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ABSTRACT 
Reliability analysis basically deals with the probability of survival or failure (death). This article aimed at 
discussing both reliability and inequality measures from the Weimal distribution. The work has derived and 
discussed theoretically, expressions for the survival and hazard function of the Weimal distribution. The 
ordinary and incomplete moments of the distribution were also obtained. Lastly, some inequality measures 
for the distribution were derived using the moments of the distribution. 
Keywords: Reliability; Inequality measures; Moments; survival function, hazard function, income 
distribution. 

 
INTRODUCTION 
In many applied sciences such as economics, 
engineering and finance, amongst others, 
modeling and analyzing lifetime data is crucial. 
Life time distributions are used to describe, 
statistically, the length of the life of a system. 
Reliability theory is based on the concept of 
understanding the reliability of systems and their 
individual components (Santiago, 2013). If 
inequality is assessed using a single inequality 
measure, a number of important dimensions of 
the change in inequality due to a certain policy 
will not be picked up (Gastwirth, 2016). Each 
inequality measure incorporates assumptions 
about the way in which income differences in 
different parts of the distribution are summarized. 
It is therefore desirable to calculate a wide range 
of inequality indexes incorporating different 
assumptions, but at the same time having a 
common theoretical foundation in order to 
thoroughly evaluate a redistribution policy 
(Gastwirth, 2016). 
 

Since its introduction, the Lorenz curve (Lorenz, 
1905) has been largely studied and has become 
a milestone of statistics. The methodological and 
applicative works on that subject are so 
numerous that it is very difficult to choose even a 
small selection. Aaberge (2000); Groves-Kirkby 
et al. (2009) and Jacobson et al. (2005) can be 
mentioned in order to highlight the importance of 
Lorenz curve regarding applications in different 
scientific fields. Nevertheless, several alternative 
tools for evaluating the inequality have been 
proposed in literature e.g, the inequality curve by 
Zenga (2007). The aim of this article is to derive 
reliability and inequality measures from the 
Weimal distribution.  
 

The Weimal Distribution 
According to Ieren and Yahaya (2017), the 
cumulative distribution function (cdf) and 
probability density function (pdf) of the Weimal 
distribution with scale parameter, α, shape 

parameter, β, location parameter, μєℝ and 
dispersion parameter σ>0 are given as: 
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Equations (1) and (2) can be written as a mixture of exponentiated density functions (Exponentiated 
Normal, EN) as represented by equation (3) and (4) below: 
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By differentiating equation (3) and changing indices, we can obtain the pdf of the Weimal distribution as: 
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Equation (3) and (4) are the cdf and pdf of the 
Weimal distribution defined as a linear 
combination of EN pdfs. So, several properties of 
the Weimal distribution can be obtained by 
following those properties of EN distribution. 
 
RELIABILITY ANALYSIS OF THE WEIMAL 
DISTRIBUTION 
The survival function 
The survival function, also known as the reliability 
function in engineering, is the characteristic of an 
explanatory variable that maps a set of events, 
usually associated with mortality or failure of 
some system onto time. It is the probability that 
the system will survive beyond a specified time. 
This function is defined as follows: 
 

   1S x F x    
 

where F(x) is the cdf of the required distribution. 
Using the cdf of the Weimal distribution above, 
the survival function of a Weimal distribution is 
given by: 
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A plot for the survival function of the Weimal 
distribution at different parameter values is as 
shown in Figure 1. From Figure 1, we can see 
that the value of the survival function equals one 
(1) at initial time or early age and it decreases as 
X increases and equals zero (0) as X becomes 
larger. 
 

 
Figure 1: Survival function of the Weimal distributionat different parameter values where 

.,,   sandmba  



Nigerian Journal of Basic and Applied Science (December, 2016), 24(2): 53-59 

55 
 

 
The Hazard Function 
The hazard function is defined as the probability 
per unit time that a case which has survived to 
the beginning of the respective interval will fail in 
that interval. Specifically, it is computed as the 
number of failures per unit time in the respective 
interval, divided by the average number of 
surviving cases at the mid-point of the interval. 
 
Mathematically, the hazard function for a random 
variable X is defined as: 
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Hence the hazard function associated with the 
Weimal distributionfrom Equation (1) and 
Equation(2) is  
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The following are some possible curves for the 
hazard rate at various values of the model 
parameters 

 
Figure 2: Hazard function of theWeimal distributionat different parameter values where

.,,   sandmba  
From Figure 2, we can see that the value of the 
hazard function increases when X increases. It 
gets higher as the value of X increases. This 
means that the Weimal distribution would be 
appropriate in modeling time or age-dependent 
events, where risk or hazard increases with time 
or age. Many examples are found in products 
that fail as a result of the age of those 
components. 
 

