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ABSTRACT: The boundary layer fluid flow in a channel with heat source, soret effects and slip condition was 
studied. The governing equations were solved using perturbation technique. The effects of different parameters such  
Prandtl number Pr , Hartmann number M, Schmidt number Sc, suction parameter  , soret number Sr and the heat 
source s  on velocity, temperature and concentration were studied. Numerical computations involved in the solution 
have been shown on graphs and tables. It was observed that the temperature increased with an increase in 
perturbation parameter, heat source, and suction, but temperature decrease with increase in Prandtl numbers. The 
concentration profile increased with an increasing suction, soret, and perturbation parameter and decreases with an 
increasing Schmidt and heat source  parameters, while the velocity increased with increase in Hartmann number, 
perturbation parameter, suction, Grashof and modified Grashof numbers, and slip variable and decreased as a result 
of an increasing Schmidt, Prandtl and soret numbers. The skin friction coefficient, Nusselt number and Sherwood 
number were also depicted on tables. The skin friction coefficient increased with the increase in material parameters 

, , , , ,and Pr Sc Sr Gc mt and decreased with increase of material parameters , , ,ands Gr M . Increasing effects of 
,Pr decreased the Nusselt number while increasing , and s mt  increased the Nusselt number with appreciative 

results. Sherwood number increased with the increased of material parameter Pr and inversely decreases with 
increase in ݏ , , , ands Sc Sr mt . 
Keywords: Heat source, soret, boundary layer, channel, perturbation, slip condition 
 
INTRODUCTION 
Fundamental studies of boundary layer fluid flow 
problem  attract the interest of engineering sciences, 
applied mathematics researchers and geophysical 
application such as geothermal reservoirs, thermal 
insulation, enhanced oil recovery, packed-bed catalytic 
reactors, cooling of nuclear reactors, metallurgical and 
polymer extrusion processes. In a pioneering work, 
Sakiadis (1961) investigated the boundary layer flow 
induced by a moving plate in a quiescent ambient fluid. 
Thereafter, various aspects of the problem have been 
investigated by many authors. Makinde and Aziz (2011) 
reported that, the fluid flow over a stretching surface is 
important in applications such as extrusion, wire 
drawing, metal spinning and hot rolling. It is crucial to 
understand the heat and flow characteristics of the 
process so that the finished product meets the desired 
quality specifications. A wide variety of problems 
dealing with heat and fluid flow over a stretching sheet 
have been studied with both Newtonian and non-
Newtonian fluids and with the inclusion of imposed 
electric and magnetic fields, different thermal boundary 
conditions, and power law variation of the stretching 
velocity. Ching-Yang Cheng (2010) presented the 
analysis of the Soret and Dufour effects on the 

boundary layer flow due to free convection heat and 
mass transfer over a cylinder in a porous medium with 
constant wall temperature and concentration. Due to 
the great importance of soret (thermal diffusion) and 
Dufour (Diffusion Thermo), Anjali et al. (2002) and 
Postelnicu (2004) reported results effects of soret and 
Dufour on fluid flow with very light molecular weight as 
well as medium molecular weight. Er-Raki et al. (2010) 
studied the soret effect on double-diffusion boundary 
layer flows in a vertical porous layer. Alam et al. (2005) 
studied the Dufour and Soret effects on steady MHD 
free convective heat and mass transfer flow pass a 
semi-infinite vertical porous plate embedded in a 
porous medium. Alam et al. (2006) studied the Dufour 
and Soret effects on unsteady free convective and 
mass transfer flow past an impulsively started infinite 
vertical porous flat plate in a porous medium under the 
influence of transversely applied magnetic field. 
Stanford et al. (2010) investigated the influence of a 
magnetic field on heat and mass transfer by mixed 
convection from vertical surface in the presence of Hall, 
radiation, soret (thermal- diffusion) and (diffusion-
thermo) effect.  Effect of heat and mass transfer on 
nonlinear MHD boundary layer flow has been discussed 
(Brady and Acrivos, 1981; Cheng and Lin, 2002; Kuo, 
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2005). Muhaimin et al. (2009) studied the effect of 
chemical reaction, heat and mass transfer on a 
nonlinear MHD boundary layer past a porous shrinking 
sheet in the Presence of suction. Vajravelu and 
Hadjinicolaou (1999) studied the heat transfer 
characteristics in the laminar boundary layer of a 
viscous fluid over a stretching sheet with viscous 
dissipation or frictional heating and internal heat 
generation. Cortell (2008) studied the effects of viscous 
dissipation and radiation on the thermal boundary layer 
over a nonlinearly stretching sheet. Postelnicu (2004) 
studied the influence of a magnetic field on heat and 
mass transfer by natural convection from vertical 
surface embedded in an electrically conducting fluid 
saturated porous media considering Soret and Dufour 
effects with constant surface temperature and 
concentration. Alam et al. (2006) studied the Dufour 
and Soret effects on steady MHD combined free-forced 
convective and mass transfer flow past a semi-infinite 
vertical plate. Makinde and Olanrewaju (2011) 

