
 
 

Nigerian Journal of Engineering, Vol. 29, No. 1, April 2022, ISSN (print): 0794 – 4756, ISSN(online):2705-3954. 

 

 

Nigerian Journal of Engineering,  
Faculty of Engineering, Ahmadu Bello University, Zaria, Nigeria 

 journal homepage: www.njeabu.com.ng  

 

 

A Comparative Study of Iterative and Non-Iterative Load-Flow Methods: A 

Case of Newton-Raphson and Holomorphic Embedding Approaches 
F. Olobaniyi*, O. Oparinde, O. Ogundipe 

Department of Electrical and Electronics Engineering, University of Lagos, Yaba, Lagos – Nigeria. 
*folobaniyi@unilag.edu.ng 

 Research Article 
Abstract 

Given the crucial role load flow analysis plays in the planning and operation of power systems, there is a growing requirement 

to produce load flow methods that would perform with unerring accuracy and also be free from the convergence concerns 

associated with the classical iterative methods. The Holomorphic Embedding Load-flow Method (HELM) is one of such 

attempts. It is non-iterative and could produce a solution when it is available and indicate when there is no solution to signal 

an abnormality, such as a voltage collapse. According to literature, the Newton-Raphson load flow method (NRLM) is the most 

widely utilized iterative method due to its remarkable qualities, therefore it is the preferred choice here for comparison. The 

objective of this paper is to weigh up the merits of HELM over the NRLM based on information obtained from actual applications 

and since HELM is not found as one of the methods previously applied for the analysis of the Nigerian network, the behaviour 

of the system with HELM is assessed. Analyses of particular systems were done at least three times and the average time for 

each was computed. HELM was found to be faster by a wide margin in all the cases. For example, HELM was 95.7% faster 

than the NRLM for the 4-bus system and 80.6% faster when applied to the Nigerian 330kV transmission network. This validates 

a major advantage of HELM over iterative solutions. However, the node voltages of Nigerian system were not as close as results 

for standard IEEE systems which can be attributed to the condition of the network which HELM, as one of its advantages is 

believed to expose. Secondly, though the special software produced for HELM analyses might be the best for it, an attempt was 

made to adapt to a MATLAB program since the software is easily accessible. More work is required in the programming to 

successfully analyse large and ill-conditioned systems. 
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1. Introduction 

Load flow analysis is of paramount importance in the successful 

operation of an existing power system while providing a 

platform for reliable planning processes, therefore, accurate 

load-flow results are critical (Theraja & Theraja, 2012; Mehta, 

Mohlzahn, & Turitsyn, 2016; Metha & Metha, 2017). The main 

classical iterative load flow methods are the Gauss-Seidel load 

flow method (GSLM), Newton-Raphson load flow method 

(NRLM), Fast Decoupled Load Flow (FDLF), and their 

variants. Other methods include Fuzzy Logic, Genetic 

Algorithm application, and the Particle swarm method. The 

NRLM is the most commonly used because it provides the best 

characteristics of quadratic convergence in a minimum number 

of iterations (Subramanian, 2014; Rao, 2016; Trias, 2015) and 

is well suited for the Nigerian system (Onojo et al., 2013; 

Olobaniyi, 2015)  
 

1.1 Basic Concepts of Load Flow Analysis 

The load-flow study is a numerical analysis of the flow of 

electric power in an interconnected system. The procedure and 

outcomes are summarized in Figure 1, where the voltage at each 

bus and the real and reactive power flow in normal steady-state 

operation are the principal output. It uses simplified notation 

such as a one-line diagram and the per-unit system. 

 

 

Figure 1: General concept of load flow analysis 

 
1.2 Power Flow Equations 

Generally, the load flow within an a.c. power system is done by 

solving typical power flow equations for the system and this 

begins by identifying the bus types as generator bus, load bus, 

and slack bus based on their functions and the known quantities. 

