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ABSTRACT 
This paper presents a fitted backward differentiation formula (BTBDF) whose coefficients are functions of a 
fixed fitting frequency and step length especially designed for the numerical integration of first-order Initial 
Value Problems (IVPs) with oscillatory results. The BTBDF is a product of three discrete formulas which are 
obtained from a continuous second derivative trigonometrically fitted method (CSDTFM). The BTBDF is 
applied in a block-wise form that makes it enjoys the advantages of the self-starting formula. The 
convergence of the BTBDF is discussed and its superiority is demonstrated in some numerical experiments 
to illustrate accuracy advantage. 
Keywords: Backward Differentiation Formula, Collocation, Continuous Form, Convergence. 

 
INTRODUCTION 
Over the years there has been considerable 
attention to numerically solving initial value 

problems of the form     (   )  (  )     
(1) whose solutions are known to oscillate or to 
be periodic with known frequencies. Such 
problems frequently arise in the areas such as 
Quantum Mechanics, Ecology, Medical Sciences, 
Theoretical Chemistry, Classical Mechanics, 
Theoretical Physics and Oscillatory Motion in a 
nonlinear force. Interestingly, several of these 
problems may not be easily solved analytically 
hence, the necessity for the construction of 
numerical formulae to determine approximate 
results.  
 
Several numerical algorithms integrating exactly a 
set of linearly independent non-polynomial 
function for the solution of (1) or systems of (1) 
have been proposed in many papers by several 
authors (see trigonometric polynomial 
interpolation (Gautschi, 1961, Sanugi and Evans, 
1989), mixed interpolation (De Meyer et al., 1990; 
Vanthournout et al., 1990; Duxbury, 1999, 
Coleman and Duxbury, 2000), exponential fitting 
(Simos, 1998, 2002; Vaden Berghe et al., 1999; 
Ixaru et al., 2002; Vanden Berghe and Van 
Daele, 2007), functional fitting (Ozawa, 2001), 

piecewise linearized methods (Ramos, 2006) and 
trigonometric fitted based on multistep collocation 
methods (Ngwane and Jator, 2012, 2013a, 
2013b, 2014, 2015; Jator et al., 2013;Okunuga 
and Abdulganiy, 2017; Abdulganiy et al., 
2017,2018 and Abdulganiy 2018).  

Attention in this study is paid to a basis other than 
polynomial. One incentive for using a basis 
function other than polynomial is the fact that as 
every oscillation has to be followed when 
integrating oscillatory IVP, then a large amount of 
computer time is required and the rounding error 
accumulates for small sizes. Methods based on 
polynomial functions are not reliable in that case 
(Duxbury, 1999).In the present study, the basis 
function is the set 
*               (  )    (  )+. This is 
motivated because of its simplicity to analyses 
(Ngwane and Jator, 2015) and better 
approximation for initial value problems with 
oscillatory solution (Coleman and Duxbury, 
2000). Other possible bases functions according 
to Nguyen et al. (2007) include but not limited to 
the following set of linearly independent functions 

*   (  )    (  )      (   )    (   )+  
*     +,
*   ( )    ( )    (  )    (  )+,
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*   (   )    (   )    (   )    (   )+

,{
   (  )    (  )      (  )     (  )  

      (  )      (  )
} 

,{
         (   )      (   )

       (   )
}  

The collocation methods for ordinary differential 
equations are based on a simple idea to 
determine a specific function which satisfies the 
differential equation closely at specified set of 
points. Collocation method is basically the 
bedrock of continuous schemes. The advantages 
of continuous linear multistep method over the 
discrete method include better estimation of error, 
provision of basic coefficients at different points, 
provision of approximation at all interior points 
(Awoyemi, 1999) and ability to generate infinite 
number of schemes (Oluwatosin, 2013).The 
utilization of multistep collocation approach for 
the development of trigonometrically fitted  

methods have been explored by (Jator et al., 
2013) who proposed Numerov type block 
methods,(Ngwane and Jator, 2012, 2013a, 
2013b) who developed block hybrid method for 
the integration of oscillatory problems. A family of 
trigonometrically fitted Enright Second Derivative 
methods for oscillatory IVP was proposed in 
(Ngwane and Jator, 2015) which is a variant of 
Backward Differentiation Formula whose main 
discrete and additional discrete methods are 
obtained from the same continuous method. 
However, in the present research, while the main 
discrete formula of the proposed variation of the 
family of Block Backward Differentiation formula 
is obtained from the continuous method at a 
predetermined point, the additional discrete 
methods are determined from the second 
differentiation of the continuous form at 
predetermined points. 