investigated the unsteady mixed convection flow past a 
vertical porous flat plate moving through a binary 
mixture in the presence of Radiative heat transfer and 
nth-order Arrhenius type of irreversible chemical 
reaction by taking into account the diffusion-thermal 
(Dufour) and thermo-diffusion (Soret) effects. 
 
Problem Formulation  
The authors consider  the region of unsteady MHD flow 
of boundary layer fluid with heat source, soret effect 
and slip variable on incompressible, electrically 
conducting fluid over a finite region perpendicular to a 
finite vertical plate  moving with constant velocity, 

, in the presence of a transverse magnetic field. The 
surface temperatures of the plate oscillates with small 
amplitude about a non-uniform mean temperature. The 
x-axis is taken along the plate ad the y-axis is normal to 
the plate. The governing equations are the continuity 
equation momentum, energy and concentration.
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where x  and y are the dimensional distances along 
and perpendicular to the plate respectively, ,u v   are 
the components of dimensional velocities along x  and 
y respectively,  is the fluid density, V is the fluid 

kinematic viscosity,  g is the acceleration due to gravity, 
 and c are the coefficients of volume expansions for 
temperature and concentration respectively, k is  
thermal conductivity,  is the electrical conductivity of 
the fluid, 0B is the magnetic induction,  is slip variable 

, T is the temperature, C  is the component of 
dimensional concentration,  D is the coefficient of mass 
diffusivity,  is the  material parameter ,  0v  is a scale 
of suction velocity which has non-zero positive 
constant.  
 
The flow is normalized with the following dimensionless 
quantities: 
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the governing equations(1) to (4) were reduced into dimensionless form by using (5) as:  
2
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With the corresponding boundary conditions; 
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Assuming the pressure term as 
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x
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where A and B  are constants, Pr is Prandtl number, M  is Hartmann number, Sc  is Schmidt number,   is 
suction parameter, Sr  is soret number and s  is the heat source. 
 
METHOD OF SOLUTION 
In order to reduce the above system of partial differential equations to a system of ordinary differential equations in 
dimensionless form, Let the assumed solution  of  the velocity, temperature and mass be taken as: 
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 Substituting (10) and (11) and collecting harmonic terms then; 
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The boundary conditions are 

                                                                                                       (18) 

The analytic solution of the dimensionless differential equations (13) to (18) subject to (19) are: 
 
3.1 The solution of steady state 
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3.2  The solution of unsteady state 
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   and   
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3.3  Skin Friction, Rate of Heat and Mass Transfer 
 Skin-friction coefficient ( ) at the plate is: 
      0u y y                                                                                                                                             (28) 

 Heat transfer coefficient ( Nu ) at the plate is:                                           

  
  0Nu y y                                                                                                                                            (29)                               

 Mass  transfer coefficient ( Nu ) at the plate is:                 
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RESULTS AND DISCUSSION  
In this frame, the variation of velocity field, temperature 
field, concentration field along y-axis, skin friction 
coefficient   , mass transfer coefficient in term of 

