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Background: Primary nephrotic syndrome is an important cause of chronic 
renal failure in childhood. Important neuronal complications may develop during 
the disease. Aims: This study aims to demonstrate basal ganglia involvement 
in children with nephrotic syndrome by texture analysis. Methods: Brain MRI 
images of 22 paediatric patients with primary nephrotic syndrome and 40 healthy 
children of similar age groups were analysed. Brain MRI T2‑weighted images 
were extracted from the thalamus, lentiform nucleus and nucleus caudatus and 
texture analysis was performed. Results: The images of 22 children with primary 
nephrotic syndrome and 40 children in the control group were evaluated. There 
were no notable distinctions identified in terms of age and gender between the 
patient and control groups  (P  value 0,410; 0,516, respectively). Accordingly, 
a significant difference was found between mean, 1.P, 10.P, 50.P, 90.P, 
99.P  values of histogram parameters obtained from thalamus  (P  values were 
0.001; 0.000; 0.001; 0.002; 0.004; 0.009, respectively). A  significant difference 
was found between mean, 1.P, 10.P, 50.P, 90.P, 99.P  values of histogram 
parameters obtained from lentiform nuclei  (P  values were 0.031; 0.019; 0.006; 
0.006; 0.003; 0.003; 0.001; 0.002, respectively). A  significant difference was 
found between the mean, 1.P, 10.P, 50.P, 90.P, 99.P  values of the histogram 
parameters obtained from the nucleus caudatus  (P  values 0,002; 0,005; 0,002; 
0,002; 0,002; 0,003; 0,003, respectively). Conclusion: Texture analysis may be 
helpful in demonstrating brain parenchymal involvement in paediatric patients 
with primary nephrotic syndrome by showing changes that are not recognised 
on conventional images.
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lead to increased intracranial pressure and associated 
neurological symptoms.[2]

Nephrotic syndrome can increase the tendency for 
blood clotting, which can increase the risk of clot 
formation in the brain vessels and thromboembolic 
events. Blood clots can damage brain tissue and 
increase the risk of stroke. Furthermore, <>nephrotic 
syndrome is associated with inflammation, which can 

Original Article

Introduction

P rimary nephrotic syndrome  (PNS) is one of the 
most common triggers of chronic kidney disease 

in childhood. It is characterised by symptoms such as 
protein loss, low albumin levels, fluid accumulation 
in the body and high cholesterol levels. The risk of 
infection includes various complications such as kidney 
damage, cardiovascular problems, bone mineral loss and 
neurological diseases.[1]

Low albumin levels can lead to a decrease in osmotic 
pressure and leakage of body fluids into tissues. This 
can affect the blood‑brain barrier in the brain, leading 
to the development of oedema. Brain oedema can 
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affect brain health. Inflammation can damage cells in the 
brain and cause changes in neurological function.

Intracranial haemorrhage, Posterior Reversible 
Encephalopathy Syndrome  (PRES), thromboembolic 
and ischaemic events are possible complications 
of nephrotic syndrome. Demonstration of brain 
parenchymal involvement by imaging modalities before 
these complications occur may be life‑saving. We can 
recognise subtle structural changes in brain MRI images 
with texture analysis  (TA). Lately, this method has 
gained extensive usage for the non‑invasive quantitative 
evaluation of various pathological conditions. Texture 
analysis enables the retrieval of grey level intensity, 
pixel position, and the configuration and interconnection 
between voxel intensities from medical images.[3,4]

Radiomic features are commonly categorised into 
conventional, first‑order, and second‑order features. 
Given TA’s capacity to unveil microstructural changes 
that may go unnoticed by the naked eye, numerous 
studies have explored its clinical relevance.[5‑9] In this 
study, we investigated the potential role of MRI‑based 
TA in predicting the severity of brain damage in 
paediatric patients with primary nephrotic syndrome.

Subjects and Methods
In our study, From March 2018 to May 2023, 22 
children with primary nephrotic syndrome and 40 
children without significant intracranial findings on brain 
MRI were retrospectively evaluated.

