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ABSTRACT

This paper presents a fitted backward differentiation formula (BTBDF) whose coefficients are functions of a
fixed fitting frequency and step length especially designed for the numerical integration of first-order Initial
Value Problems (IVPs) with oscillatory results. The BTBDF is a product of three discrete formulas which are
obtained from a continuous second derivative trigonometrically fitted method (CSDTFM). The BTBDF is
applied in a block-wise form that makes it enjoys the advantages of the self-starting formula. The
convergence of the BTBDF is discussed and its superiority is demonstrated in some numerical experiments

to illustrate accuracy advantage.
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INTRODUCTION

Over the years there has been considerable
attention to numerically solving initial value
problems of the form 7’ = f(x, 1), 7(xy) = 7o
(1) whose solutions are known to oscillate or to
be periodic with known frequencies. Such
problems frequently arise in the areas such as
Quantum Mechanics, Ecology, Medical Sciences,
Theoretical Chemistry, Classical Mechanics,
Theoretical Physics and Oscillatory Motion in a
nonlinear force. Interestingly, several of these
problems may not be easily solved analytically
hence, the necessity for the construction of
numerical formulae to determine approximate
results.

Several numerical algorithms integrating exactly a
set of linearly independent non-polynomial
function for the solution of (1) or systems of (1)
have been proposed in many papers by several
authors  (see  trigonometric  polynomial
interpolation (Gautschi, 1961, Sanugi and Evans,
1989), mixed interpolation (De Meyer et al., 1990;
Vanthournout et al., 1990; Duxbury, 1999,
Coleman and Duxbury, 2000), exponential fitting
(Simos, 1998, 2002; Vaden Berghe et al., 1999;
Ixaru et al., 2002; Vanden Berghe and Van
Daele, 2007), functional fitting (Ozawa, 2001),

piecewise linearized methods (Ramos, 2006) and
trigonometric fitted based on multistep collocation
methods (Ngwane and Jator, 2012, 2013a,
2013b, 2014, 2015; Jator et al., 2013;0kunuga
and Abdulganiy, 2017; Abdulganiy et al,
2017,2018 and Abdulganiy 2018).

Attention in this study is paid to a basis other than
polynomial. One incentive for using a basis
function other than polynomial is the fact that as
every oscillation has to be followed when
integrating oscillatory IVP, then a large amount of
computer time is required and the rounding error
accumulates for small sizes. Methods based on
polynomial functions are not reliable in that case
(Duxbury, 1999).In the present study, the basis
function is the set
{1,x,x2,--+, x5 sin(wx), cos(wx)}. This is
motivated because of its simplicity to analyses
(Ngwane and Jator, 2015) and better
approximation for initial value problems with
oscillatory solution (Coleman and Duxbury,
2000). Other possible bases functions according
to Nguyen et al. (2007) include but not limited to
the following set of linearly independent functions

{sin(wx), cos(wx) , -+ sin(mwx), cos(mwx)} U

{x, - x"},
{sin(x), cos(x) --- sin(mx), cos(mx)},
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{sin(w,x), cos(w,x) -+ sin(w,x), cos(w,x)}
{sin(wx), cos(wx), x sin(wx), x cos(wx) ,}
’ -+ x™ sin(wx), x™ cos(wx)

fr o) e ()
) ...xmexp(i(l)x) .

The collocation methods for ordinary differential
equations are based on a simple idea to
determine a specific function which satisfies the
differential equation closely at specified set of
points. Collocation method is basically the
bedrock of continuous schemes. The advantages
of continuous linear multistep method over the
discrete method include better estimation of error,
provision of basic coefficients at different points,
provision of approximation at all interior points
(Awoyemi, 1999) and ability to generate infinite
number of schemes (Oluwatosin, 2013).The
utilization of multistep collocation approach for
the development of trigonometrically fitted

MATERIAL AND METHODS
Derivation of the BTFBDF

The exact solution T(x) is approximated by
seeking the solution 7(x, 1) of the form

5
(x,n) = Z aj x’ + ag sin(wx)

j=0
+ a, cos(wx) (2)

Whereaj are unknown coefficients and w = %

BTFBDF is developed by imposing the
accompanying condition

2

tem) = ) @G Ty +h ).

