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Identifying ribonucleotide reductase subunit genes 
as potential lung adenocarcinomas biomarkers using 
integrated bioinformatics analysis

ORIGINAL RESEARCH

Abstract
Introduction 
Dysregulation of  ribonucleotide reductase (RR) subunit genes (RRM1, RRM2 and RRM2B) expression is reported to be involved in the 
occurrence of  various human malignancies. However, the prognostic value of  RR subunit genes expression in lung adenocarcinoma 
(LUAD) patients remains controversial. 
Objective 
This study aims to analyze the expression profiles, prognostic values, and immune infiltrating associations of  RR subunit genes in 
LUAD to explore whether RR subunit gene expression has value in the prognosis of  patients with lung adenocarcinoma (LUAD).
Methodology 
We used multiple search engines to access multiple online bioinformatics databases, including Oncomine, TIMER, GEPIA, Kaplan–
Meier Plotter, PrognoScan, the Human Protein Atlas, MD Anderson Cancer Center, UCSC Xena, cBioProtal, TCGA, GEO, DAVID, 
and STRING databases.
Results 
The study found that RRM1 and RRM2 might be an attractive target for treating LUAD, while RRM2B were down-expressed 
in LUAD (P < 0.05). The study also found that high RRM1 or RRM2 expression, or low RRM2B expression suggested poor 
prognosis of  LUAD patients in both TCGA and GEO databases (P < 0.05). Additionally, our results indicated that RR subunit 
genes expressions have different characteristics with immune infiltrating, RRM2B had a slight but significant positive correlation 
with almost every infiltrating immune cells except CD4+ T cells (all P < 0.05). Furthermore, by co-expression gene network analysis 
of  RR subunit genes, we found that five new hub genes (PLK1, AURKA, CDCA8, TTK and CDC45) were significantly positively 
correlated with RRM1 and RRM2 expression whereas were negatively correlated with RRM2B expression, and these five hub genes 
were identified to be related with a poor prognosis in LUAD patients (P < 0.05). 
Conclusion 
The study findings demonstrate that RR subunit genes may be a prognostic marker and therapeutic target for LUAD patients.
Keywords: bioinformatics analysis; biomarkers; ribonucleotide reductase subunit genes; lung adenocarcinoma

Introduction
Lung cancer is the leading cause of  cancer morbidity and 
mortality all over the world, which is classified into different 
histologic subtypes, including lung adenocarcinoma (LUAD), 
lung squamous carcinoma (LUSC), and large cell carcinoma 
(commonly referred as non–small cell lung cancer, NSCLC) 
and small cell lung cancer (SCLC)1-3. LUAD is the most 
common type of  NSCLC, which exhibits distinct genetic 
drivers and divergent prognostic profiles compared to other 
types of  lung cancer. In the past two decades, comprehensive 
molecular characterization of  lung cancer has expanded our 
understanding of  the cellular origins and molecular pathways 
affected in each of  these sub-types. Many of  these genetic 
alterations represent potential therapeutic targets for which 
drugs are constantly under development or have been used 
in clinical practice4-6. Therefore, further research on the 
pathogenesis, development and prognosis of  LUAD will 

help to discover new targets and therapeutic drugs.
Ribonucleotide reductase (RR) has been identified as 
an important anticancer target and its inhibitors, alone 
or combined with other anticancer drugs, have been 
successfully used to treat multiple solid and hematological 
malignancies7-10. In fact, RR subunit genes have three types, 
including RRM1, RRM2 and RRM2B (also called p53R2), 
they are located in three different chromosomes and their 
expressions are varied and diverse in different types of  
cancers and their histologic variants11. Mammalian RR is a 
heterotetramer consisting of  two large RRM1 subunits and 
two small RRM2 (RRM2 or RRM2B) subunits. In most 
cell types, expression of  RRM1 is constant throughout all 
phases of  cell cycle, while RRM2 expression is low in G1 
phase, induced during G1/S transition, and degraded in 
G2/M and in G14 phase of  the next cell cycle12-14. Although 
both RRM2 and RRM2B are highly homologous, the basal 
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RRM2B expression is low under unstressed condition, and 
is profoundly induced by stress such as DNA damage or 
oxidative stress15,16. Consistent with the modes of  regulation, 
RRM1/RRM2 complex controls progression of  cells from 
G1 to S phase, whereas RRM1/RRM2B complex regulates 
DNA repair17,18. In this study, we analyzed multiple publicly 
available databases for the expression profiles of  RR subunit 
genes and their correlations with survival information of  
LUAD patients. Similarly, we performed a gene co-expression 
network analysis to further define possible roles and explore 
the underlying mechanisms of  the RR subunit genes and 
their co-expression networks in LUAD, which may promote 
precisive RR-targeting treatment for patients with LUAD in 
the future.