The buses are associated with four quantities - magnitude and 
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phase angle of voltage, active and reactive power. Any two of 

these are specified at each bus and the remaining two are to be 

determined. The set of equations representing the power system 

can be written in the following general form: 

Si=ViIi
*  (i=1, 2, …, N)    (1) 

where N is the total number of buses, I is any node or bus in the 

system and Ii is the sum of currents of all other nodes that 

physically connect to i represented by equation (2). Where Yin 

is the admittance of the line connecting bus, i and another bus, 

n; Vn is the voltage at bus n and Si is the complex power at bus 

i, also separated into the active power, Pi and reactive power, 

Qi. From this, Error! Reference source not found. and Error! 

Reference source not found. are obtained. 

 

Ii=∑ YinVn=
Si

*

Vi
* =

Pi-jQi

Vi
*

N
n=1   (i=1, 2, …, N)                  (2) 

Pi-∑ |ViVnYin|cos (δi-
N
n=1 δn-θin)                                (3) 

Q
i
-∑ |ViVnYin|sin (δi-

N
n=1 δn-θin)                                (4) 

This is the system of nonlinear equations usually solved to find 

the solution of the load flow analysis. The major challenge is 

getting accurate load flow results all the time because a 

nonlinear system may have more than one equilibrium point. 

This is responsible for the continuous search for better analysis 

methods which include iterative, non-iterative and hybrid 

methods. 
 

1.3 Non-iterative Methods versus Iterative Methods of Load 

Flow Analysis 
 

The series load flow method proposed by (Sauer, 1981) and 

extended by (Xu, W., et al, 1998) uses Taylor’s series expansion 

around a feasible operating point and is non-iterative. The 

sensitivity of voltages to bus power injections could be 

determined directly but applies analytic representation of the 

process rather than the original Power Balance Equations 

(PBE’s) which is impractical to obtain for large systems. Also, 

the initial operating point has to be obtained using an iterative 

approach and necessarily requires the factorization of matrices. 

Iterative methods are simpler, and since no full factorization has 

to be stored, much larger systems can be handled. Besides, high-

level parallelism is easier to achieve with iterative solvers than 

with direct solvers (Cai & Mitra, 2012; Kalantari, et al, H., 

2003). But fundamental problems have been identified with 

iterative methods which include the existence of real solutions 

and their semblances, a tendency for ill-conditioning, and 

convergence difficulties, especially in large-scale power 

systems (Huneault & Galiana, 1991; Trias, 2015) Divergence, 

or convergence to a non-operating solution, tends to occur 

especially at a point in the system close to a voltage collapse 

(Gupta, 2013; Hiskens 2003). A need, therefore, arises for load-

flow methods that are devoid of these issues which have led to 

the development of the Holomorphic Embedding Load-flow 

method (HELM) (Black, 2012; Trias, 2012) which is 

completely non-iterative. It is reputed to find the operational 

voltage solution when it exists and indicates when the solution 

does not exist and is therefore particularly suited for real-time 

applications. Though HELM solves the convergence issues, it 

is based on complex analysis - holomorphic functions, Taylor’s 

series, Padé approximants, convolution, and linear matrix 

equations which make it difficult to understand. 

Though several load flow analyses have been conducted on the 

Nigerian 330kV system using well-known methods, some of 

which are reported in (Adejumobi et al. 2013; ; Ogbuefi et al, 

2015; Ogujor et al 2012; Onohaebi & Apeh, 2007; Onojo, 2013; 

Samuel, 2014), literature could not be found that shows the 

application of HELM to the system. This work, therefore, sets 

out to find out the behaviour of the system with HELM 

compared to NRLM but starting by the application to the IEEE 

4-bus system (Subramanian, 2014) to gain first-hand 

knowledge of the unique qualities of HELM. 

 

2. Methodology 

The NRLM and HELM are applied to a 4-bus system, the IEEE 

14-bus, 30-bus and the Nigerian 330kV system following the 

steps below, though not strictly. 

 

2.1 Solution Steps in NRLM 

The Newton-Raphson method is a powerful technique for 

solving equations numerically and the steps are: 

 

2.1.1 Identification of bus types 

In any network, independent of the method of analysis, the 

types of buses are first identified. Four variables are associated 

with the buses - active power P, reactive power Q, voltage 

magnitude, ǀVǀ and voltage angle, δ. Two of these variables are 

specified at each bus and help to identify the buses as load, 

generator bus and the slack bus or swing bus, so-called because 

of its major function. The phase angles of other buses are 

expressed using the swing bus voltage phasor as a reference. 