The revised MRI protocol included the following 
imaging sequences in the axial plane: T1‑weighted 
spin‑echo  (TR/TE: 530–590/15–30 ms), T2‑weighted 
turbo spin‑echo  (TR/TE: 4800–5680/100–120 ms), 
fluid‑attenuated inversion recovery turbo spin‑echo (TR/
TE: 10500/130 ms; inversion time: 2850 ms) and 
diffusion‑weighted imaging  (TR/TE: 3100–3400/89 ms; 
b‑value: 1000 s/mm2).

Texture analysis
Texture features were calculated on two‑dimensional 
sectional images using ‘qMaZda v4.6’.[10] The study of 
textural features in the basal ganglia, thalami and nucleus 
caudate head was initiated by M.D., a radiologist with 
10  years of experience. Axial plane images obtained 
from T2W sequences were transferred in Digital 
Imaging and Communications in Medicine format 
from the medical database to qMaZda for the definition 
of regions of interest  (ROIs). To ensure uniformity, 
gray levels were adjusted to 128  (7 bits). Automatic 
application of intensity rescaling values occurred within 
the range of mean ± 3 standard deviations (SDs). Pixels 
initially surpassing or falling below mean ± 3 SDs were 

normalised to mean  ±  3 SDs. Following this, voxel 
values in three directions  (X: 0.7  mm, Y: 0.5  mm, 
Z: 1  mm) were established based on their mean  ±  3 
SDs. Manual delineation of bilateral ROIs for texture 
analysis  (TA) was performed for the basal ganglia, 
thalamus and head of nuclei caudati in each sequence on 
axial two‑dimensional images [Figure 1].

Histogram parameters such as mean, variance, skewness, 
kurtosis, 1st percentile (P), 10th P, 50th P, 90th P and 99th P 
were calculated for each patient and control group over 
the areas identified in the head of the thalamus, lentiform 
nucleus and nucleus caudatus and evaluated separately 
for each case.

Ethical approval
In our study, which was approved by the Harran 
University Medical Ethics Committee with the decision 
dated 11.12.2023 and numbered 23.23.32, the ethical 
rules in the Declaration of Helsinki were complied with.

Statistical analysis
Statistical analyses were performed using SPSS 
version  22.0  (IBM Inc, Armonk, NY, USA). The 
normal distribution of numerical data was assessed 
through a comprehensive examination of Kolmogrov–
Smirnov and Shapiro–Wilk tests. Descriptive statistics 
were used to express the results of the study; the 
mean  ±  standard deviation was applied for numerical 
data fitting the normal distribution, and the median 
with minimum‑maximum values was applied for 
numerical data not fitting the normal distribution. 
Independent‑student test and Mann–Whitney U test were 
used for intergroup measurements. P  values less than 
0.05 were considered significant.

Results
The images of 22 children with primary nephrotic 
syndrome and 40 children in the control group were 

Table 1: Histogram parameters and comparison of 
images obtained from thalamus in patients and control 

group
NF (n=22) Control (n=40) P

Mean 80.7±11.4 90.5±10.33 0.001a

Variance 46.91±16.4 42.3±14.3 0.26a

Skewness ‑0.19(‑0.3‑0.15) ‑0.05(‑0.01‑0.12 0.09b

Kurtosis ‑0.47(‑0.025‑0.82 ‑0.51(‑0.01—0.65) 0.063b

1.P 68.14±10.6 77.85±9.4 0.000a

10.P 72.8±10.9 82.8±9.9 0.001a

50.P 81±11.5 90±10.8 0.002a

90.P 90.5±12.7 99.6±10.7 0.004a

99.P 96.5±12 104±10.9 0.009a

aIndependent samples t test. bMann–Whitney U test. NF: Primer 
Nephrotic Syndrome
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evaluated. While 13 of the children diagnosed with 
primary nephrotic syndrome were boys and 9 were girls, 
the control group consisted of 25 boys and 15 girls. 
The mean age of the children in the patient group was 
9.5 ± 3.05 years, while the mean age of the control group 
was 9.1  ±  2.95  years. No significant difference was 
found between the patient and control groups in terms 
of age and gender (P value 0,410; 0,516, respectively).

