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Abstract
Objective
To investigate the impact of  two reconstruction techniques, Filtered Back Projection (FBP) and Clear View (CV) iterative algorithm, 
on the image quality of  low-dose thin-slice chest CT. 
Methods
A retrospective study of  42 patients undergoing low-dose chest CT at Mzuzu Central Hospital from Feb-Apr 2024 used automatic 
tube current modulation at 120 kV. Raw data were reconstructed with FBP, 20% CV, 40% CV, 60% CV, and 80% CV, with 1 mm 
slice thickness and 0.625 mm spacing. Image noise, Signal-to-Noise Ratio (SNR), and Contrast-to-Noise Ratio (CNR) were measured, 
and image quality was rated on a 5-point scale for lung and mediastinal windows. Qualitative and quantitative parameters of  the two 
different reconstruction algorithms in the five groups were comparatively analyzed.
Results 
(1) Objective evaluation showed noise decreased in lung parenchyma, aorta, and erector spinae muscle with increasing CV weight. 
Mean noise reductions in lung parenchyma were 23.34% and 27.69% in 60% CV and 80% CV (P < 0.05). Aorta noise decreased 
by 23.43%, 37.16%, and 46.18% in 40% CV, 60% CV, and 80% CV (P < 0.05, P < 0.001, P < 0.001). Erector spinae muscle noise 
decreased by 35.91% and 44.78% in 60% CV and 80% CV (P < 0.05, P < 0.001). SNR and CNR were higher in CV groups than 
FBP. Among them, the differences in SNR between the 60% CV and 80% CV groups and the FBP group were statistically significant 
(P < 0.05). (2) Subjective scores for all groups were > 3, meeting diagnostic standards, with 60% CV yielding the highest lung and 
mediastinal window image quality (P < 0.05).
Conclusion
Compared to FBP, CV iterative reconstruction reduces noise and improves chest CT image quality under low-dose conditions as the 
weight increases, with 60% CV showing optimal performance.
Keywords: Iterative reconstruction algorithm; Low-dose; Chest diseases; Computed Tomography; Radiation dose

Introduction
In recent years, the widespread availability of  CT equipment, 
coupled with the high resolution and sensitivity of  Multi-
Slice Spiral Computed Tomography (MSCT) to detect subtle 
lesions, has significantly expanded its use in the diagnosis of  
chest diseases1-3. However, there is growing public concern 
about the radiation exposure and associated carcinogenic 
risks posed by CT scans, as CT contributes significantly 
to patient radiation exposure in diagnostic radiology4. 
According to the United Nations Scientific Committee on 
the Effects of  Atomic Radiation (UNSCEAR), in countries 
with Healthcare Level I, CT accounts for only 6% of  all 
diagnostic medical X-ray examinations but contributes to 
41% of  the total population’s radiation dose4.
Optimizing CT scanning protocols to minimize radiation 
dose without compromising diagnostic accuracy has become 
a focal point of  research. While adjusting scanning parameters 
like reducing tube voltage, tube current, and increasing pitch 

can lower radiation exposure, these measures often come 
at the cost of  image quality due to limitations inherent in 
traditional Filtered Back Projection (FBP) reconstruction 
techniques9-11. In contrast, the emerging iterative 
reconstruction techniques for CT images have demonstrated 
significant reductions in image noise, enhancements in 
Contrast to Noise Ratio (CNR), and overall image quality 
compared to conventional FBP algorithms12-14. This study 
aims to compare the objective metrics (image noise, Signal-
to-Noise Ratio [SNR], and CNR) and subjective assessments 
(image quality scores for mediastinal and lung windows) of  
low-dose thin-slice (1 mm) chest CT images reconstructed 
using FBP and Clear View algorithms. We seek to explore 
the impact of  these two reconstruction techniques on the 
quality of  chest CT images.
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Methods
General Information
This retrospective study included 42 patients (23 males 
and 19 females) who underwent low-dose chest CT scans 
at Mzuzu Central Hospital radiology department from 
February to April 2024. The patients’ ages ranged from 
18 to 66 years with an average age of  (42.44 ± 5.79) years. 
Inclusion criteria were age ≥ 18 years, Body Mass Index 
(BMI) between 18 and 25 kg/m2, including patients 
undergoing follow-up after breast cancer surgery, those with 
suspicious lesions detected on chest radiographs, and those 
with symptoms such as cough or chest pain requiring chest 
CT scans. Exclusion criteria included unclear images due to 
improper scanning techniques and images with artefacts. 
This study was approved by Mzuzu University Research 
Ethics Committee (MZUNIREC) (Approval Number: 
MZUNIREC/DOR/24/153). Patient informed consent 
was waived due to retrospective nature of  the study. 