Jj=0 J=

where  a;(x,n), B;(x,n) and y,(x,n) are
continuous coefficients. It is assumed that

0 ( n+jr )
T(Xne o) = Tnajy - xaxﬂ77 ) -
2 .
fn+j and W = gn4jare the

methods have been explored by (Jator et al.,
2013) who proposed Numerov type block
methods,(Ngwane and Jator, 2012, 2013a,
2013b) who developed block hybrid method for
the integration of oscillatory problems. A family of
trigonometrically fitted Enright Second Derivative
methods for oscillatory IVP was proposed in
(Ngwane and Jator, 2015) which is a variant of
Backward Differentiation Formula whose main
discrete and additional discrete methods are
obtained from the same continuous method.
However, in the present research, while the main
discrete formula of the proposed variation of the
family of Block Backward Differentiation formula
is obtained from the continuous method at a
predetermined point, the additional discrete
methods are determined from the second
differentiation of the continuous form at
predetermined points.

T(xn+j' TI) = Tn+j 'j = 0' 112(3)

a(zxm) _ .
M L =hepi=012 @
32 (t(x,m) _ .

Ix2 X=X - gn+j ] = 3 (5)

Equations (3)-(5) lead to a system of 8 equations
which is solved simultaneously to obtain the
coefficients a;. The values of a;are then
substituted into (2) to obtain the continuous form
CSDTFM given by

Bi(x, 1) fasj + Ry (6, 1) Gnss (6)
0

numerical approximation to the exact solutions
T(xn1;) T (%), T (xns, ) respectively.

Differentiating (6) twice with respect to x to obtain
fori =1(1)2
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2 3

0%(t(x,n) 1 1IN0 — .

% = ﬁz a],l.(x’ 77) Tn+j + Ez Bj,l(x' 77) fn+j + V3,l(x’ 7'])gn+3 (7)
j=0

j=0
Evaluating (6) at x = x5 and (7) x = x,4;,j = 1(1)2 to obtain the block form given by
The3 =

ay(sinn,cosn)t, + a;(sinn,cosn)t,41 + a,(sinn,cosn)t,.5 + h(Bo(sinn,cosn)f, +
B1(sinn,cosn) feq + B2(sinn, cosn) frsz + B3fnsz) + h*y3(sinn,cosn)gpys

(8)
h*gns1 = @i (sinn, cos )Ty + @1 (sin7, cOSNTyes + @1 (sinn, cOSNTysz +
h_(,30,1(51n n,cosNfy + B11(sinn,cosn)fr1 + B21(sinn, cosn) friz +
ﬁ3,1(51n n,cos U)fn+3) + hzm(sin 17,€0SM) gn+3 9)

B2 Gusz = Toz(sinn, coS )T, + Wiz (sinn, c0S)Tyyy + Taz(sinn, COS Ty +
h(ﬁO,Z (Sin n,cos n)fn + 31,2 (Sin n,cos 7])fn+1 + ﬁ2,2 (Sin n,cos T])fn+2 +

B32(sinn, cosn)fnyz) + h*73,(sinn, cosn)gnss (10)
where (8) is the main method while (9) and (10) that may occur as n — 0, the equivalent power
are respectively the additional methods. series form of the coefficients is used and are

Each of the coefficients in equations (8) — (10) is given in the following equations