MATERIAL AND METHODS 
Derivation of the BTFBDF 

The exact solution  ( ) is approximated by 
seeking the solution  (   ) of the form 

 (   )  ∑  

 

   

        (  )

      (  ) ( ) 

Where   are unknown coefficients and   
 

 
 

BTFBDF is developed by imposing the 
accompanying condition 

 (      )               ( ) 

 ( (   ))

  
|
      

               (4) 

  ( (   ))

   |
      

           (5) 

Equations (3)-(5) lead to a system of   equations 
which is solved simultaneously to obtain the 

coefficients   . The values of   are then 

substituted into (2) to obtain the continuous form 
CSDTFM given by  

 (   )  ∑  (   )

 

   

      ∑  (   )

 

   

         (   )     ( ) 

where   (   )   (   )       (   ) are 

continuous coefficients. It is assumed that 

 (      )       
 . (      )/

  
 

         
  . (      )/

        are the 

numerical approximation to the exact solutions 

 (    )   
 (    )   

  (    ) respectively. 

Differentiating (6) twice with respect to   to obtain 
for    ( )  
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  ( (   ))

   
 

 

  
∑    ̅̅ ̅̅ (   )

 

   

     
 

 
∑    

̅̅ ̅̅ (   )

 

   

         ̅̅ ̅̅ (   )     ( ) 

Evaluating (6) at        and (7)           ( )  to obtain the block form given by 

     
  (         )     (         )       (         )        (  (         )   

  (         )       (         )           )        (         )      
     (8) 

           ̅̅ ̅̅ ̅(         )       ̅̅ ̅̅ ̅(         )         ̅̅ ̅̅ ̅(         )     

    (    
̅̅ ̅̅ ̅(         )       

̅̅ ̅̅ ̅(         )         
̅̅ ̅̅ ̅(         )     

       
̅̅ ̅̅ ̅(         )    )        ̅̅ ̅̅ ̅(         )       (9) 

           ̅̅ ̅̅ ̅(         )       ̅̅ ̅̅ ̅(         )         ̅̅ ̅̅ ̅(         )     

    (    
̅̅ ̅̅ ̅(         )       

̅̅ ̅̅ ̅(         )         
̅̅ ̅̅ ̅(         )     

       
̅̅ ̅̅ ̅(         )    )        ̅̅ ̅̅ ̅(         )       (10) 

where (8) is the main method while (9) and (10) 
are respectively the additional methods. 

Each of the coefficients in equations (8) – (10) is 
in trigonometric form. To avoid heavy cancellation  

that may occur as    , the equivalent power 
series form of the coefficients is used and are 
given in the following equations 

 

 

   
  

  
 

   

     
   

    

        
   

         

              
    

   
  

  
 

    

     
   

     

        
   

         

              
    

   
 

  
   

   

     
   

        

        
         

   
 

  
 

   

      
   

       

           
   

         

                
    

   
  

  
 

   

     
   

    

         
   

        

              
    

   
   

  
 

    

      
   

      

          
   

          

               
    

   
  

  
 

  

     
   

      

          
   

         

               
    

    
 

  
 

  

     
   

     

          
   

         

               
    }

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 (  )  
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    ̅̅ ̅̅ ̅  
  

  
 

   

     
   

    

        
   

         

              
    

    ̅̅ ̅̅ ̅  
  

  
 

    

     
   

     

        
   

         

              
    

    ̅̅ ̅̅ ̅  
 

  
   

   

     
   

        

        
         

    
̅̅ ̅̅ ̅  
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  (  ) 

Equations (8)-(10) are the discrete methods 
whose converted coefficients in power series 
form are given by the equations (11)-(13), 
respectively and are combined to form a block 
method called the BTFBDF 

Analysis of BTFBDF 
Local Truncation Error of BTFBDF 
Following Lambert, (1973), the local truncation 
errors of BTFBDF are determined through the 
series expansion of equations (8)-(10).Thus, 
Local Truncation Error (LTE) of equations(8)-(10) 
are obtained. 