Nusselt number  Nu and Sherwood number  Sh  
were studied. To be realistic, the values of Prandtl 
number are chosen for water vapour   ,0.60Pr 

electrolytic solution   ,1.0Pr  water   ,0.7Pr   and 
water at 04 C   .11.4Pr   The values of Schmidt 
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water-vapour   ,0.6Sc  ammonia   ,0.78Sc 

methanol   ,1.0Sc   and propyl benzene at 020 C

 2.62Sc  as Shanker et al. (2010). The variation of 
temperature profile along y-axis are shown in Figures 1, 
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2, 3, 4 and 5 respectively for different  values of 
perturbation parameter  0.0, 0.2, 0.4, 0.6 ,  Heat 
source (ݏ = 1.1,1.2,1.3)  suction parameter 
 0.3,0.5, 0.7,1.0 ,  product of time and frequency 
oscillation  / 6, / 4, / 3, / 2 ,mt pi pi pi pi Prandtl 

number  0.6,0.71,0.85 .Pr   It’s shown that the 
temperature increases with increasing, perturbation, 
parameter ,  Heat source s , suction parameter  , 
product of time and frequency oscillation mt but 
decrease with increase in Prandtl number Pr . The 
variation of the mass concentration along y-axis is 
presented in Figures 6 to 11 respectively for different 
varying values of Suction number 
 0.3,0.6,0.7,1.0 ,   product of time and frequency 
oscillation  / 6, / 4, / 3, / 2 ,mt pi pi pi pi Soret 
number  1, 2,5,10 ,Sr   Schmidt number 
 0.6, 0.78,1.0, 2.62 ,Sc   perturbation parameter 
 0.02,0.04, 0.08,0.10 .  Heat source 
  .0.4,0.5,0.6,0.7s   The results show that an 
increase in the suction number  , product of time and 
frequency oscillation mt , soret number Sr , and 
perturbation parameter  result to an increase in mass 
concentration and decreases with increasing Schmidt 
number ܵܿ and Heat source ݏ. The variation of velocity 
field along the y – axis shown in Figures 12 to 22 
indicate the effects of Hartmann number 
 5,6,8,10M  , perturbation parameter 
 0.02,0.2, 0.4,0.6  , product of time and frequency 
oscillation  / 6, / 4, / 3, / 2 ,mt pi pi pi pi Prandtl 
number   ,0.6, 0.71, 0.85Pr   Schmidt number 
 0.22,0.6,0.78,1.0 ,Sc   Soret number 
 0.0, 0.2,0.5,1.0 ,Sr   suction parameter 

 0.3,0.5, 0.7,1.0 ,   slip variable 
 0.01,0.05,0.08,0.10 ,   mass Grashof number 
 5,10,15, 20Gc  , Grashof number 
 5,10,15, 20 ,Gr   and heat source (ݏ =
1.1,1.2,1.3	1.4). It is observed that an increase in the  
Hartmann number M , perturbation parameter  , 
product of time and frequency oscillation mt , suction 
parameter   slip variable   mass Grashof number Gc
, Grashof number Gr  and heat source s  increases the 
velocity while an increase in Schmidt number Sc , 
Soret number Sr and Prandtl number Pr  decreases 
the velocity.  
 
Tables 1 – 3 represent the effect of Prandtl number Pr, 
Grashof number Gr, mass Grashof number Gc, suction 
parameter  , heat source parameter s, product of time 
and frequency oscillation m t , soret number Sr and 
Hartmann magnetohydrodynamic number M and 
Schmidt number Sr  on the skim friction coefficient  , 
the heat transfer coefficient in term of Nusselt number 