in trigonometric form. To avoid heavy cancellation

_16 243 , 3699 ., = 363170537
% =97 " 65863" T 25554844 ' 74438960636040
81 1116 27899 554382923
o =g n? - n* - n°+ -
97 65863 ~ 25554844  74438960636040
9 5, 731, 11629073
%2 =97 T 65863 T 25554844
_ 4, 607 ., 4140931 ., =~ 327534787 -
Bo=37%395178" T 75897886680 T 1855224794200592 " | (11)
54 162 8433 87904499
B1=c5— g3+ n*+ n°+ -
97 65863 " 351379105 ' 37219480318020
108 1521 , 727693 2779616309 _
B2 =57 ~131726" ~2811032840" ~ 446633763816240"
44 B2, 690799 ., 828548719
B =57+ 382277 t9287235835" T 430682557965660 "
6 79 35297 331089415
V3= ——5— n? — n* - o + -
97 65863 ~ 1149967980 ~ 401970387434616 y
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_ 16 + 243 4 3699 4y 363170537 P 3\
%01 = 65863" T 25554824 T 72438960636040 "
. 81 1116 ) 27899 4 554382923 6 4
%117 97 " 65863 ~ 25554844  74438960636040
___ 9, 731 , 11620073
%21 =97 T 65863" T 25554844 "
- 607 4140931 327534787
Bo1 =55+ n? n* n® +
’ 97 395178 75897886680 1855224794200592 L (12)
_ 54 162 8433 87904499
Pii=g57~ n* + n n°
’ 97 65863 351379105 37219480318020
108 1521 727693 2779616309
oy =57 = n® - nt - n® +
’ 97 131726 2811032840 446633763816240
_ 44- 82 2 4 690799 4y 828548719 64
Ba1=57% 38227 T 9487235835" T 230682557965660 "
6 79 ., 35297 , 331089415
Y31 = — 55— n-— n - /A
’ 97 65863 1149967980 401970387434616 J
o123 15731 . = 10738099 652016044423
02 =792 7790356 ' 13799615760  24118223246076960
472 17504 , 62634703 . 336054242081
12 =797 7592767 ~ 56923415010 ~ 9044333717278860
o Tl 239 216083 7550369107
22 =757 T 24444 T 670673520 ' 745924430291040
5 - 403 223163 , 333559213 ,_ 706456286911
02~ 2619 ' 32009418 T 1229545764216  75137541651239760 " 13y
250 11467 90205081 101911474339
Bi2= 7 " 790356" ‘1517955773360 T 4823644649215392"
306 10389 2610802 194738122177
B22="97 ~592767" ~w065958215" T 9044333717278860"
5 - 650 5655 ., 2859058127 2208615247183
3272619 ' 9145548 T 12295457642160 " " 279082297561747680
56 14396 , 474245, 70658059952
Y32 =373 53349037 2657370319 _ 20349750863877435 "

Equations (8)-(10) are the discrete methods
whose converted coefficients in power series
form are given by the equations (11)-(13),
respectively and are combined to form a block
method called the BTFBDF

Analysis of BTFBDF

Local Truncation Error of BTFBDF

Following Lambert, (1973), the local truncation
errors of BTFBDF are determined through the
series expansion of equations (8)-(10).Thus,
Local Truncation Error (LTE) of equations(8)-(10)
are obtained.

61h8
244440
17h8
54320
3h8
27160

(r® @) + 0?1©(x,)) + 0 (%)
(r® @) + 0?t©(x,)) + 0(h°)
(r® () + 0T O () ) + 0(h)

N(M)

LTE ::[

Following the definition of (Lambert, 1973) and
(Fatunla, 1988), BTFBDF is consistent if its order
is greater than one. We therefore remark that
BTFBDF is of algebraic order 7 and hence it is
consistent.



Nigerian Journal of Basic and Applied Science (June, 2021), 29(1): 01-12

Stability of BTFBDF

Following Akinfenwa et al. (2015), the BTFBDF
can be written as a matrix difference equation of
the form

ADT, = AOT, + hBWE, + hBOF,, ., + DMDG,, ., (15)

where Ty,11 = (Tns1 Tnazs ---rTn+k)T7 Tw = (Tn—ks1 o Tne1s Tn)T’Fw = (faur1 frsa ---rfn+k)T’

Fyi1 = (Fa—k+1s ---an—lifn+k)T; Gw+1 = (Gn+1 Gn+2s ---'gn+k)TandA(0),A(1),B(O)'B(l);D(l)are

k X k matrices.

For BTFBDF, we have the following 3 X 3 matrices

a, o, 0 0 0 a, P
AD — ZZ 0?2 ol'A@ —|0 0 Z,z 'BY =| B,
o a, 1 0 0 ¢ B

Zero Stability
According to Lambert (1973) and Fatunla (1988),
BTFBDF is zero stable if the roots of the first
characteristic equation have modulus less than or
equal to one and those of modulus one is simple.
In other words,

p(R) = det|[RAW — A®] = 0and |R;| <
1. Since |R| = (0,0,1), thus, BTFBDF is zero
stable.

Convergence of BTFBDF

The convergence of the BTFBDF is in the spirit of
(Jain and Aziz, 1983; Jator and Li, 2012; Jator et
al., 2013; Biala and Jator, 2017).

@, @, 0 000
P.=|@, a, O|R,=|0 0 0],
a a, 1 0 0O
%, 100

P.={0 0 a,|,P,=|0 1 0
00 g 00 1

Bos
Br.

B,

Bas 00 fu

0 0 y,

B, 'BP=|0 0 B, |'D?=|0 0 y,,

By 0 0 g 0 0 y,
Theorem

Let T be an approximate of the solution vector T
for the system obtained from the BTFBDF in
equations (8) - (10). If e, = |t(x;) — T,l,
where the analytic solution is differentiable on
[a, b] severally and if ||E|| = ||T — T||, then for
sufficiently small h, ||E|| = O(h”) which makes
BTFBDF a 7t order convergent method.