Methods 
Oncomine database analysis
The expression level of  RR subunit genes in various types 
of  cancers were identified in the Oncomine database (https: 
//www. oncomine.org/resource/login.html). The threshold 
was determined according to the following values: P-value 
of  0.001, fold change of  1.5, gene ranking of  all, and data 
type of  mRNA19.

TIMER database analysis
The database Tumor Immune Estimation Resource 
(TIMER, https://cistrome.shinyapps.io/timer/) includes 
more than 10,897 samples across 32 cancer types from The 
Cancer Genome Atlas (TCGA). The database was used to 
explore the mRNA transcriptional level of  RR subunit genes 
in multiple cancer types including LUAD. Based on TIMER, 
we also evaluated the association between RR subunit genes 
and the abundance of  6 types of  infiltrating immune cells (B 
cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, 
and dendritic cells) in LUAD patients, P-value Significant 
Codes: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05 ≤ < 0.120. 

Gene correlation analysis in GEPIA
GEPIA (29) is an interactive web that includes 9,736 tumors 
and 8,587 normal samples from TCGA and the GTEx 
projects, which analyses the RNA sequencing expression21. 
GEPIA was used to further analyze the expression and of  
RR subunit genes and partially interested co-expression genes 
in LUAD. Expression analysis of  these genes performed by 
one-way ANOVA, and the filter criteria were as follows: FC 
> 1.4, P value < 0.05, and match TCGA normal data.

RR subunit genes and survival outcomes in public 
databases 
To investigate the prognostic role of  RR subunit genes 
mRNA in LUAD, the Kaplan-Meier plotter22 (http:// www.
kmplot.com; P-value < 0.05, FDR < 0.05), PrognoScan 
database23 (http://dna00.bio.kyutech. ac.jp/PrognoScan/; 
the threshold was adjusted to a Cox P-value < 0.05), and the 
Human Protein Atlas database24 (http://www.proteinatlas.
org; P-value < 0.05) were used to determine the prognostic 
significance.

Analysis of tumor microenvironment and survival 
outcomes in LUAD 
To assess the tumor microenvironment and survival 
outcomes in TCGA of  LUAD patients, the stromal score, 
immune score, and ESTIMATE score of  LUAD dataset 
generated using the ESTIMATE algorithm was downloaded 
from https://bioinformatics.mdanderson.org/estimate. 

Meanwhile, clinical data of  LUAD were also downloaded 
from UCSC Xena (https://xenabrowser.net/). After 
matching sample data, the Kaplan-Meier plots were further 
constructed to illuminate correlations between high and low 
levels of  infiltration score and the overall survival (OS) of  
LUAD patients. The statistical significance of  the correlation 
was tested by the T test. A P-value < 0.05 was set as the 
cutoff.

Screening of co-expression genes with RR subunit 
genes expression in LUAD 
In order to further analyze the potential mechanism of  
the influence of  RR subunit genes on LUAD, the co-
expression genes of  RR subunit genes in TCGA of  LUAD 
transcriptome data were screened by cBioProtal data analysis 
platform (http://www.cbioportal.org). 

Functional and pathway enrichment analysis
The Database for Annotation, Visualization and Integrated 
Discovery (DAVID, http://david.ncifcrf.gov/) is an 
important program for the comprehensive gene function 
analysis, which aids the researchers to understand the 
biological significance of  abundant genes25. Gene ontology 
(GO) analysis and Kyoto Encyclopedia of  Genes and Genome 
(KEGG) pathway enrichment analysis was performed for 
the obtained co-expression genes of  RR subunit genes. A 
result with a P < 0.05 was considered statistically significant.

PPI network construction and module selection
Protein-protein interaction (PPI) analysis of  co-expression 
genes of  RR subunit genes was performed using an online 
software, The Search Tool for the Retrieval of  Interacting 
Genes (STRING, https://string-db.org/)26. PPI network 
was visualized using Cytoscape (version 3.7.0)27, and the 
modules of  the PPI network were further screened by 
cytoHubba to select the hub related genes.