,Nu and mass transfer coefficient in terms of Sherwood 
number  Sh . In Table 1, it is observed that, an 
increase in , , , , ,Pr Sc Sr Gc and mt  leads to increase in 
the value of skin-friction coefficient while an increase in 
ݏ , , , ,Gr M and  leads to decrease in the value of skin 
friction coefficient. It is also seen from Table 2 that, the 
value of heat transfer coefficient increase with 
increasing ,and s  while an increase in the Prandtl 
number leads to decrease in the value of heat transfer 
coefficient. The numerical values of mass transfer 
coefficient is also depict on Table 3 for different values 
of , , , ,Pr Sc Sr  respectively. It is observed ݐ݉	݀݊ܽ	ݏ
that, an increase in the Prandtl number leads to 
increase in the value of mass transfer coefficient while it 
decreases with increasing value of suction, heat 
source, Schmidt and soret numbers. 
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Figure 1: Effect of  on temperature field ߠ when ݉ݐ =  2/݅݌ = 0.3, s = 0.1, Pr = 0.71 

 
            Figure 2: Effect of  s on temperature field ߠ when ݉ݐ =  2/݅݌ = 0.3,  
                         = 0.02, Pr = 0.71 
 

 
Figure 3: Effect of    on temperature field ߠ when ݉ݐ = ݏ ,2/݅݌ = 0.1   = 0.02, Pr = 0.71 

 

 
  Figure 4: Effect of mt   on temperature field ߠ when  0.3,  s =0.1,  = 0.02, Pr = 0.71. 
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Figure 5: Effect of  Pr  on temperature field ߠ when 0.3,  s =0.1,  = 0.02, / 2mt pi  

 
       Figure 6: Effect of   on concentration field C  when  = 0.02, = 0.3, Sc = 0.22, Sr = 0.2, mt  = / 2pi , 0.1s    
 

 
   Figure 7: Effect of mt  on concentration field C  when  = 0.02, = 0.3, Sc = 0.22, Sr = 0.2,  ݏ ,0.3 =  = 0.1 

 
Figure 8: Effect of Sr on concentration field C  when  = 0.02, = 0.3, Sc = 0.22,݉ݐ =  2/݅݌ ݏ ,0.3 =  = 0.1 
 

 
Figure 9: Effect of Sc on concentration field ܥ  when ߝ = 0.02, Sr = 0.2, ݉ݐ = ߣ  2/݅݌ = ݏ,0.3 = 0.1  
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Figure 10: Effect of   on concentration field C  when ߣ = 0.3  Sr = 0.2, Sc =0.22,ݏ = ݐ݉ 0.1 =   2/݅݌

 

 
Figure 11: Effect of  s on concentration field ܥ when ߝ = ߣ ,0.02 = 0.3, Sr = 0.2, Sc = 0.22, ݉ݐ =  2/݅݌

  
Figure 12: Effect of M on velocity field U for cooling of plate when Gc = 5, Gr = 5, Sr = 0.2, Sc = 0.22, Pr = 0.71,  = 

0.02,  A = 0.1 = B,  ݏ ,0.3 = = ݐ݉ 0.1 = ߛ ,2/݅݌ = 0.01  
 

 
Figure 13: Effect of   on velocity field U for cooling of plate when Gc = 5, Gr = 5, Sr = 0.2, Sc = 0.22, Pr = 0.71, M = 

10, A = 0.1 = B,  ߛ,0.3 = = ݏ 0.01 = 0.1 mt  = / 2pi  
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Figure 14: Effect of mt  on velocity field U for cooling of plate when Gc = 5,Gr = 5, Sr = 0.2, Sc = 0.22, Pr = 0.71, M 

= 10, A = 0.1 = B,  = 0.3,  = 0.01, s = 0.1,   = 0.02  

 
Figure 15: Effect of Pr  on velocity field U for cooling of plate when Gc = 5, Gr = 5, Sr = 0.2, Sc = 0.22, / 2mt pi

, M = 10, A = 0.1 = B,  = 0.3,  = 0.01, s = 0.1,   = 0.02  

 
Figure 16: Effect of Sc on velocity field U for cooling of plate when Gr = 5, Gc = 5, Sr = 0.2, Pr = 0.71, = 0.02, M = 