Examination Method 
All patients underwent full-lung CT scans using a NeuViz 
16 Essence CT scanner while holding their breath. The 
patients were positioned supine with arms raised and head 
first. The scanning range extended from the thoracic inlet to 
the level of  the diaphragm. The low-dose scanning protocol 
employed automatic tube current modulation (ATCM) 
with a tube voltage of  120 kV. Other parameters included a 
detector collimation width of  16 × 1.25 mm, a matrix size 
of  512 × 512, a rotation time of  0.5 s/r, a pitch of  1.5, 
and a scan slice thickness and interval of  5mm. Raw data 
were reconstructed using FBP and Clear View algorithms 
at 20%, 40%, 60%, and 80% strengths, resulting into five 
sets of  thin-slice images with a slice thickness of  1mm and 
an interval of  0.625 mm. These image sets were labeled 
as FBP, 20% CV, 40% CV, 60% CV, and 80% CV groups, 
respectively. Lung window settings were WW 1200 HU and 
WL -600 HU, while mediastinal window settings were WW 
350 HU and WL 45 HU.

Image Analysis 
All images were imported into the post-processing 
workstation AVW for objective and subjective evaluation, 
and radiation doses were recorded.
Subjective Evaluation: Two experienced CT diagnosticians 
performed blind subjective scoring of  image quality using a 5 
- point scale. Consensus opinions were used for comparison. 
The 5 - point scale for evaluating image quality in lung and 
mediastinal windows was as follows15: 5 - Excellent anatomic 
structure and detail clarity, negligible noise, sharp edges, no 
waxy appearance; 4 - Good anatomic structure and detail 
clarity, slight noise, slightly reduced edge sharpness; 3 - Most 
anatomic structures are clear, some waxy appearance, locally 
noticeable but acceptable noise, lower edge sharpness; 2 - 
Blurred anatomic structure and details, noticeable noise, low 
edge sharpness, strong waxy appearance; 1 - Unrecognizable 
anatomic structure, extremely noticeable noise, poor edge 
sharpness, severe waxy appearance. Images scoring ≥ 3 were 
considered clinically diagnostic.
Objective Evaluation: The objective evaluation was 
conducted by an experienced chest radiologist. During the 
reconstruction of  the lung window, the region of  interest 
(ROI) was placed in the avascular portion of  the upper lobe 
of  the left lung. For the mediastinal window reconstruction, 

the ROI was placed within the aorta at the level of  the aortic 
arch and within the right paravertebral muscle at the same 
level. The corresponding CT values and standard deviations 
(SD) were obtained. The ROI area ranged from 30 to 100 
mm2 and was placed in a region of  uniform density. A copy-
and-paste method was used during measurement to maintain 
consistent ROI sizes across different reconstructed images. 
Measurements were repeated three times, and the average 
values were taken. Using the SD as the noise value, the SNR 
and CNR were calculated for each ROI in the five image 
groups: SNR = CT value / SD, CNR = (CT value of  vessel 
- CT value of  muscle) / SD of  muscle.

Radiation Dose
The volumetric CT dose index (CTDIvol) and dose length 
product (DLP) were automatically generated by the machine 
after completion of  the scan. The effective dose (ED) 
was calculated using the formula: ED = DLP × k (0.014 
mSv·mGy-1·cm-1).

Statistical Analysis
Statistical analysis was performed using SPSS 22.0 software. 
Continuous variables with normal distribution were 
expressed as mean ± standard deviation  
Single-factor analysis of  variance was used to compare 
the SNR and CNR of  the five image groups, and pairwise 
comparisons were conducted using the LSD-t test. Subjective 
scores among groups were compared using the Kruskal-
Wallis H test and pairwise comparisons. The Kappa test was 
used to analyze the consistency of  subjective scores between 
the two radiologists: a Kappa value of  0 to 0.4 indicated 
poor consistency, 0.4 to 0.6 indicated moderate consistency, 
and 0.6 to 1.0 indicated good consistency. A P-value of  less 
than 0.05 was considered statistically significant.