MOMENTS AND INEQUALITY MEASURES 
In this section, we present moments and 
inequality measures for the Weimal distribution.  
 
 
 

MOMENTS 
Ordinary or non-central Moments are used to 
study some of the most important features and 
characteristics of a random variable such as 
mean (central tendency measure), variance 
(dispersion measure), skewness (Sk) and 
kurtosis (Ku). 
 

Let nXXX ,...,, 21  denote a random sample 

from the standard Weimal distribution which is 
obtained from equation (2) for μ=0 and σ=1, that 
is X~WN(α,β,0,1). 
 
The nth raw or non-central moments of X can be 
obtained as: 
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Now, substituting for  ( ) and  ( ) in equation (8), using binomial expansionand simplifying, we have: 
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Where I(n,p) represents the (n,p)th probability weighted moment (PWM) for any n and p positive  
 
integers of the standard normal distribution and is found  as follows: 
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Now, according to Nadarajah (2008),  
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where (12) is the Lauricella function of type A (Exton, 1978). 
Using these definitions in (11) and (12) we can express (10) as: 
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for p+n is even. 
Combining (9) and (13), we can express the nth 
moment of the standard Weimal distribution in 
terms of the Lauricella function of type A (Exton, 

1978) demonstrated by Nadarajah (2008), 
Nadarajah and Kotz (2006), Pescim et al. (2015), 
Nadarajah (2005), Lima et al. (2015), e.t.c as 
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Incomplete moments: We also derive an expression for the nth incomplete moment of X for the Weimal 
distribution as given below: 
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Note that we can write  ( ) using power series as: 
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Using the identity given by Gradshteyn and Ryzhik (2007) for power series raised to a positive integer i, we 
have: 
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Where the coefficient      (for i=1,2,….) are easily obtained from the recurrence equation as: 
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Hence, using the expressions in (16) and (17), it implies that: 
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where the coefficients        can be determined 

from the recurrence equation (18). Thus using 
(19) and simplifying the integral, it follows from 

(15) that the nth incomplete moment of X can be 
obtained as: 
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Elementary integration and algebra shows that: 
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Where  (   )  ∫         

 
   denotes the complementary incomplete gamma function. 

 
INEQUALITY MEASURES 
Lorenz and Bonferroni curves are income 
inequality measures that are widely useful and 
applicable to some other areas including 
reliability, demography, medicineand insurance 
(see, Bonferroni, 1930). Also Zenga curve 

introduced by Zenga (2007) is another widely 
used inequality measure. In this section, we have 
derived the Lorenz, Bonferroni and Zenga curves 
for the Weimal distribution. The Lorenz, 
Bonferroni and Zenga curves are defined, 
respectively, by the following expressions: 
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Zenga curve, 
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upper means. Using these results for the Weimal distribution, we obtain the defined curves as follows: 
 
Lorenz curve for Weimal distribution is obtained as; 
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Bonferroni curve for Weimal distribution is obtained as: 
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Zenga curve for the Weimal distribution is obtained as: 
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CONCLUSION 
In this paper, we propose reliability and inequality 
measures widely used in Biology, engineering 
and economics respectively from the newly 
proposed Weimal distribution. This study has 
been done theoretically for both reliability and 
inequality measures. We have successfully 
derived explicit functions or expressions for the 
survival and hazard function of the Weimal 

distribution which are intensively useful in 
reliability theory. We further developed graphical 
descriptions of these functions to showcase their 
practical applications and we discovered after 
studying the plots for the survival and hazard 
functions that the Weimal distribution would be 
appropriate in modeling or analyzing time or age-
dependent events (random variables), where 
probability of survival decreases as time 
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increases while that of hazard or failure rate 
increases as time or age grows or increases. We 
have also presented the nth raw or general 
moments and the nth incomplete moments of the 
Weimal density function which are useful for 
studying the shape characteristic of distributions 
of random variables and also for calculation of 
some inequality measures. We also used the 
derived moments to obtain mathematically some 
popular inequality measures for the Weimal 
distribution including; Lorenz, Bonferroni and 
Zenga curves which are generally used for 
income distribution in the field of Economics. 
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