0xe1a00003 0x3 0x6 0x200003dc 0x200003d4 0x00000818

207503 0xe1a00003 0x4 0x18 0x200003e8 0x200003e0 0x00000818

216488 0xe1a00003 0x5 0x78 0x200003f4 0x200003ec 0x00000818

220488 0xe8bd8800 0x5 0x78 0x200003fc 0x200003f8 0x00000818

Table 3 shows the working of the processor as it retrieves

already stored addresses in the stack. During the calculation
of 5!, R3 holds the result of the multiplications. At 189499
ns, R3 holds the result of multiplication of 2 and 1 which are
the initial data in R2 and R3 respectively. From Algorithm
2.0 the processor is executing instruction at line 803c and the
program counter is current pointing to the next instruction.

By 198597 ns, 207503 ns and 216488 ns, R3 held the values,
6, 24 and 120 respectively. By 220488 ns, after correctly
calculating 5! As 120, the stack pointer, R13, has a value of
0x200003f8 which is the same value the stack pointer was
initialized to as shown in Figure 6. Thus, the processor can
correctly manage the stack memory.

CONCLUSIONS
This paper presents a design of behavioural model of a
single processor ARM 32-bit microcontroller. In the design,
most of the ARM instructions are implemented. As the
microcontroller is aimed at being programmed using C

Language. Jazelle an ARM technology for Java execution is
not implemented. All data processing instructions are
designed to be executed in one clock cycle while instructions
that require memory access may require additional clock
cycles per instruction. The proposed behavioural model is
tested using a high level recursive factorial program written

in C Programming Language. The factorial program was
compiled and the generated HEX file was run on the
processor. The processor not only correctly calculated the
given factorial it also properly utilized the stack memory as
shown in Table 3.

REFERENCES

ARM7TDMI-S, (2001). “ARM7TDMI-S Technical
Reference Manual”, ARM, ch. 1, pp. 1-25, url.
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0234b/
DDI0234.pdf. Last accessed 16/01/2014.

ARM920T, (2001). “ARM920T Technical Reference

Manual”, ARM, ch. 1, pp. 1-4, url.
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0151c/
ARM920T_TRM1_S.pdf Last accessed 16/01/2014.

ARM11 (2008). ARM11 MPCore Processor Technical
Reference Manual”, ARM, ch. 1, pp. 1-4, url.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0360e/
DDI0360E_arm11_mpcore_r1p0_trm.pdf. Last accessed
16/01/2014.

Berger, A. (2005).“Hardware and Computer Organisation:
The Software Perspective, Elsevier, ch. 11.

Furber, S. (2000). “ARM System-on-chip Architecture”,
Addison Wesley ch.2 pp 35 – 46.

Goodacre, J. and Sloss, A. N. (2005). "Parallelism and the
ARM instruction set architecture," in Computer, vol. 38, no.

7, pp. 42-50, doi: 10.1109/MC.2005.239.

Heath, S. (2003). “Embedded systems design” Newness,
ch1, ch6 and ch 7.

IEEE (2006). “IEEE Standard for Verilog Hardware

Description Language”, in IEEE Std 1364-2005 (Revision of
IEEE Std 1364-2001), vol., no., pp.1-590, 7 April 2006 doi:
10.1109/IEEESTD.2006.99495
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnum
ber=1620780&isnumber=33945.

 I. J. Umoh Development of a Behavioral Model for the Arm 32-Bit Processor

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0234b/DDI0234.pdf.%20Last%20accessed%2016/01/2014
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0234b/DDI0234.pdf.%20Last%20accessed%2016/01/2014
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0151c/ARM920T_TRM1_S.pdf%20Last%20accessed%2016/01/2014
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0151c/ARM920T_TRM1_S.pdf%20Last%20accessed%2016/01/2014
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0360e/DDI0360E_arm11_mpcore_r1p0_trm.pdf.%20Last%20accessed%2016/01/2014
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0360e/DDI0360E_arm11_mpcore_r1p0_trm.pdf.%20Last%20accessed%2016/01/2014
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0360e/DDI0360E_arm11_mpcore_r1p0_trm.pdf.%20Last%20accessed%2016/01/2014
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1620780&isnumber=33945
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1620780&isnumber=33945

27

Intel (2016). Intel 4 and IA-32 Architectures Software
Developer‟s Manual Santa Clara, California: Intel
Corporation.

MIPS (2014). "MIPS Architecture for Programmers Volume
I-A: Introduction to the MIPS32 Architecture" Campbell,
Califonia: MIPS Corporation

NXP (2009). “Get Better Code Density than 8/1 bit
MCU‟s, NXP LCP1100 Cortex M0”, NXP, pp 1-66,

https://www.nxp.com/wcm_documents/techzones/microcont
rollers-techzone/Presentations/cortex.m0.code.density.pdf
last accessed 16/01/2014.

Sloss, A. N. Dominic, S. and Chris, W. (2004). “ARM
System developers guide designing and optimizing system
software”, Morgan Kaufmann, ch. 1-2, pp. 1-43.

SPARC (1992). "The SPARC Architecture Manual"
Califonia: SPARC International Inc

Wetzel, J. Silha, E. May, C. Frey, B. Furukawa, J. and
Frazier, G (2005). "PowerPC User Instruction Set
Architecture" Austin, Texas: IBM Corporation.

 I. J. Umoh Development of a Behavioral Model for the Arm 32-Bit Processor