Statistical analysis
Survival curves were produced by the PrognoScan and 
Kaplan-Meier plots. The results generated in Oncomine 
are displayed with P-values, fold changes, and ranks. The 
results of  Kaplan-Meier plots, PrognoScan, and GEPIA 
are displayed with HR and P or Cox P-values from a log-
rank test. The correlation of  gene expression was evaluated 
by Spearman’s correlation and statistical significance, and 
the strength of  the correlation was determined using the 
following guide for the absolute value: 0.00–0.19 “very 
weak,” 0.20–0.39 “weak,” 0.40–0.59 “moderate,” 0.60–0.79 
“strong,” 0.80–1.0 “very strong.” P-values < 0.05 were 
considered statistically significant.

Results
The mRNA expression levels of RR subunit genes
The Oncomine database analysis revealed that RRM1 and 
RRM2 mRNA expression of  lung cancer increased in 9 
data sets and 11 data sets compared to the normal tissues, 
respectively. However, we found decreased in 4 data sets of  
RRM2B in lung cancer compared to normal tissues (Fig. 
1a). Higher RRM1 and RRM2 expression was more likely 
to appear in multiple malignant neoplasms, such as bladder, 
brain and central nervous system (CNS), cervical, colorectal, 
esophageal, head and neck, and liver cancers in some data 
sets, while lower RRM2B expression was been found in 
esophageal, lymphoma as well as lung cancer. In addition, 
we also investigated RR subunit genes expression using the 
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RNA sequencing data of  multiple malignancies in TCGA. 
As shown in Fig. 1b, RRM1, RRM2 and RRM2B expression 
were significantly higher in cholangiocarcinoma (CHOL), 
colon adenocarcinoma (COAD), head and neck squamous 
cell carcinoma (HNSC), liver hepatocellular carcinoma 
(LIHC) and stomach adenocarcinoma (STAD) compared 
with adjacent normal tissues. However, higher RRM1 and 
RRM2 expression has been found in LUAD, LUSC and 
uterine corpus endometrial carcinoma (UCEC), while lower 
RRM2B expression was shown in these cancers. Considering 
that LUAD is the most common type of  lung cancer, we 
selected LUAD for further analysis and verification. As 
expecting, RRM1 and RRM2 expression was significantly 
elevated in LUAD by GEPIA. In contrast, the RRM2B gene 
showed a significantly lower expression in LUAD (Fig. 2a, b 
and c).

RR subunit genes mRNA levels predicts prognosis 
in LUAD
As shown in Fig. 3a and 3b, we found that RRM1 and RRM2 
expression was associated with a poorer prognosis in LUAD 
patients in the Kaplan-Meier plotter database (RRM1, OS 
HR (95% CI) = 2.18 (1.7-2.8), P = 2.5E-10; FP HR (95% CI) 
= 1.68 (1.23-2.31), P = 0.0011; RRM2, OS HR (95% CI) = 
1.96 (1.54-2.5), P = 2.6E-08; FP HR (95% CI) = 2.59 (1.86-
3.61), P = 5.6E-09). However, low RRM2B expression could 
be a risk factor for a poor prognosis in LUAD patients (OS 
HR (95% CI) = 0.42 (0.32-0.54), P = 6.1E-12; FP HR (95% 
CI) = 0.58 (0.42-0.8), P = 0.00093, Fig. 3c). 
In addition, we further used the Human Protein Atlas 
database, the RNA-sequencing data of  which form TCGA 
databases, to analyze and verify the prognostic significance 
of  RR subunit genes. The results were shown in Fig. 3d-
3f  (RRM1, 5-year survival high 35%, 5-year survival low 
47%, P = 0.00089; RRM2, 5-year survival high 31%, 5-year 
survival low 49%, P = 0.0000016; RRM2B, 5-year survival 
high 50%, 5-year survival low 36%, P = 0.00054). Above all, 
these results suggest that high RRM1 and RRM2 expression 
or low RRM2B expression could be a risk factor for poor 
prognosis in LUAD patients.
Finally, the impact of  RR subunit genes on survival rates 
was also evaluated utilizing the PrognoScan, which is mainly 
based on GEO databases (Table 1). For RRM1, two cohorts 
(GSE13213, GSE13210) included 177 samples and 204 
samples of  LUAD and showed that high RRM1 expression 
was marginally associated with poorer prognosis (OS HR = 
1.83, 95% CI = 1.11 to 3.02, Cox P = 0.017; RFS HR = 
4.86, 95%CI = 2.17 to 10.89, Cox P = 0.0001; RFS HR = 
4.24, 95%CI = 1.85 to 9.72, Cox P = 0.0006; OS HR = 7.69, 
95% CI = 2.71 to 21.82, Cox P = 0.0001). For RRM2, three 
cohorts (jacob-00182-MSK, GSE13213 and GSE13210) 
included 104, 177 and 204 samples of  LUAD and showed 
that high RRM2 expression was also significantly associated 
with poorer prognosis (OS HR = 2.28, 95% CI = 1.44 to 
3.60, Cox P = 0.0004; OS HR = 1.97, 95% CI = 1.47 to 
2.63, Cox P = 4.70E-06; OS HR = 1.82, 95% CI = 1.40 to 
2.36, Cox P = 8.11E-06; OS HR = 1.97, 95% CI = 1.36 to 
2.86, Cox P = 0.00035; RFS HR=1.92, 95%CI=1.47 to 2.50, 
Cox P =1.94E-06). In contrast, high RRM2B expression was 
associated with a favorable prognosis (OS HR = 0.24, 95% 
CI = 0.10 to 0.56, Cox P = 0.001; RFS HR = 0.19, 95%CI = 
0.10 to 0.37, Cox P = 1.56E-06). 