Proof
Let the matrices obtained from the TFBBDF be
defined as follows:

By By B 000
Q11:hE,2 E E’lezo 00
B B B 000
00 B, 0 0 7,
Q,=h{0 0 £,].Q,=h{0 0 7,
00 § 0 0 7
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. STRNE
In compact form, we write P = and
P21 P22

Qll Q12:|
Q:{ , where P and Q are
QZl Q22

respectively 2N x 2N matrices, P;; and Q;; are
N x N matrices, P;, and Q,, are respectively
null matrices while P,, is an Identity matrix.We
further define the following vectors:

T= (T(xl),T(xz), “'!T(xN))T)F
= (v fo v h91»"'»h91v)T,L(h)
=yl ., LT

where L(h) is the local truncation error.

(04 0h) oA oA

[ot, ™ oty [ot, ™ oty
Ju=|:+ = P L=l E

Ofv .. Ofn Ofv . Ofn

a1, Jdty dt, Jdty

Let M = —QJ be a 2N x 2N matrix, we have
(P + M)E = L(h), and for sufficiently small h,
P + M is a monotone matrix and thus invertible
(Jain and Aziz, 1983).

Therefore, (P + M) ™' =D =(d;;) =0 and
Y3, d;; =0(h™2) = E = D L(h).

fllENl = max;le;|, then|[E|l = ||D L(R)I| =
0(h™2) 0(h®) = 0(h7), which shows that
BTFBDF is convergent and the global error is of
order 0(h7)

Linear Stability and Region of Absolute
Stability of BTFBDF

Applying the block method to the test equations
7/ = At and " = A%t and letting z = Ah yields

W+1 E(Z)TW’

A _,p_,2p)
whereé(z) = YOre 0

The matrix &(z) for BTFBDF has eigenvalues
given by (@1, 92, 93) = (0,0, 93),

whereps(z,1) = p3E ";ls called the stability

function. According to Ndukum et al. (2016),

J21 =

The exact form and the approximate form of the
system formed by (8) -(10) are respectively given

by

PT — QF(T) + C + L(h) = 0(16)
PT —QF(T)+C=0(17)
Subtracting (16) from (17), we have
P(T—T)—QF(T—T) = L(h) (18)

leting E=T —T = (e, ey, ...,ey)T, and
using mean value theorem, we have
(P—QDE =L(h) (19)

where the Jacobian matrix and its entries
J11,J12, )21, ]2 are defined as follows:

(29 29:] (29 091
|or, ™ oty [or, ™ odty|

h| S ,]zz=h| P
Ognv . 99n 99v . 99n
aTl aTN aTl aTN

taking appropriate values of n in a large interval
implies that the BTFBDF can perform well on
problems with estimated frequencies. It is
observed that for BTFBDF, the values of
ne[m, 2m) are satisfactory. The stability region of
BTFBDF for n = musing the boundary locus
method is plotted and illustrated in Figure 1

UNSTABLE REGION

02 o4 06 08

Figure 1: Region of absolute stability of BTFBDF

Definition
A Numerical scheme is said to be A(a) stable,
with a € ( ) if its stability region contains the
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wedge {z: —a < (m—argz) <a} and it is
L(a) stable if in addition to being
A(a) —stable,lim,_,o, ¢, = 0. From Figure 1,
BTFBDF is A(«) stable with « = 74°. Also, since
lim,_ . @3 = 0, we therefore, conclude that
BTFBDF is L(«) stable.

RESULTS AND DISCUSSION

Implementation of Derived Methods

In this section, the BTFBDF is applied in a block
wise form without requiring starting values or/and
predictors. The application was guided by codes
written in Maple 2016.2 programming executed
on the Windows 10 working framework. It is
significant to mention that Maple 2016.2 can
symbolically compute derivatives, hence the
automatic generation of the entries of the
Jacobian Matrices which involves the partial
derivatives of both fand g. In particular, the
BTFBDF is applied to the considered oscillatory
problems on the range of interest as follows:

1. Select N, h = b;{—a and the number of

blocks n=%. For n=0andpu=

Othe values of (74,7, 13)7are
concurrently  determined over the
subinterval [x,, x5] as t, is known from
the IVP under consideration.

2. For n=3and u=1, the values of
(14,75, T5) Tare concurrently determined
over the subinterval [x3,x4] as 75 is
known from the preceding block.