    

[
 
 
 
 

    

      
. ( )(  )     ( )(  )/   (  )

    

     
. ( )(  )     ( )(  )/   (  )

   

     
. ( )(  )     ( )(  )/   (  ) ]

 
 
 
 

 (14) 

Following the definition of (Lambert, 1973) and 
(Fatunla, 1988), BTFBDF is consistent if its order 
is greater than one. We therefore remark that 
BTFBDF is of algebraic order 7 and hence it is 
consistent. 
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Stability of BTFBDF 

Following Akinfenwa et al. (2015), the BTFBDF 
can be written as a matrix difference equation of 
the form 

 

 ( )      ( )     ( )     ( )      ( )     (  ) 

where      (                )
 ,    (                ) ,   (                )

 , 

     (                  )
       (                )

 and ( )  ( )  ( )  ( )  ( )are 
    matrices. 

For BTFBDF, we have the following     matrices 

1,1 2,1

(1)

1,2 2,2

1 2

0

0

1

A

 

 

 

 
 

  
 
  

,
0,1

(0)

0,2

0

0 0

0 0

0 0

A







 
 

  
 
  

,
1,1 2,1 3,1

(1)

1,2 2,2 3,2

1 2 3

B

  

  

  

 
 

  
 
  

,
0,1

(0)

0,2

0

0 0

0 0

0 0

B







 
 

  
 
  

,
3,1

(0)

3,2

3

0 0

0 0

0 0

D







 
 

  
 
  

 

Zero Stability 
According to Lambert (1973) and Fatunla (1988), 
BTFBDF is zero stable if the roots of the first 
characteristic equation have modulus less than or 
equal to one and those of modulus one is simple. 
In other words, 

 ( )     [  ( )   ( )]       |  |  

 . Since | |  (     ), thus, BTFBDF is zero 
stable. 

Convergence of BTFBDF 
The convergence of the BTFBDF is in the spirit of 
(Jain and Aziz, 1983; Jator and Li, 2012; Jator et 
al., 2013; Biala and Jator, 2017). 

Theorem 

Let  ̅ be an approximate of the solution vector   
for the system obtained from the BTFBDF in 

equations (8) - (10). If    | (  )    |, 
where the analytic solution is differentiable on 

,   - severally and if ‖ ‖  ‖ ̅   ‖, then for 

sufficiently small  , ‖ ‖   (  ) which makes 
BTFBDF a 7th order convergent method. 

Proof 
Let the matrices obtained from the TFBBDF be 
defined as follows: 

1,1 2,1

11 1,2 2,2

1 2

0

0

1

P

 

 

 

 
 

  
 
  

,
12

0 0 0

0 0 0

0 0 0

P

 
 


 
  

,

0,1

21 0,2

0

0 0

0 0

0 0

P







 
 

  
 
  

,
22

1 0 0

0 1 0

0 0 1

P

 
 


 
  

1,1 2,1 3,1

11 1,2 2,2 3,2

1 2 3

Q h

  

  

  

 
 

  
 
  

,
12

0 0 0

0 0 0

0 0 0

Q

 
 


 
  

0,1

21 0,2

0

0 0

0 0

0 0

Q h







 
 

  
 
  

,

3,1

22 3,2

3

0 0

0 0

0 0

Q h







 
 

  
 
  
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In compact form, we write 
11 12

21 22

P P
P

P P

 
  
 

 and 

11 12

21 22

Q Q
Q

Q Q

 
  
 

, where P and Q are 

respectively       matrices,     and     are 

    matrices,     and     are respectively 
null matrices while     is an Identity matrix.We 
further define the following vectors: 

  ( (  )  (  )    (  ))   
 (                    )   ( )
 (          )  

where  ( ) is the local truncation error. 

The exact form and the approximate form of the 
system formed by (8) -(10) are respectively given 
by 

     ( )     ( )    (16) 

  ̅    ( ̅)      (17) 

Subtracting (16) from (17), we have  

 ( ̅   )    ( ̅   )   ( ) (18) 

Letting    ̅    (          ) , and 
using mean value theorem, we have 

(    )   ( ) (19) 

where the Jacobian matrix and its entries 
                are defined as follows: 

    

[
 
 
 
 
   
   

 
   
   

   
   
   

 
   
   ]

 
 
 
 

      

[
 
 
 
 
   
   

 
   
   

   
   
   

 
   
   ]

 
 
 
 

      

[
 
 
 
 
   

   
 

   

   

   
   

   
 

   

   ]
 
 
 
 

       

[
 
 
 
 
   

   
 

   

   

   
   

   
 

   

   ]
 
 
 
 

 

Let       be a       matrix, we have 
(   )   ( ), and for sufficiently small  , 

    is a monotone matrix and thus invertible 
(Jain and Aziz, 1983). 