Tumor microenvironment and survival outcomes 
in LUAD patients 
To explore the correlation between tumor microenvironment 
and overall survival of  LUAD patients, we first utilized the 
stromal score, immune score, and ESTIMATE score of  
LUAD from online software ESTIMATE of  MD Aderson 
Cancer Center, which is a tool for predicting tumor purity, and 
the presence of  infiltrating stromal/immune cells in tumor 
tissues using gene expression data based on TCGA datasets. 
As shown in Fig. 4a, the immune and ESTIMATE score was 
significantly increased in TCGA of  LUAD patients (P < 
0.0001), while the stromal score didn’t be found noticeable 
changes. Meanwhile, clinical data of  LUAD (641 patients, 13 
of  which had no survival data) were also downloaded from 
UCSC Xena. To determine the potentially clinical value of  
the immune score and the stromal score for LUAD patients, 
the Kaplan–Meier survival analysis was performed. Based 
on the median of  immune score and stromal score, LUAD 
samples were divided into two groups, the high group (score 
≥ median) and low group (score < median). We did not find 
significant differences of  overall survival between high and 
low stromal score groups (Fig. 4b, P = 0.0646). In contrast, 
our results showed that patients in the high immune score 
and ESTIMATE score group had a significantly longer 
overall survival compared to patients in the low score group 
(Fig. 4c and 4d, P = 0.0114 and 0.007, respectively). These 
results suggested that the immune components in tumor 
microenvironment were more suitable for indicating the 
prognosis of  LUAD patients.

Correlation analysis of RR subunit genes expression, 
6 types of infiltrating immune cells and LUAD 
survival
To further determine whether the RR subunit genes involved 
in immune infiltration in LUAD patients, we analyzed the 
correlation between RR subunit genes expression and 6 
types of  infiltrating immune cells (B cells, CD8+ T cells, 
CD4+ T cells, macrophages, neutrophils, and dendritic 
cells). RRM1, RRM2 and RRM2B gene expression had no 
significant correlations with tumor purity in LUAD (P = 
2.34E-01, P = 8.72E-01, and P = 9.57E-01, respectively). 
Interestingly, RRM1 expression level had significant positive 
correlations with infiltrating levels of  CD8+ T cells (r = 
0.15, P = 8.66E-04), neutrophils (r = 0.17, P = 1.71E-04) 
and macrophages (r = 0.123, P = 6.33e-03) in LUAD (Fig. 
5a). For RRM2, we found that there had significant negative 
correlations with infiltrating levels of  B cells (r = -0.205, P 
= 5.74E-06) and CD4+ T cells (r = 0.117, P = 1.03E-02), 
but had significant positive correlations with neutrophils (r 
= 0.144, P = 1.56E-03) (Fig. 5b). Importantly, RRM2B had 
a slight but significant positive correlation with almost every 
infiltrating immune cells except CD4+ T cells, (B cells, r = 
0.167, P = 2.33E-04, CD8+ T cells, r = 0.218, P = 1.17E-
06, macrophages, r = 0.227, P = 4.21E-07, neutrophils, r = 
0.11, P = 1.53E-02, and dendritic cells, r = 0.234, P = 1.67E-
07, respectively). These results suggested that RR subunit 
genes plays a specific role in immune infiltration in LUAD. 
Since the tumor purity in RR subunit genes of  LUAD were 
not significant, the correlations between RR subunit genes 
expression and the 6 types of  infiltrating immune cells needs 
further study to confirm these results. 
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Fig 1 Ribonucleotide reductase (RR) subunit genes expression levels in different types of human cancers. (a) The significantly different 
levels of RRM1, RRM2, and RRM2B in data sets of different cancers compared with normal tissues in the Oncomine database. Red 
signifies the gene overexpression in the analyses, blue represents the gene underexpression. Intensity of color signifies the best rank of 
gene in those analyses. (b) Human RRM1, RRM2, and RRM2B expression levels in different tumor types from The Cancer Genome 
Atlas (TCGA) database were determined by database Tumor Immune Estimation Resource (TIMER) (0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 
0.05 ≤. < 0.1).