Results
Subjective Evaluation
The two radiologists demonstrated good consistency in 
evaluating the images, with Kappa values of  0.816 and 
0.827 for the lung window and mediastinal window image 
quality scores, respectively. The subjective scores for all five 
image groups using the FBP and Clear View reconstruction 
algorithms were above 3, meeting the diagnostic 
requirements. The lung window image quality score for the 
60% CV group was higher than the other four groups, with 
statistically significant differences compared to the FBP 
and 20% CV groups (both P < 0.01), but no significant 
differences compared to the 40% CV and 80% CV groups. 
The mediastinal window image quality of  the 60% CV group 
was the highest, with statistically significant differences 
compared to the FBP, 20% CV, and 80% CV groups (all P 
< 0.05), but no significant difference compared to the 40% 
CV group (P > 0.05). The subjective image quality scores 
for both the lung window and mediastinal window of  the 
four Clear View iterative reconstruction groups were higher 
than those of  the FBP group, with only the 20% CV group 
showing no statistically significant difference from the FBP 
group (P > 0.05). The subjective image quality scores for the 
five groups are presented in Table 1.

Objective Evaluation
Comparison of CT Values Among Groups 
At low dose levels, with the increase in the weight of  CV 
iterative reconstruction, there were no statistically significant 
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differences in CT values among the lung parenchyma, aorta, 
and paraspinal muscles (P > 0.05), as shown in Table 2.

Noise Comparison 
Compared with FBP, the noise in the lung parenchyma, 
aorta, and paraspinal muscles gradually decreased with the 
increase in the weight coefficient of  Clear View iterative 
reconstruction. Specifically, the average noise in the lung 
parenchyma decreased by 23.34% and 27.69% in the 60% 
CV and 80% CV groups, respectively (both P < 0.05). The 
average noise in the aorta decreased by 23.43%, 37.16%, and 
46.18% in the 40% CV, 60% CV, and 80% CV groups; (P < 
0.05, P < 0.001, P < 0.001) respectively. The average noise 
in the paraspinal muscles decreased by 35.91% and 44.78% 
in the 60% CV and 80% CV groups; (P < 0.05, P < 0.001) 
respectively. 
The SNR and CNR values of  the 20% CV, 40% CV, 60% 
CV, and 80% CV groups were all higher than those of  the 
FBP group. In particular, the differences in SNR between the 
60% CV and 80% CV groups and the FBP group in the lung 
parenchyma, aorta, and paraspinal muscles were statistically 
significant (all P < 0.05). The results of  the objective image 
evaluation are presented in Table 3.

Radiation Dose
The average ED in this study was (2.96 ± 0.71) mSv with 
a CTDIvol of  5.76 ± 1.12 mGy and a DLP of  (211.48 ± 
50.64) mGy·cm.
Five sets of  reconstructed images were obtained from 42 
patients using two different reconstruction algorithms. 
Subjective image quality assessment was conducted by 
comparing images on the same axial plane, with consistent 
window width and window level settings. Among them, 
the 60% CV group exhibited the highest image quality in 
both lung and mediastinal windows (Figure 1D; I), with 
excellent display of  anatomical and lesion structures (Figure 
1D; 2D). Figure 1 presents a case of  a patient with a nodule 
in the upper lobe of  the right lung. Thin-slice axial images 
with a slice thickness of  1 mm and an interslice gap of  

Table 1: Comparison of SNR, CNR, CTDIvol, DLP, and ED between Conventional Dose Group and Low Dose Group 

Group n SNR CNR CTDIvol DLP ED
Conventional Dose 
Group 43 6.58 ± 1.70 175.96 ± 26.06 9.95 ± 0 372.84 ± 25.52 5.22 ± 0.37

Low Dose Group 42 4.17 ± 1.02 141.23 ± 19.04 5.76 ± 1.12 211.48 ± 50.64 2.96 ± 0.71
P < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 2: Comparison of Subjective Image Scoring between Conventional Dose Group and Low Dose Group [n (%)]