Therefore, (   )     (    )    and 

∑     
  
     (   )       ( ). 

If‖ ‖      |  |, then‖ ‖  ‖   ( )‖  
 (   )  (  )   (  ), which shows that 
BTFBDF is convergent and the global error is of 

order  (  ) 

Linear Stability and Region of Absolute 
Stability of BTFBDF 
Applying the block method to the test equations 

      and        and letting      yields 

      ( )  , 

where ( )  
 ( )   ( )    ( )

 ( )   ( ) . 

The matrix  ( ) for BTFBDF has eigenvalues 

given by (        )  (      ), 

where  (   )  
  (   )

  (   )
is called the stability 

function. According to Ndukum et al. (2016), 

taking appropriate values of   in a large interval 
implies that the BTFBDF can perform well on 
problems with estimated frequencies. It is 
observed that for BTFBDF, the values of 

  ,    ) are satisfactory. The stability region of 
BTFBDF for    using the boundary locus 
method is plotted and illustrated in Figure 1 

 

Figure 1: Region of absolute stability of BTFBDF 

Definition 
A Numerical scheme is said to be  ( ) stable, 

with   .  
 

 
/ if its stability region contains the 
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wedge *      (      )   + and it is 

 ( ) stable if in addition to being 
A( )  stable,          . From Figure 1, 

BTFBDF is  ( ) stable with      . Also, since 
          , we therefore, conclude that 
BTFBDF is  ( ) stable. 

 
RESULTS AND DISCUSSION 
Implementation of Derived Methods 
In this section, the BTFBDF is applied in a block 
wise form without requiring starting values or/and 
predictors. The application was guided by codes 
written in Maple 2016.2 programming executed 
on the Windows 10 working framework. It is 
significant to mention that Maple 2016.2 can 
symbolically compute derivatives, hence the 
automatic generation of the entries of the 
Jacobian Matrices which involves the partial 

derivatives of both   and    In particular, the 
BTFBDF is applied to the considered oscillatory 
problems on the range of interest as follows: 

1. Select N,   
   

 
 and the number of 

blocks   
 

 
. For           

  the values of (        )
 are 

concurrently determined over the 
subinterval ,     - as    is known from 
the IVP under consideration. 

2. For     and    , the values of 
(        )

 are concurrently determined 

over the subinterval ,     - as    is 
known from the preceding block. 

3. The process continues for   
        and         to 
determine the numerical result to the 
given IVP on the subinterval 
,     - ,     -  ,       -  

4.  

Numerical Examples 
This section discusses the accuracy of the 
BTFBDF on a number of well-known oscillatory 
IVPs. The fitted frequency for each problem for 
the computation is obtained from the literature. In 
the case of two or more frequencies, the 

computational frequency is estimated as 
described in Ramos and Vigo-Aguiar, (2010). The 
absolute errors or maximum error of the 
approximate solutions are computed and used as 
basis for comparison of results with existing 
methods in the reviewed literature. It is worth 
noting that the methods in the current research 
can be implemented for all values of N. 
Nevertheless, for purpose of comparison, the N 
values used in the existing literature were used 
therein. For emphasis, except where specified,  , 

the step size is defined as   
   

 
. 

Example 1: The Cosine Problem 
As our first example, the cosine problem given in 

Layton and Minion (2005) as    

          
 

 
(        )  ( )  

    ,    -        whose solution in 

closed form is given by  ( )         is 
considered. It is noted in [31] that as     the 
problem becomes increasingly stiff. While the 

term       (   ) in the problem is treated 

explicitly, 
(        )

 
 is treated implicitly. Table 

1 illustrates the results of the BTFBDF in 
comparison with the fourth order New Variable 
Step Size Block Backward Differentiation Formula 
(NVSBBDF) in Suleiman et al. (2013) and a fifth 
order Variable Step size Superclass Block 
Backward Differentiation Formula (VSSBBDF) in 
Musa et al. (2013), respectively. 