Fig 2 The mRNA expression of ribonucleotide reductase (RR) subunit genes, RRM1 (a), RRM2 (b), and RRM2B (c) between tumor 
and non-tumor samples in lung adenocarcinomas (LUAD) patients in the Gene Expression Profiling Interactive Analysis (GEPIA) 
database (* P < 0.05).

Fig 3 Kaplan-Meier survival curves compare the high and low expression of ribonucleotide reductase (RR) subunit genes in lung 
adenocarcinomas (LUAD). In the Kaplan-Meier plotter database, (a) high RRM1 expression was correlated with a worse overall 
survival (OS) and progression-free survival (PF). (b) High RRM2 expression was also correlated with a worse OS and PF. (c) High 
RRM2B expression was correlated with better OS and PF in LUAD patient. In TCGA data, high RRM1 (d) and RRM2 (E) expression 
were also correlated with worse OS, while high RRM2B was correlated with better OS (F).
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Fig 4 Tumor microenvironment and survival condition of lung adenocarcinomas (LUAD) patients. (a) The stromal score, immune score, 
and ESTIMATE scores of LUAD patients. (b) Stromal score was not associated with outcome of LUAD (P = 0.0646). (c–d) Both immune 
score and ESTIMATE scores were positively associated with LUAD patients (P = 0.0114 and 0.007, respectively).

Fig 5 Correlation analysis between ribonucleotide reductase (RR) subunit genes and immune infiltration levels. The correlations between 
(a) RRM1, (b) RRM2, (c) RRM2B and tumor purity and infiltration levels of six types of infiltrating immune cells (B cells, CD4+ T cells, 
CD8+ T cells, neutrophils, macrophages, and dendritic cells) were analyzed respectively by TIMER in LUAD.

Fig 6 Ribonucleotide reductase (RR) subunit genes expression (a) and infiltrating immune cells stats (b) with LUAD patient’s prognosis
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Fig 7 The co-expression genes network of ribonucleotide reductase (RR) subunit genes in lung adenocarcinomas (LUAD) based on 
The Cancer Genome Atlas (TCGA) data. Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis of RRM1 (a), RRM2 (b) and RRM2B (c) co-expression network. Hub genes of RRM1 (d), RRM2 (e) 
and RRM2B (f) co-expression network, respectively.

Fig 8 Correlation analysis of ribonucleotide reductase (RR) subunit genes and top five hub genes (PLK1, AURKA, CDCA8, TTK and 
CDC45) in co-expression genes network. RRM1 (a), RRM2 (b) and RRM2B (c), respectively.

Fig 9 The mRNA expression of PLK1 (a), AURKA (b), CDCA8 (c), TTK (d) and CDC45 (e) between tumor and non-tumor samples 
in LUAD patients. * P < 0.05. The Kaplan-Meier survival curves comparing the high and low expression of PLK1 (f), AURKA (g), 
CDCA8 (h), TTK (i) and CDC45 (j) in LUAD patients.
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Table 1 Survival analysis of ribonucleotide reductase (RR) subunit genes in lung adenocarcinomas (LUAD) patients

Gene Dataset Endpoint Number

In (HR-
high / HR-
low) Cox P-value In (HR)

HR [95% CI-
low CI-up]

RRM1
GSE13213

Overall 
Survival 117 1.00857 0.0172905 0.605508

1.83 [1.11 - 
3.02]

GSE31210
Relapse Free 
Survival 204 1.17718 0.000120899 1.58127

4.86 [2.17 - 
10.89]

GSE31210
Relapse Free 
Survival 204 0.948709 0.000623419 1.44564

4.24 [1.85 - 
9.72]

GSE31210
Overall 
Survival 204 1.65171 0.00012536 2.04017

7.69 [2.71 - 
21.82]