10, A = 0.1 = B, Sr= 0.2,  = 0.01, s = 0.1, mt  = / 2pi  

 
Figure 17: Effect of Sr on velocity field U for cooling of plate when Gr = 5,Gc = 5, Sc = 0.22,Pr = 0.71,  = 0.02, M = 

10, A = 0.1 = B,  = 0.3,  = 0.01, s = 0.1, mt  = / 2pi  
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Figure 18: Effect of   on velocity field U for cooling of plate when Gr = 5, Gc = 5, Sc = 0.22, Pr = 0.71,  = 0.02, M 

= 10, A = 0.1 = B, Sr= 0.2,  = 0.01, s = 0.1, mt  = / 2pi  
 

 
Figure 19: Effect of    on velocity field U for cooling of plate when Gr = 5, Gc = 5, Sc = 0.22, Pr = 0.71,  = 0.02, M 

= 10, A = 0.1 = B,  = 0.3, Sr = 0.2, s = 0.1, mt  = / 2pi  
 

 
Figure 20: Effect of Gc on velocity field U for cooling of plate when Gr = 5, Sr = 0.2, Sc = 0.22, Pr = 0.71,  = 0.02, 

M = 10, A = 0.1 = B,  =  0.3,  =    0.01, s =    0.1, mt  = / 2pi  
 

 
Figure 21: Effect of Gr on velocity field U for cooling of plate when Gc = 5, Sr = 0.2, Sc = 0.22, Pr = 0.71,  = 0.02, 

M = 10, A = 0.1 = B,  = 0.3, = 0.01, s = 0.1, mt  = / 2pi  
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Figure 22: Effect of s  on velocity field U for cooling of plate when Gc = 5, Gr = 5, Sr = 0.2, Sc =0.22, Pr = 0.71,  = 

0.02, M = 10, A = 0.1 = B,  = 0.3,  = 0.01, mt  = / 2pi  
 
Table 1:  Values of skin friction 
 ࣎ ࢚࢓ ࢽ ࡹ ࢉࡳ ࢘ࡳ ࢘ࡿ ࢉࡿ ࢙ ࣅ ࢘ࡼ
0.71 0.30 1.10 0.22 0.20 5.00 5.00 5.00 0.01 / 2pi  1.0392 
0.85 0.30 1.10 0.22 0.20 5.00 5.00 5.00 0.01 / 2pi  4.7869 
0.71 0.50 1.10 0.22 0.20 5.00 5.00 5.00 0.01 / 2pi  0.4457 
0.71 0.30 1.20 0.22 0.20 5.00 5.00 5.00 0.01 / 2pi  0.1433 
0.71 0.30 1.10 0.60 0.20 5.00 5.00 5.00 0.01 / 2pi  1.1969 
0.71 0.30 1.10 0.22 0.50 5.00 5.00 5.00 0.01 / 2pi  1.2051 
0.71 0.30 1.10 0.22 0.20 10.00 5.00 5.00 0.01 / 2pi  2.9421 
0.71 0.30 1.10 0.22 0.20 5.00 10.00 5.00 0.01 / 2pi  0.9785 
0.71 0.30 1.10 0.22 0.20 5.00 5.00 6.00 0.01 / 2pi  0.8689 
0.71 0.30 1.10 0.22 0.20 5.00 5.00 5.00 0.02 / 6pi  0.8964 

 
      
Table 2: Values of   Nusselt number 

 ࢛ࡺ ࢚࢓ ࢽ ࢘ࡿ ࢉࡿ ࢙ ࣅ ࢘ࡼ
0.71 0.30 1.10 0.22 0.20 0.01 / 2pi  4.5119 
0.85 0.30 1.10 0.22 0.20 0.01 / 2pi  -16.4459 
0.71 0.50 1.10 0.22 0.20 0.01 / 2pi  7.9367 
0.71 0.30 1.20 0.22 0.20 0.01 / 2pi  11.0760 
0.71 0.30 1.10 0.60 0.20 0.01 / 2pi  4.5119 
0.71 0.30 1.10 0.22 0.20 0.02 / 6pi  4.3227 