3. The process continues for n =
6,-,N—3 and pu=2-Ito
determine the numerical result to the
given IVP  on the subinterval

. [x0, x3], [x3, x6], ** [Xn—3, XN].

Numerical Examples

This section discusses the accuracy of the
BTFBDF on a number of well-known oscillatory
IVPs. The fitted frequency for each problem for
the computation is obtained from the literature. In
the case of two or more frequencies, the

computational frequency is estimated as
described in Ramos and Vigo-Aguiar, (2010). The
absolute errors or maximum error of the
approximate solutions are computed and used as
basis for comparison of results with existing
methods in the reviewed literature. It is worth
noting that the methods in the current research
can be implemented for all values of N.
Nevertheless, for purpose of comparison, the N
values used in the existing literature were used
therein. For emphasis, except where specified, h,

the step size is defined as h = %

Example 1: The Cosine Problem
As our first example, the cosine problem given in
Layton and  Minion  (2005) ast’ =

—2msin 2x — i (t — cos 2mx),7(0) =

1,x €[0,10],e = 10~3 whose solution in
closed form is given by t(x) = cos2mx is
considered. It is noted in [31] that as € — 0 the
problem becomes increasingly stiff. While the

term —2msin(2mx) in the problem is treated
(t—cos2mx) .

explicitly,—T is treated implicitly. Table

1 illustrates the results of the BTFBDF in
comparison with the fourth order New Variable
Step Size Block Backward Differentiation Formula
(NVSBBDF) in Suleiman et al. (2013) and a fifth
order Variable Step size Superclass Block
Backward Differentiation Formula (VSSBBDF) in
Musa et al. (2013), respectively.

Table 1: Data of numerical results for the cosine
problem

Method h h
=102 =10*
Max Err Max Err

BTFBDF 2.00 1.00

x 1073% x 107%°
NVSBBDF 5.16 1.54

x 10795 x 1079
VSSBBDF 1.24 6.74

x 10795 x 10797

As expected, it is evident from Table 1 that the
BTFBDF is superior in terms of accuracy.
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Example 2: Stiff Oscillatory Problem

As our second test, the inhomogeneous stiff
oscillatory problem in Vigo-Aguiar and Ramos
(2007) given by 7' =cosx—107°%(t—
sinx),7(0) =0 whose analytic solution
is T(x) = sin xis examined. The performance of

the BTFBDF as it compared with the eighth order
Absolute stable Runge-Kutta Collocation method
(ARKC) in Vigo-Aguiar and Ramos (2007)

forh = zin,n = —1(1)3 in the interval [0, 10]
is established in Table 2.

Table 2: Data of numerical results for stiff oscillatory problem

n BTFBDF ARKC
NFE Max. Error NFE Max. Error
-1 8 1.5 x 10710 35 1.97 x 10~ 11
0 14 2.2x107%° 70 2.75x 10713
1 28 6.0x1073° 140 559x107%°
2 54 5.0 x 10730 280 3.33x 10716
3 108 3.0 x 1073 560 0
! O _1 1
Example 3: Linear Homogenous Autonomous v [1 0 ]’T(O) B [0] ,x €10,10]

Oscillatory problem
The following linear homogeneous autonomous
systems in Sanugi and Evans (1989) is studied
as our third example

Cos X]

whose solution in closed form is [
Sinx

The numerical result of BTFBDF is compared
with the trigonometric leap frog of Sanugi and
Evans (1989) and SDTFF of Okunuga and
Abdulganiy (2017) and the global error are as

obtained in Table 3.

Table 3: Data of numerical results for linear homogenous autonomous oscillatory problem

BTFBDF SDTFF Leap Frog

X Error 74 Error 7, Error 74 Error 7, Error 74 Error 7,
1.0 7.0x1073°% 50x1073% 819x107%* 527x107%* 92x1071% 440x107°
20 13x107%° 8.0x1073° 1.77x1072® 8.09x107%* 214x10"° 501x107°
30 1.0x1073% 25x107%° 4.14x107%* 289x107%® 269x10° 3.61x107°
40 26x107%° 1.8x107%° 295x107%% 255x107%% 248x10™° 1.12x107°
50 34x107%° 1.7x107%° 467x107%% 138x107%% 8.27x1071® 523x 10710
60 50x1073° 47x107%° 1.64x107%% 561x107%% 286x107° 2.09x107°
70 41x107%° 35x107%° 447x1072% 514x107%2% 244x107° 497x107°
80 58x107%° 20x107?° 771x107%® 113x107%® 1.65x1071° 277x107°
90 7.0x1073° 50x1073° 3.62x1072% 798x107%® 233x107° 3.09x107°
100 13x107%° 80x1073° 529x107%® 817x107%® 171x107° 1.95x107°