Table 1: Data of numerical results for the cosine 
problem  

Method  
      

 
      

Max Err Max Err 

BTFBDF     
       

    
       

NVSBBDF     
       

    
       

VSSBBDF     
       

    
       

As expected, it is evident from Table 1 that the 
BTFBDF is superior in terms of accuracy.  
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Example 2: Stiff Oscillatory Problem 
As our second test, the inhomogeneous stiff 
oscillatory problem in Vigo-Aguiar and Ramos 

(2007) given by             (  
    )  ( )    whose analytic solution 
is  ( )      is examined. The performance of 

the BTFBDF as it compared with the eighth order 
Absolute stable Runge-Kutta Collocation method 
(ARKC) in Vigo-Aguiar and Ramos (2007) 

for  
 

       ( )  in the interval ,    - 

is established in Table 2. 

 
Table 2: Data of numerical results for stiff oscillatory problem 

 

 

 

 

 
 
 
Example 3: Linear Homogenous Autonomous 
Oscillatory problem 
The following linear homogeneous autonomous 
systems in Sanugi and Evans (1989) is studied 
as our third example 

   0
   
  

1   ( )  0
 
 
1    ,    - 

whose solution in closed form is 0
    
    

1  

The numerical result of BTFBDF is compared 
with the trigonometric leap frog of Sanugi and 
Evans (1989) and SDTFF of Okunuga and 
Abdulganiy (2017) and the global error are as 
obtained in Table 3. 

 
Table 3: Data of numerical results for linear homogenous autonomous oscillatory problem 

 
Example 4 
Consider the following stiff system 

  
                           ( )

   

  
                          ( )    

  
                          ( )

    

with analytical solution given as 

  BTFBDF      
NFE Max. Error     Max.       

   8                         
  14                         
  28                          
  54                          
  108                 

  

 BTFBDF SDTFF Leap Frog 

Error    Error    Error    Error    Error    Error    

1.0                                                               
2.0                                                                
3.0                                                               
4.0                                                               
5.0                                                                 
6.0                                                               
7.0                                                               
8.0                                                                
9.0                                                               
10.0                                                               
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  ( )  
 

 
(      

      (             )) 

  ( )  
 

 
(      

      (             )) 

  ( )   
 

 
(      

      (             )) 

This problem was considered in Akinfenwa et al. 
(2015) using a family of Continuous Third 

Derivative Block Methods (CTDBM) of order   
 . BTFBDF is compared with CTDBM of order 8 
end global absolute errors as presented in the 
Table 4. 

Table 4: Data of numerical results for continuous 
third derivative block methods 

t BTFBDF CTDBM 

      
      
      

 
10 

                      

                      

                      
 

20 
                      

                      

                      
 

30 
                      

                      

                      

Generally speaking, a third derivative scheme of 
higher order is expected to perform better than a 
second derivative scheme of low order. However, 
it is clearly seen from the Table 4 that BTFBDF of 
order seven compete favourably with CTDBM of 
eighth order. 

 

Example 5: Highly Oscillatory Problem  
Lastly, a highly oscillatory           
        ( )      ( )       ,    - 
whose analytic solution is          
            studied in Sallam and Anwar 
(2000) is investigated. The fitting frequency for 

this problem is estimated as      (Ramos 
and Vigo-Aguiar (2010). Sallam and Anwar, 
(2000) obtained numerical results for this problem 

using an order six Quintic    spline methods, 
Jator, (2010) solved this problem with an order 
seven Hybrid Linear Multistep Method (HLMM), 
Akinfenwa, (2011) considered the problem for 
order Seven Continuous Hybrid Linear Multistep 
Method (CHLM) while Ramos et al. (2015) solved 
the problem with optimized two-step hybrid block 
method, all in the interval ,    -. Table 5 shows 
the comparison of the numerical results of the 
aforementioned methods with BTFBDF. 

It can be established that for this example and 
within the interval of integration that the fitted 
methods perform better than the non-fitted 
methods. 

 

 

Table 5: Data of numerical results for highly oscillatory problem) 

 Methods   

  

   
 

  

   
 

  

    
 

BTFBDF                                  
Ramos et al.(2015)                                  

CHLM                                  
HLMN                                  

Sallam and Anwar (2000)                                  
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CONCLUSION  
A seventh order block backward differentiation 
formula with trigonometric coefficients is studied 
for the integration of first order IVPs with 
oscillatory solution. The numerical formula is self-
starting and, in this way, does not suffer from the 
shortcomings of needing predictors or/and 
starting values. The numerical examples 
investigated established the accuracy of the 
method. 
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