In the brain MRI images of the patient and control groups, 
histogram analyses were performed from thalamus, 
lentiform nucleus and nucleus caudatus. Accordingly, 
a significant difference was found between mean, 1.P, 
10.P, 50.P, 90.P, 99.P  values of histogram parameters 
obtained from thalamus  (P  values were 0.001; 0.000; 
0.001; 0.002; 0.004; 0.009, respectively) [Table 1].

A significant difference was found between mean, 1.P, 
10.P, 50.P, 90.P, 99.P  values of histogram parameters 
obtained from lentiform nuclei  (P  values were 0.031; 
0.019; 0.006; 0.006; 0.003; 0.003; 0.001; 0.002, 
respectively) [Table 2].

A significant difference was found between the mean, 
1.P, 10.P, 50.P, 90.P, 99.P  values of the histogram 
parameters obtained from the head section of the nucleus 
caudatus  (P  values 0,002; 0,005; 0,002; 0,002; 0,002; 
0,003; 0,003, respectively) [Table 3].

Discussion
In our study, significant differences were found in 
many histogram parameters in the texture analysis 
obtained from the thalamus, lentiform nucleus and head 
section of the nucleus caudatus in brain MRI images 
compared to the control group. In the literature, texture 
analyses have been performed for brain involvement 
in many diseases,[11‑15] but this is the first study on 
brain involvement in children with primary nephrotic 
syndrome.

Quantitative imaging features can be derived from 
MRI‑based TA, encompassing a variety of characteristics. 
The first‑order statistical feature, often referred to as a 
histogram, involves the distribution of voxel densities 
within the Region of Interest  (ROI). This distribution 
is based on fundamental properties such as skewness, 
kurtosis, entropy and energy of grey‑level density. Based 
on the TA results of the patient and control groups in our 
study, it is thought that these differences are an indicator 

Table 2: Histogram parameters and comparison of 
images obtained from lentiform nucleus in patients and 

control group
NF (n=22) Control (n=40) P

Mean 88.5±11.05 95.8±8.853 0.003a

Variance 20.6±7.09 25.05±11.8 0.110a

Skewness ‑0.08(‑0.51‑0.21) ‑0.09(‑0.31‑0.32) 0.330b

kurtosis ‑0.429(‑0.21‑0.32) ‑0.51(‑0.23‑0.38) 0.901b

1.P 78.77±11.86 85.9±8.9 0.019a

10.P 82.8±11.26 90.18±8.73 0.006a

50.P 88.2±10.8 96.1±8.74 0.003a

90.P 94.5±11.5 102±9 0.001a

99.P 98.5±12 107±9.97 0.002a

aIndependent samples t test. bMann–Whitney U test. NF: Primer 
Nephrotic Syndrome

Table 3: Histogram parameters and comparison of the 
images obtained from the head section of the nucleus 

caudatus in the patient and control groups
NF (n=22) Control (n=40) P

Mean 96.5±11.3 105±8.93 0.002a

Variance 24.36±19.3 22.35±8.55 0.573a

Skewness 0.144(‑0.01‑0.32) 0.24(‑0.1‑0.38) 0.300b

Kurtosis 0.609±1.95 0.301±1.23 0.545b

1.P 86.3±11.66 94.13±8.96 0.005a

10.P 91.09±11.43 99.55±9.10 0.002a

50.P 97.14±11.47 105.85±8.88 0.002a

90.P 102.2±11.28 111.3±8.8 0.003a

99.P 107±11.73 115±9.166 0.003a

aIndependent samples t test. bMann–Whitney U test. NF: Primer 
Nephrotic Syndrome