Example 4 75 = 207, — 20.257, + 0.2573; 7,(0) =1

Consider the following stiff system

11 = —207; — 0.257, — 19.7575 ; 7,(0)

=1

13 = 207, — 19.757, — 0.2575 ; 73(0)

=-1

with analytical solution given as
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1
+ e72%(cos 20t + sin 20¢t))

1
T, (t) — E(e—O.St
— e72%(cos 20t — sin 20¢t))

1
+ e72%(cos 20t — sin 20t))

This problem was considered in Akinfenwa et al.
(2015) using a family of Continuous Third
Derivative Block Methods (CTDBM) of order k +
3. BTFBDF is compared with CTDBM of order 8
end global absolute errors as presented in the
Table 4.

Table 4: Data of numerical results for continuous

third derivative block methods

t BTFBDF CTDBM
1'-1 1'-1
T2 T2
T3 T3
7.94 x 10722 1.57 x 10721
10  7.94 x 10722 1.57 x 10721
7.94 x 10722 1.57 x 10721
1.07 x 10723 2.12x 10723
20 1.07x1072% 2.12x 10723
1.07 x 10723 2.12x 10723
1.08 x 10725 2.14 x 10725
30  1.08x10725 2.14 x 10725
1.08 x 10725 2.14 x 10725

Generally speaking, a third derivative scheme of
higher order is expected to perform better than a
second derivative scheme of low order. However,
it is clearly seen from the Table 4 that BTFBDF of
order seven compete favourably with CTDBM of
eighth order.

Example 5: Highly Oscillatory Problem

Lastly, a highly oscillatory t"” = —100t +
99sinx,t(0) =17'(0) =11,x € [0, 2]
whose analytic solution is 7 = cos10x +
sin 10x + sin x studied in Sallam and Anwar
(2000) is investigated. The fitting frequency for
this problem is estimated as w = 10 (Ramos
and Vigo-Aguiar (2010). Sallam and Anwar,
(2000) obtained numerical results for this problem
using an order six Quintic C? —spline methods,
Jator, (2010) solved this problem with an order
seven Hybrid Linear Multistep Method (HLMM),
Akinfenwa, (2011) considered the problem for
order Seven Continuous Hybrid Linear Multistep
Method (CHLM) while Ramos et al. (2015) solved
the problem with optimized two-step hybrid block
method, all in the interval [0,21t]. Table 5 shows
the comparison of the numerical results of the
aforementioned methods with BTFBDF.

It can be established that for this example and
within the interval of integration that the fitted
methods perform better than the non-fitted
methods.

Table 5: Data of numerical results for highly oscillatory problem)

Methods h
2T 2T 2m
300 600 1200
BTFBDF 1.22 x 10724 9.80 x 1072 4,50 x 10~%7
Ramos et al.(2015) 3.58x 1079  1.07 x1071° 3.49x 10712
CHLM 1.97 x 10711 3.35x 10713 942x 10713
HLMN 4,65 x 10799 1.80x 10711 1.01 x 10712
Sallam and Anwar (2000) 9.40 x 107°°  1.40 x 1071° 3.80 x 10712
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CONCLUSION

A seventh order block backward differentiation
formula with trigonometric coefficients is studied
for the integration of first order IVPs with
oscillatory solution. The numerical formula is self-
starting and, in this way, does not suffer from the
shortcomings of needing predictors or/and
starting values. The numerical examples
investigated established the accuracy of the
method.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous
referees whose comments and suggestions
greatly improve the manuscript.

REFERENCES

Abdulganiy, R. I. (2018). Trigonometrically Fitted
Block Backward Differentiation Methods
for First Order Initial Value Problems with
Periodic Solution. Journal of Advances in
Mathematics and Computer Science,
28(5): 1-14.

Abdulganiy, R. I., Akinfenwa, O. A. & Okunuga,
S. A (2017). Maximal Order Block
Trigonometrically Fitted Scheme for the
Numerical Treatment of Second Order
Initial Value Problem with Oscillating
Solutions.  International ~ Journal  of
Mathematical Analysis and Optimization,
2017: 168-186.