Evaluation Content Conventional Dose Group (n 
= 43)

Low Dose Group (n = 
42)

Subjective Background Noise 
Mild Noise 2 (4.7) 3 (7.1)
Moderate Noise 41 (95.3) 39 (92.9)
Severe Noise 0 (0.0) 0 (0.0)
Overall Image Quality
Very Good Image Quality, Structures Very Clear (5 points) 6 (14.0) 2 (4.8)
Good Image Quality, Structures Clear (4 points) 35 (81.4) 37 (88.1)
Mild Blurring of Structures, No Limitation in Diagnosis (3 points) 2 (4.7) 3 (7.1)
Moderate Blurring of Structures, Mild Limitation in Diagnosis (2 points) 0 (0.0) 0 (0.0)
Severe Blurring of Structures, Cannot Diagnose (1 point) 0 (0.0) 0 (0.0)

0.625 mm were obtained from the original data using two 
reconstruction algorithms. When observing small nodules 
in the lung fields, the 60% CV algorithm demonstrated 
clearer nodule morphology and edge contours compared 
to FBP, particularly in terms of  shallow lobulation features. 
Regarding the noise values in the aortic arch in Figure 1, the 
ranking is as follows: Figure 1J < 1I < 1H < 1G < 1F. The 
CV 80% reconstruction algorithm yielded the lowest image 
noise. Clear view thin-slice images provided superior lesion 
detail compared to FBP images, significantly enhancing 
image quality (Figure 2).

Discussion
With the continuous development of  medical technology, 
CT has played a significant role in clinical practice particularly 
in the differential diagnosis of  pathological changes in the 
lungs. However, an increase in radiation intensity comes with 
radiation-related carcinogenicity to patients. A key topic of  
interest in radiology is finding the optimal balance between 
radiation dose and diagnostic image quality, aiming to obtain 
diagnostically satisfactory images with the lowest possible 
radiation dose16,17. The use and research of  low-dose CT 
technology should always adhere to As Low As Reasonably 
Achievable (ALARA) principle, which aims to minimize the 
examination dose for patients while ensuring good CT image 
quality that meets the needs of  clinical diagnosis18. Current 
methods to reduce radiation dose include decreasing tube 
current, reducing tube voltage, increasing pitch, reducing 
scan time, and increasing image noise.
Reducing the CT scan dose inevitably leads to increased image 
noise, which is a major factor in evaluating image quality19. 
Previous studies have shown that image reconstruction 
techniques can effectively reduce image noise and improve 
image contrast20. Currently, there are two main types of  CT 
image reconstruction algorithms used in clinical practice: 
analytic reconstruction (AR) and iterative reconstruction 
(IR)9,11. Among AR, FBP is the most representative and 
widely used commercially, offering high resolution and fast 
imaging speed21. Therefore, FBP reconstructed images are 
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that of  the FBP group, the 20% CV group, and the 80% 
CV group, but there was no statistically significant difference 
compared with the 40% CV group. By comparing the ability 
of  different reconstruction algorithms to improve image 
quality through subjective indicators, the results showed that 
the subjective image quality trends of  the four groups of  
lung window and mediastinal window images reconstructed 
by CV iterative reconstruction exhibited a parabolic shape 
change, but the scores were all higher than those of  the FBP 
group. Among them, 60% CV reconstruction was the best, 
while 80% CV reconstruction had a slightly lower subjective 
score due to poor image hierarchy and the appearance of  
wax-like artifacts.

Conclusion
In summary, this study compared FBP and Clear View 
reconstruction algorithms under low-dose scanning 
conditions through subjective and objective indicators. The 
results showed that CV iterative reconstruction techniques 
with different weights can reduce noise and improve 
image quality to varying degrees. In particular, 60% CV 
reconstruction achieves the best balance in reducing noise, 
improving SNR, CNR, and subjective image quality in 
chest CT images, and can be recommended as the optimal 
reconstruction parameter choice for low-dose chest CT. 
Overall, the combination of  CV iterative reconstruction 
technique and low-dose chest CT has important clinical value, 
as it can further ensure CT image quality while reducing the 
radiation dose of  CT scanning.
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