Figure 1: 12-year-old male patient with primary nephrotic syndrome. (a) Ventricular level on T2-weighted axial brain MRI image. (b) Two-dimensional 
segmentation of the thalamus (green), lentiform nucleus (red) and head of the nucleus caudatus (blue) from the same level using qMazda V.6 software. 
(c) Quantitative values of the histogram parameters of the area determined in image B.

a b c

D
ow

nloaded from
 http://journals.lw

w
.com

/njcp by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

4/O
A

V
pD

D
a8K

K
G

K
V

0Y
m

y+
78=

 on 01/03/2025



Demir and Onar: Evaluation of basal ganglia in paediatric patients with primary nephrotic syndrome by histogram analysis

1310 Nigerian Journal of Clinical Practice  ¦  Volume 27  ¦  Issue 11  ¦  November 2024

of heterogeneity in the brain parenchyma in patients.[14] 
It is known that the brain tissue of paediatric patients 
with primary nephrotic syndrome may be affected 
through many mechanisms.[16,17] As a result, all these 
mechanisms can damage the brain in a wide range from 
intracranial haemorrhage to brain atrophia in the chronic 
period.[16]

Cerebral ischaemia, thromboembolism, PRES 
and intracranial haemorrhage are life‑threatening 
developments in nephrotic syndrome. Undoubtedly, 
these complications are the result of an ongoing process. 
Conventional imaging modalities such as CT and MRI 
are not used to detect brain parenchymal involvement. 
However, especially in the early period, invisible grey 
tone differences are overlooked. For this purpose, 
the parameters called radiomics obtained by TA are 
nowadays helpful.[18,19]

Matsuda-Abedini et  al.  demonstrated the change in the 
arrangement of fibres in the white matter in children 
with chronic kidney disease with diffusion tracto 
radiography.[12] This finding is compatible with the 
results obtained in our study.

The statistical contrast in radiomics between the 
patient and control groups highlights the heterogeneity 
present in the brain parenchyma. Considering the 
possible vascular origins of cognitive impairments in 
this demographic, both our study and related findings 
underscore the necessity for future investigations 
probing the association between white matter imaging 
alterations and neurocognitive function in children with 
chronic kidney disease.

Uremic encephalopathy can manifest in individuals 
with chronic renal failure. The underlying mechanism 
involves inflammation of the brain parenchyma 
triggered by elevated amine‑derived molecules. This 
leads to the disruption of the blood‑brain barrier, 
ultimately causing oedema.[20] Kidney damage has 
the potential to activate cytokines that traverse the 
blood‑brain barrier or stimulate other messengers, 
leading to neuronal dysfunction. Both case reports 
and human studies have documented various 
biochemical alterations in acute and chronic uremic 
encephalopathy. These changes encompass disruptions 
in water transport and cerebral oedema, disturbances 
in the blood‑brain barrier and alterations in cerebral 
metabolism.[21] These changes in the brain parenchyma 
may not be detected on conventional MRI, especially 
in the early stages. TA helps in this regard by showing 
parenchymal heterogeneity at the micro level. Ruizhu 
et al. reported that histogram analysis would be useful in 
the demonstration of hypoglycaemic encephalopathy 

in the neonatal period.[22] In our study, we also noticed 
changes in the measurements at many basal ganglion 
levels which may indicate parenchymal damage.

Conclusions
This study draws attention to the importance of brain 
health in the care of children with primary nephrotic 
syndrome. The importance of TA in the prediction of 
important complications that may occur in the follow‑up 
of these patients is emphasised. It is expected that 
further research on this topic in the future will further 
improve the brain health of children with primary 
nephrotic syndrome.

Ethical approval: This study was approved by the Harran 
University Medical Ethics Committee with the decision 
dated 11.12.2023 and numbered 23.23.32.

Study limitations
Our study has several limitations. Firstly, our study 
was conducted retrospectively. Due to the rarity of the 
diagnosis of primary nephrotic syndrome, the number of 
our patient group is small. Since TA is a current issue, 
there was no standard for the extraction of brain MRI 
images, but we tried to obtain images in accordance 
with the literature.[14,23,24]
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