Abdulganiy, R. I., Akinfenwa, O. A. & Okunuga,
S. A. (2018). Construction of L Stable
Second Derivative  Trigonometrically
Fitted Block Backward Differentiation
Formula for the Solution of Oscillatory
Initial Value Problems. African Journal of
Science, Technology, Innovation and
Development, 10(4): 411-419.

Akinfenwa, O. A., Jator, S. N., & Yao, N. (2011).
A Seventh-Order Hybrid Multistep
Integrator for Second Order Ordinary
Differential Equation. Far East Journal of
Mathematical Sciences, 56(1): 43-66.

Akinfenwa, O.A., Akinnukawe, B., & Mudasiru, S.
B. (2015). A family of Continuous Third
Derivative Block Methods for solving stiff

10

system of first order ordinary differential
equations. Journal of the Nigerian
Mathematical Society, 34:160-168.

Awoyemi, D.O. (1999). A class of continuous
methods for general second order initial
value problem in ordinary differential
equation.  International  Journal  of
Computer Mathematics, 72(1): 29-37.

Biala, T & Jator, S.N. (2017). A family of
boundary value methods for systems of
second-order boundary value problems.
International  Journal  Of  Differential
Equation, 2017:1-12.

Coleman, J.P. & Duxbury, S.C. (2000). Mixed
collocation methods fory" = f(x,y).
Journal of computational and Applied
Mathematics, 126(2000): 47-75.

De Meyer, H., Vanthournout, J. & Vanden
Berghe, G. (1990). On a new type of
mixed interpolation,  Journal  of
Computational and Applied Mathematics.
30: 55-69.

Duxbury, S.C. (1999). Mixed collocation methods
for y" = f(x,y). Durham theses,
Durham University.

Fatunla S.0O (1988). Numerical methods for initial
value problems in ordinary differential
equation. United Kingdom: Academic
Press Inc.

Gautschi, W. (1961). Numerical Integration of
Ordinary Differential Equations Based on
Trigonometric Polynomials, Numerische
Mathematik, 3: 381-397.

Ixaru, L. Gr., Vanden Berghe, G. & De Meyer, H.
(2002).  Frequency  evaluation in
exponential fitting multistep algorithms for
ODEs. Journal of Computational and
Applied Mathematics. 140:423-434.

Jain, MK. & Aziz, T. (1983). Cubic Spline
Solution of Two-Point Boundary Value
Problems ~ with  Significant  First
Derivatives.  Computer Methods in
Applied Mechanics and Engineering,
39(1983): 83-91.

Jator, S. N. (2010). Solving second order initial
value problems by a hybrid multistep
method without predictors.  Applied



Nigerian Journal of Basic and Applied Science (June, 2021), 29(1): 01-12

Mathematics and
277:4036-4046.

Jator, S. N., Swindell, S., and French, R. D.
(2013). Trigonmetrically Fitted Block
Numerov Type Method for y" =
f(x,y,y'"). Numer Algor, 62: 13-26.

Jator, S.N. & Li, J. (2012). An algorithm for
second order initial and boundary valu
problems with an automatic error
estimate based on a third derivative
method. Numer Algor, 59:, 333-346.

Jator, S.N., Nyonna, D.Y. & Kerr, A.D. (2013).
Stabilized Adams Type Method with a
Block Extension for the Valuation of
Option. Ninth MSU-UAB Conference on
Differential equations and Computational
Simulations, Texas State University-San
Marcos, 79-91.

Lambert J.D. (1973). Computational methods in
ordinary differential system, the initial
value problem. New York: John Wiley
and Sons.

Layton, A. T. & Minion, M. L. (2005). Implication
of the choice of quadrature nodes for
picard integral deffered corrections
methods  for  ordinary  differential
equations. BIT Numerical Mathematics,
24(2): 341-373.

Musa, H., Suleiman, M. B., Ismail, F., Senu, N. &
lbrahim, Z. B. (2013). An accurate block
solver for stiff initial value problems.
ISRN Applied Mathematics, 2013: 1-10.

Ndukum, P. L. Biala, T. A., Jator, S. N., &
Adeniyi, R. B. (2016). On a family of
trigonometrically fitted extended
backward differentiation formulas for stiff
and oscillatory initial value problems.
Numer  Algor, Numerical Algorithms
74(1), 267-287.

Nguyen, H.S., Sidje, R.B. & Cong, N.H. (2007).
Analysis of trigonometric implicit Runge-
Kutta methods. Journal of computational
and Applied Mathematics, 198(2007),
187:-207.