2.1.2 Formation of bus admittance matrix 

The admittance matrix (Ybus) plays a key role and is formed 

using the line data and the dimension of the matrix depends on 

the number of buses in the network. Through the Ybus, the, the 

topology of the network can be understood at a glance and from 

it the amount of current at a bus, line flows and losses can be 

calculated. The elements can be computed from (5) and (6), 

where Yii represents the diagonal elements and Yin the off-

diagonal elements of the matrix. 

Yii = yin

N

n≠1

    (5) 

Yin = Yni = −yin    (6) 

2.1.3 Calculation of the initial values of power 
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The powers, P and Q are specified or estimated, and initial 

values of |V| and δ are chosen for each bus except the swing bus 

which they are known. These are used based on equations (5) 

and (6) to obtain the calculated values for the powers, as in (7) 

and (8), where k denotes the number of iterations. 

Pi

cal(k)
=∑ |ViVnYin|cos (θin-δ

i
-N

n=1 δn)                           (7) 

Q
i

cal(k)=-∑ |ViVnYin|sin (θin-δ
i
-N

n=1 δn)                          (8) 

2.1.4 Checking power mismatch 
 

The differences between the specified and calculated values are 

shown in (9) and (10). The subscripts sch and cal are used for 

specified and calculated values respectively. The initial value 

for Pi
(sch)
 is the specified P at the respective buses. After each 

iteration, the Pi
(sch)(k)

 would be the previous Pi
(k)

. 

∆Pi

(k)
=Pi

(sch)(k)
-Pi

(cal)(k)
 (9) 

∆Q
i

(k)=Q
i

(sch)(k)-Q
i

(cal)(k) (10) 

2.1.5 Determining the elements of the Jacobian  
 

In a concise form, the NRLM load flow method can be 

represented by (11), where the matrix 𝐉(k) is called the Jacobian 

of the initial estimates represented by (12) and the variables 

with Δ are the differences. The elements of the Jacobian matrix 

are partial derivatives of P and Q with respect to |V| or δ. The 

calculation of each Jacobian element is required for each 

iteration.  

[
∆P(k)

∆Q(k)] =[J
(k)] [ ∆δ

(k)

∆|V|(k)
] (11) 

J= [

∂P

∂δ

∂P

∂V
∂Q

∂δ

∂P

∂V

]= [
J1 J2

J3 J4
] (12) 

2.1.6 Obtaining new estimates for voltage magnitude and 

voltage angle 

The solution of the matrix equation (11) gives Δδ(k) and ΔǀVǀ(k). 

A better estimate of the solution is expressed in (13) and (14). 

𝛿i
(k+1)
= 𝛿i
(k)
− ∆𝛿i

(k)
 (13) 

|𝑉i
(k+1)
| = |𝑉i

(k)
| − |∆𝑉i

(k)
| (14) 

The search for the best estimate or iteration is continued until 

the power mismatches are equal to or less than a tolerance 

value; the load flow is then said to have converged. 

 

2.2 Solution Steps in HELM 

HELM is a fairly recent method compared to other methods and 

it is non-iterative. The first two solutions steps in NRLM also 

apply to HELM; the other steps can be outlined as follows: 
 

2.2.1 Choosing a suitable embedding complex parameter 

If the chosen parameter is s, the complex voltage variable is 

embedded as 𝑉i
∗(s∗) to ensure holomorphicity. 

 

2.2.2 Classifying functions 

The embedded parameters define an algebraic curve and 

therefore the variable can be classified as holomorphic 

functions. The reference solution should be selected at s=0, but 

once solved, the reflection condition at s=1, should be 

requested. This represents only the feasible branches of the 

power flow problem while others are ghost branches. 