 
Table 3: Values for Sherwood number 

 ࢎࡿ ࢚࢓ ࢽ ࡹ ࢘ࡿ ࢙ ࣅ ࢘ࡼ
0.71 0.30 1.10 0.20 5.00 0.01 / 2pi  0.8274 
0.85 0.30 1.10 0.20 5.00 0.01 / 2pi  1.8461 
0.71 0.50 1.10 0.20 5.00 0.01 / 2pi  0.6477 
0.71 0.30 1.20 0.20 5.00 0.01 / 2pi  0.5116 
0.71 0.30 1.10 0.20 5.00 0.01 / 2pi  0.4441 
0.71 0.30 1.10 0.50 5.00 0.01 / 2pi  0.5668 
0.71 0.30 1.10 0.20 5.00 0.02 / 6pi  0.8352 
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CONCLUSION 
We studied the governing equations for boundary layer 
fluid flow in a channel with heat source parameter and 
Soret effect. The governing equations were transformed 
into dimensionless form and perturbation technique was 
used to solve the problem. Analytical results were 
obtained using MATlab and presented graphically to 
illustrate the details of the heat source and Soret and 
the characteristics relationship with material 
parameters. From the investigation it was concluded 
that: 
i. The increase of variable parameters , , ,s and   

resulted to the increase in temperature and 
decrease with increasing Pr. 

ii. Concentration increases with increase in 
material parameters , , ,and mt Sr and 
decreased with Sc . 

iii. The velocity increased with increase in material 
parameters , , , , , , and  M Gc Gr s  and 
decrease with , and .Sc Pr Sr  

iv. The skin friction coefficient increases with 
increase in material parameters 

, , , , , and Pr Sc Sr Gc mt and decreased with 
increase in material parameters , , ,and s Gr M . 

v. Increasing effects of ,Pr decreased the Nusselt 
number, while increasing ,sand mt  increased 
the Nusselt number with appreciative results. 

vi. Sherwood number increased with the increase of 
material parameter Pr and inversely decreased 
with increase in , , ,s Sc Sr and mt . 

 
NOTATIONS 
A and B are  constant 

'C  species concentration in the fluid mol.dm3  
C      dimensionless concentration           

pC    specific heat at pressure J.kg-1. K-1  
D      mass diffusion coefficient m2.s-1     

cG      mass Grashof number 

rG      thermal Grashof number                 
g     accelerated due to gravity m.s-2 
K      thermal conductivity J.m-1. K-           
T      temperature of the fluid near the plate 
't      time s                                             

t      dimensionless time 
u      velocity of the fluid in the x-direction m.s-1 

ou   velocity of the plate m.s-1                      

 s     Heat source 

Sc   Schmidt number                                   
 Pr   Prandtl  number 
M  Hartmann number                                   
     Suction parameter 
U      dimensionless velocity 
x      spatial coordinate along the plate       
y     dimensionless coordinate axis normal to the plate 
      volumetric coefficient of thermal expansion K-1  
   volumetric coefficient of expansion with 
concentration K-1 
  density of the fluid kg.m-3                        
       dimensionless skin-friction 
       dimensionless temperature                 
 '

pC      specific heat at constant pressure 

g     acceleration due to gravity                         
'T      temperature of the fluid away from the plate 
'T      plate temperature                                

 ', 'u v    velocity component 
x ’, 'y  coordinate axes normal to the plate     
e        exponential 

p
x



  pressure term                                          

m      frequency oscillation 
      constant 
h       finite vertical plate. 
 
REFERENCES 
Anjalidevi, S.P. and Kandasami (2002). Effects of 

Chemical Reaction, Heat or and mass  Transfer 
for on Non-Linear MHD Laminar Boundary Layer 
Flow over a wedge with suction and injection. 
International Communication in Heat and Mass 
Transfer, 29:707-716. 