Ngwane, F. F. & Jator, S. N. (2013a). Solving
Oscillatory Problems Using a Block

Compultation,

11

Hybrid Trigonometrically Fitted Method
with Two Off-Step Points. Texas State

University. San Marcos.  Electronic
Journal of Differential Equation, 20:119-
132.

Ngwane, F. F. & Jator, S. N. (2014).
Trigonometrically-Fitted Second
Derivative ~ Method  for  Oscillatory

Problems. Springer Plus, 3:304.

Ngwane, F. F. & Jator, S. N. (2015). A Family of
Trigonometrically Fitted Enright Second
Derivative  Methods for  Stiff and
Oscillatory Initial Value problems. Journal
of Applied Mathematics. 2015, 1-17.

Ngwane, F.F. & Jator, S.N. (2012). Block Hybrid-
Second Derivative Method for Stiff
Systems. International Journal of Pure
and Applied Mathematics, 80(4): 543-
559.

Ngwane, F.F. & Jator, S.N. (2013b). Block hybrid
method using trigonometric basis for
initial problems with oscillating solutions.
Numerical Algorithm, 63: 713-725.

Okunuga, S. A. & Abdulganiy, R. I. (2017). L,
Stable Trigonometrically Fitted Block
Backward Differentiation Formula of
Adams Type for Autonomous Oscillatory
Problems. International ~ Journal  of
Applied  Physics and  Mathematics,
7(2:)128-133.

Oluwatosin, E.A. (2013). Derivation of two step
method for solving initial value problems
of Ordinary Differential  Equations.
Continental ~ Journal  of.  Education
Research, 6(1): 39-44.

Ozawa, K. (2001). A functional fitting Runge Kutta
Method  with  variable coefficients.
Japanese Journal of Industrial and
Applied Mathematics, 18(2001): 105-128.

Ramos, H. & Vigo-Aguiar, J. (2010). On the
frequency choice in trigonometrically
fitted methods. Applied Mathematics
Letters, 23(2010): 1378-1381.

Ramos, H., Kalogiratou, Z., Monovasilis, Th. &
Simos T. E. (2015). A Trigonometrically
fitted optimized two step hybrid block
method for solving initial value problems



Abdulganiy et al. Block Trigonometrically Fitted Backward Differentiation Formula for the Initial...

of the form y" = f(x,y,y") with
oscillatory solutions. AIP Conference
Proceedings, 1648, 810007 (2015).
Ramos, J. | (2006). Piecewise-linearized
methods for initial value problems with
oscillating solutions, Applied Mathematics
and Computation, 181(2006):123-146.
Sallam, S. & Anwar, M. N. (2000). Quintic
C? —spline integration methods for
solving second-order ordinary initial value
problems. Journal of Computational and
Applied Mathematics, 115(2000): 495-

502.

Sanugi, B. B. & Evans, D. J. (1989). The
Numerical ~ Solution of  Oscillatory
Problems. International ~ Journal  of

Computer Mathematics, 31: 237-255.
Simos, T. E. (1998). An Exponentially-Fitted

Runge-Kutta Method for the Numerical

Integration of Initial Value Problems with

Periodic or  Oscillating  Solutions.
Computer Physics Communications, 115:
1-8.

Simos, T. E. (2002). Exponentially-Fitted Runge-
Kutta-Nystrom Method for the Numerical
Solution of Initial Value-Problems with
Oscillating Solutions. Applied
Mathematics Letters, 15(2002): 217-225.

Suleiman, M. B., Musa, H., Ismail, F.& Senu, N.
(2013). A new variable step size block
backward differentiation formula for stiff
initial  value  problems. International
Journal of Computer Mathematics,
90(11), 2391-2408.

12

Vaden Berghe, G., De Meyer, H., Van Daele, M.
& Van Hecke, T. (1999). Exponentially-
fitted explicit Runge-Kutta methods.
Computer ~ Physics ~ Communication,
123(1999): 7-15.

Vanden Berghe G. & Van Daele, M. (2007).
Exponentially-fitted Numerov methods,
Computational and Applied Mathematics,

200, 140-153.
Vanthournout, J., Vaden Berghe, G. & De Meyer,
H. (1990). Families of backward

differentiation methods based in a new
type of mixed interpolation, Computers &
Mathematics with Applications,
20(11):19-30.

Vigo-Aguiar, J. & Ramos, H. (2007). A family of
A-stable Runge-Kutta collocation
methods for higher order for initial value
problems. IMA Journal of Numerical
Analysis, 27(4); 798-817.