 

2.2.3 Obtaining the system of equations 

The original power balance equations are embedded with a 

complex variable, s, to yield the holomorphic embedded 

equations for the slack bus, load bus and generator bus of 

equations (15) - (37) (Subramanian et al., 2015). The resulting 

system of equations consists of polynomials and by the 

application of Grobner basic theory; an equation in one variable 

can be obtained, say, V1(s), while the rest, including Ṽn(s) may 

be obtained in a triangular form.  

𝑉𝑠𝑙𝑎𝑐𝑘(𝑠) = 1 + 𝑠(𝑉𝑖
𝑠𝑝
− 1) 

(15) 

 Yin trans𝑉𝑛(𝑠)

𝑁

𝑛=1

= 
𝑠𝑆𝑖
∗

𝑉𝑖
∗(𝑆∗)
− 𝑠𝑌𝑖𝑠ℎ𝑢𝑛𝑡𝑉𝑖(𝑠) (26) 

 Yin trans Vns

N

n=1

= 
s(Pi + jQi)(s)

Vi
∗ (s∗)

− sYishunt Vi(s) 

Vi(s)
∗Vi
∗(s∗) = 1 + s (|Vi

sp
|
2
− 1) 

(37) 

2.2.4 Resolving multiple non-ghost solutions 

The problem of multiple operational and non-operational non-

ghost solutions is then sorted out based on topology, 

singularities, and branching points of the algebraic curves. 

 

2.2.5 Applying power series and analytic continuation 

Polynomial elimination techniques will not give clear solutions 

when applied to the algebraic curve, especially with a very large 

number of variables. Therefore, the power series of the curve is 

calculated at point s=0 and then the analytic continuation 
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technique is used to reach the target point, s=1. If the 

approximants converge at s=1, then the desired solution is 

obtained; otherwise, there is no feasible power flow. 

 

3. Analysis of Samples 

3.1 Test Systems Description 

Four test systems were used in this work, a 4-bus system 

(Grainger & Stevenson, 1994) in Figure 2, the IEEE 14-bus 

system in Figure 3, the IEEE 30-bus system in Figure 4 

(Christie, 1993; Rajathy, 2011) and the Nigerian 330kV 

transmission network in Figure 5 (Ayodele et al., 2016). The 4-

bus system has 2 generators and 4 lines; the 14-bus system has 

5 generators and 20 lines and the 30-bus system has 41 lines and 

6 machines. The Nigerian system used in this work has 7 

generators, each of which is connected via transformers to the 

rest of the network, and 31 buses. 

 

 

Figure 2: IEEE 4-bus system (Grainger & Stevenson, 1994) 

 

Figure 3: IEEE 14-bus system (Christie, 1993; Appendix A, 

2011) 

 

 

Figure 4: IEEE 30-bus system (Appendix B, 2011; Christie, 

1999) 

 

 

Figure 5: The Nigerian 330kV transmission network 

(Ayodele et al, 2016) 

 

3.2 Solving the 4-bus system using NRLM 

The 4-bus system was analysed where bus 1 is the slack, buses 

2 and 3 are the load buses and bus 4 is the generator bus. The 

net injected powers at bus i, 𝑃𝑖
𝑠𝑐ℎ and 𝑄𝑖

𝑠𝑐ℎ  at the buses are 

computed using (18) and (19) where the subscript g represents 

the generated power and l the consumed power. From (5) and 

(6), the real power, 𝑃𝑖
𝑐𝑎𝑙𝑐 and reactive power, Q

i

calc are 

calculated for each bus to obtain the results. 
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Pi
sch=Pgi-Pli (18) 

Q
i

sch=Q
gi

-Q
li
 (19) 

 

Table 1: Power at the buses 

 

Changes in power after the first iteration by using (21) and (22) 

are given in (22). 

∆Pi
0=Pi

sch-Pi
cal (21) 

∆Qi
0 = Qi

sch − Qi
cal (22) 

[

∆P2
0

∆P3
0

∆P4
0

] = [
-1.65

-1.98

2.10

],        [

∆Q
2

0

∆Q
3

0

∆Q
4

0

] = [
-0.43

-4.17

-1.22

] (23) 

 

3.2.1 Solving the 4-bus system using HELM 

Solving the HELM equations (15) - (37) for the four-bus system 

at s=0 gives the no-load results, where all the bus voltages are 

equal to 1∠0°. Other power series coefficients are calculated by 

splitting the left-hand side (LHS) of the equation into real and 

imaginary parts to give the 8×8 matrix in (23). Details of this 

can be found in (Subramanian, 2014).  