Alam, M.S., Rahman, M.M. and Samad, M.A. (2006). 
Duf0ur and Soret Effects on  Unsteady MHD 
Free Convection and Mass Transfer Flow Past a 
Vertical Porous Plate, n a Porous Medium. 
Nonlinear Analysis; Modeling and Control, 11(2): 
217–226. 

Alam, M.S. and Rahman, M.M. (2005). Dufour and 
Soret effects on MHD free convective heat and 
mass transfer flow past a vertical flat plate 
embedded in a porous medium. Journal Naval 
Architecture and Marine Engineering, 2(1): 55–65. 



Uwanta & Isah: Boundary Layer Fluid Flow in a Channel with Heat Source, Soret Effects and Slip Condition 

340 

Brady, J.F. and Acrious, A. (1981). Steady Flow in a 
Channel or tube with Accelerated surface velocity, 
an exact solution to the Nervier stokes Equation 
with reverse flow. Journal of fluid mechanics, 112: 
127–150. 

Ching-Yang, C. (2010). Soret and Dufour effects on 
free convection boundary layer over a  vertical 
cylinder in a saturated porous medium. 
International Communications in Heat  and mass 
Transfer, 27(7): 796-800.  

Cheng, W.T. and Lin, H.T. (2002). Non Similarity 
Solution and correlation of  Transient heat 
transfer in laminar boundary layer flow over a 
wedge. International Journal of Engineering 
Sciences, 40: 531–539. 

Er-Raki M., Mohammed H., Abdelkhalk A., Mamou, M. 
and Bounrich, M. (2010). Soret effects  on Double 
-Diffusion Boundary layer flows in a Vertical 
porous Cavity. Journal of Porous Media, 10: 783-
795. 

Makinde, O.D., and Olanrewaju, P.O. (2011). Unsteady 
mixed Convection with Soret and Dufour  effects 
past a Porous plate moving through a Binary 
mixture of  chemically reacting  fluid, Chemical 
engineering communication, 198(7): 920-938. 

Muhaimin, R., Hashim, A. and Khemis, B. (2009). On 
the effect of Chemical reaction, heat and mass 
transfer on nonlinear MHD Boundary Layer past a 
porous shrinking sheet with suction theories. 
Applied Mechanics, 36(2): 101-117. 

Makinde, O.D. and Aziz, A. (2011). Boundary layer flow 
of a nanofluid  past a stretching sheet with a 

convective boundary condition. International 
Journal of Thermal  sciences, 50: 1326-1332. 

Postelnicu, A. (2004). Influence of a magnetic field on 
heat and mass transfer by  natural  convection 
from vertical surfaces in porous media considering 
Soret and Dufour effects. International Journal of 
Heat and Mass Transfer 47: 1467-1472.  

Rafael, C. (2008). Effects of viscous dissipation and 
radiation on the thermal boundary layer over a 
nonlinearly stretching sheet. Physics Letters A.  
372(5): 631-636. 

Shanker B., Prabhakar B. R., and Anand J. R. (2010), 
Radiation and mass transfer effects  on MHD 
free convective fluid flow embedded in a porous 
medium with heat generation/absorption. Indian 
Journal of Pure and Applied Physics, 48: 157-65. 

Stanford, S., Sandile, S.M. and Precious S. (2010). The 
effect of thermal Radiation, Hall currents, Soret, 
and Dufour  on MHD flow by Mixed Convection 
over a Vertical Surface in Porous Media, Hindawi 
Publication Corporation: Mathematical  Problems 
in Engineering, ID627475: 20 pages, doi: 
10.1155/2010/627475. 

Sakiadis, B.C. (1961). Boundary Layer Behavior on 
Continuous Solid Surface: I,  Boundary–Layer 
Equation for the dimensional and axis symmetric 
flow. AICHE Journal, 7(1):  26–28. 

Vagravelu, K. and Hadjinicolaou (1999) Convective 
heat transfer in an electrically  conducting fluid at 
a stretching surface with uniform free Stream. 
International Journal  of Engineering Science, 35: 
1237–1244. 

 