Rows 1 and 2 of the LHS matrix correspond to real and 

imaginary components of the slack bus equations. Since the 

slack bus voltage is fixed by taking cognizance of the network 

topology, the coefficients corresponding to other bus voltages 

are zero. One more distinct part of the equation is column 7 of 

the LHS matrix, where all elements are zero except the last row 

which accounts for the generator bus. The reactive power 

injected into bus 4, which is a generator bus, is represented by 

the series term, Q
4
[N], consequently, the remaining entries of 

the column must be zero. 

 
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(23) 

The other elements are a result of separating the admittance 

matrix into real and imaginary components as in (18). 

Calculation of right-hand side (RHS) vector for slack bus (rows 

1 and 2) and load buses (row 3 to row 6) follows directly from  

(24) and (25).  

 YintransVk[N] =  Si
∗Wi
∗[N − 1] − YishuntVi[N

N

n=1

− 1] 

 (24) 

Vi[N]  = δN0 + δN1(Vi
sp
− 1), i=slack bus (25) 

where rhs_Known[N-1] has coefficients up to degree N-1, that 

is: 

rhs_Known[N − 1]  = PiWi
∗[N − 1] − j ( Qi[n]Wi

∗[N − n]

N−1

n

) − YishuntVi[N − 1] (26) 

Scheduled power (pu) Calculated power (pu) 

𝑷𝟐
𝒔𝒄𝒉 𝑸𝟐

𝒔𝒄𝒉 𝑷𝟑
𝒔𝒄𝒉 𝑸𝟑

𝒔𝒄𝒉 𝑷𝟒
𝒔𝒄𝒉 𝑸𝟒

𝒔𝒄𝒉 𝑷𝟐
𝒄𝒂𝒍 𝑸𝟐

𝒄𝒂𝒍 𝑷𝟑
𝒄𝒂𝒍 𝑸𝟑

𝒄𝒂𝒍 𝑷𝟒
𝒄𝒂𝒍 𝑸𝟒

𝒄𝒂𝒍 

-1.7 -1.05 -2.0 -1.24 2.38 -0.5 -0.051 -0.62 -0.016 2.93 0.28 0.72 
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where Wi(s) =
1
Vi(s)
⁄  and Vi(s) is the voltage power series for 

bus i. The solution of the next power series coefficients is 

obtained by evaluating the RHS of (26). The complex power 

and inverse voltage series are considered when evaluating load 

buses, while the reactive power series in (27) and voltage 

magnitude constraint are involved for generator buses. Equation       

(27) is then obtained as the solution of the associated linear 

system of equations. 

 YintransVn[N]= PiWi
*[N-1]-j( Q

i
[n]Wi

*[N-n]+Q
i
[N]

n-1

k

) - YishuntVi[N-1]

N

n=1

       (27) 

This is followed by determining the Pade approximant of the 

voltage and reactive power series (Trias, 2012) which uses an 

asymptotic expansion. Its convergence can be greatly facilitated 

by appropriate extrapolation measures (Baker, 2012). 

Calculation of Padé approximants of 𝑉2(𝑠), 𝑉3(𝑠),  and 

𝑉4(𝑠) series using matrix method can be achieved which yields 

the results from HELM. The results of the NRLM and HELM 

for the 4-bus system are shown in Table 2 and Figure 5 in 

comparison. 

 

3.3 Analyzing the IEEE 14-bus and 30-bus Systems 

The NRLM and HELM were applied to the 14-bus and 30-bus 

benchmark systems in Figures 3 and 4, using Matlab 

programmes, and the results, the bus voltages, are plotted in 

Figures 7 and 8.  

3.4 Application of NRLM and HELM to the Nigerian 

System 

The Nigerian 330kV transmission grid used as a test system for 

this study is the 31-bus system in Figure 5. The NRLM and 

HELM were each applied to the system with the aid of the 

MATLAB software, though special software was developed by 

the originator of HELM (Trias, 2012) for the load flow analysis. 

 

4. Results and Discussion 

The NRLM is an iterative method and so expectedly, the 

solution was obtained in each case after some iterations. The 

HELM produced specific voltage values analytically within the 

program. The NRLM results for the 4-bus system were obtained 

in 0.4786 second after 3 iterations, while HELM took 0.0207 

second. The plot of the results in Table 2 is shown in Figure 6 

where slight differences between the voltage magnitudes of the 

two methods can be observed. For the 14-bus and 30-bus 

systems, each converged after 7 iterations with NRLM; voltage 

values are plotted in Figures 7 and 8 respectively showing 

barely any difference between the voltages obtained from the 

two methods.  

For the Nigerian 330kV transmission system, the NRLM 

required five iterations to converge but was still slower than 

HELM. From the plots of the two methods in Figures 9 and 10, 

it is obvious that the results of the two methods are quite 

different. The computation times and iterations of all the test 

systems are summarized in Table 3 where HELM is seen to 

conclude the computations faster than NRLM in all cases. 

 

 

Table 2: The 4-bus system voltage magnitudes 

Bus No. NRLM HELM 

1 1.0000 1.0000 

2 0.9451 0.9280 

3 0.9475 0.9357 

4 0.9700 0.9455 

 

 

Figure 6: NRLM and HELM for the 4-bus system 

 

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14

V
o
lt

a
g

e
 m

a
g

m
it

u
d
e
 

(p
.u

.)
 

Buses 

14-BUS NRLM 14-BUS HELM

 

Figure 7: NRLM and HELM for the 14-bus system 
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Figure 8: NRLM and HELM for the 30-bus system 

 

 

Figure 9: NRLM result for 330kV network 

 

 

Figure 10: HELM result for 330kV network 

 

The voltage values obtained for the Nigerian 330kV 

transmission system using NRLM vary from 0.96-1.04 p.u, 

which is slight but scattered on the graph though this is typical 

of some load flow results. 

The voltage values from HELM vary from 1.0000-1.5453 p.u. 

which could confirm the fact that though HELM can produce 

results faster, the precision is lower than that of iterative 

algorithms (Sauter, 2017). Another reason could be because 

HELM can signal a potential voltage collapse or lack of solution 

(Black, 2012; Trias, 2012) which is not feasible with iterative 

methods. The Nigerian system has insufficient capacity and is 

generally agreed to be weak. (Bakare, et al., 2007; Amoo, 2013; 

Adaramola, et al., 2011; Gujba, et al, 2010; Onojo, et al., 2013; 

Onohaebi & Apeh, 2007). This makes it susceptible to voltage 

instability and voltage collapse and could account for the 

unusual results. 

 

Table 3: Solution times of sample networks 

CASE 

STUDIES 

Time in seconds 
Percentage 

reduction in 

analysis time 

with HELM 

No of 

iterations 

for NRLM NRLM HELM 

4-bus 

system 
0.4786 0.0207 

95.7% 
3 

14-bus 

system 
0.3354 0.0912 

72.8% 

7 

30-bus 

system 
0.5755 0.0885 

84.6% 
7 

Nigerian 

330kV 

network 

1.1249 0.2181 

80.6% 

5 

 

5. Conclusion 

This work was able to explore the complexities of the HELM 

algorithm and infer from the analysis that it is faster than 

NRLM. The results for the standard IEEE bus systems are very 

close. The Nigerian 330kV, 31-bus system, not found to have 

been analysed with HELM before, showed a result pattern that 

is quite different compared to NRLM. Since HELM can give 

indication of voltage collapse in a system, unlike NRLM, the 

state of the system is a likely cause of the result obtained with 

HELM. Also, the software specially produced for HELM by 

Trias (2012) could be its best tool until the method fully 

evolves and other types of software could be employed 

effortlessly. HELM’s accuracy in terms of actual results is said 

to be lower than the NRLM, but further analytical evidence is 

required to establish this fact. 
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