RRM2 jacob-00182-
MSK

Overall 
Survival 104 1.20921 0.000422838 0.823733

2.28 [1.44 - 
3.60]

GSE13213
Overall 
Survival 117 1.26224 4.70E-06 0.677312

1.97 [1.47 - 
2.63]

GSE13213
Overall 
Survival 117 1.17854 8.11E-06 0.597736

1.82 [1.40 - 
2.36]

GSE31210
Overall 
Survival 204 1.85906 0.000352093 0.678209

1.97 [1.36 - 
2.86]

GSE31210
Relapse Free 
Survival 204 1.53064 1.94E-06 0.650149

1.92 [1.47 - 
2.50]

RRM2B
GSE31210

Overall 
Survival 204 -1.37967 0.00116781 -1.44298

0.24 [0.10 - 
0.56]

GSE31210
Relapse Free 
Survival 204 -1.65533 1.56E-06 -1.66774

0.19 [0.10 - 
0.37]

Considering that the purity of  cancer or different infiltrating 
immune cells stats may also influence the prognostic analysis, 
we further evaluated RR subunit genes expression and 
infiltrating immune cells stats for LUAD patient’s prognosis 
after adjustment by tumor purity from TIMER28. As shown 
in Fig. 6a, high RRM1 and RRM2 expression was significantly 
associated with poor prognosis in LUAD patients (P = 0.008 
and 0.00017, respectively), while high RRM2B expression 
was significantly associated with a favorable prognosis (P 
= 0.0205). These results were consistent with the above 
prognostic analysis. Similarly, we also found that higher 
infiltrating levels of  B cell or dendritic cells were associated 
with increased survival in LUAD patients (P = 0.001868947 
and 0.025205621, respectively) (Fig. 6b).

Screening and analysis of co-expression genes with 
RR subunit genes in LUAD
In order to further analyze the potential mechanism of  the 
influence of  RR subunit genes on LUAD, the co-expression 
genes of  RR subunit genes in TCGA LUAD transcriptome 
data were screened by cBioProtal data analysis platform. 
When absolute value of  Spearman score was more than 
0.3, we found that 1955, 3670 and 1337 co-expression 
genes with RRM1, RRM2 and RRM2B, respectively. The 
top 10 co-expression genes of  RRM1, RRM2 and RRM2B 
were presented in Table 2. As shown in Fig. 7a, b and c, 
GO analysis and KEGG pathway enrichment analysis were 
performed for the obtained top 500 co-expression genes 
with RR subunit genes. The top terms of  biological process 
(BP) included cell cycle, cell cycle process, mitotic cell 
cycle, mitotic cell cycle process and cell division. Molecular 
function (MF) indicated enrichment predominantly involved 
in ATP binding, catalytic activity and drug binding. As for cell 
component (CC), these genes showed significant enrichment 
in chromosome and chromosomal part. Additionally, KEGG 

pathway analysis revealed that these genes were significantly 
enriched in the cell cycle, DNA replication, oocyte meiosis 
and fanconi anemia pathway.
Next, we used the obtained top 500 co-expression genes to 
integrate the PPI network by STRING online software, and 
then carried out using cytoHubba to select the hub related 
genes, and the top 10 significant related genes were selected 
based on the degree of  importance, top 10 hub genes of  
RRM1 and RRM2 were very similar, such as CDK1, CCNB1, 
TOP2A, CCNA2, BUB1, BUB1B, CDC20, AURKB and 
MAD2L1 (Fig. 7d and e). For RRM2B, we found five new 
hub genes comparable with RRM1 and RRM2, including 
PLK1, AURKA, CDCA8, TTK and CDC45 (Fig. 7f).
Furthermore, we found that these five new hub genes 
significantly positive correlated with RRM1 and RRM2 
expression (both Spearman’s correlation > 0.5) but were 
negatively correlated with RRM2B expression (Fig. 8 a, b 
and c). Finally, the online tool GEPIA database was used 
to compare mRNA expression levels of  these five new hub 
genes in tumor and non-tumor samples in LUAD patients, 
and significantly increasing expression of  PLK1, AURKA, 
CDCA8, TTK and CDC45 were found in LUAD patients 
compared to control (Fig. 9a-9e, all P < 0.05). The prognostic 
value of  these five hub genes was also analyzed. As shown in 
Fig. 9f-9j, the high expression of  PLK1, AURKA, CDCA8, 
TTK and CDC45 was associated with poor OS in LUAD 
patients (PLK1, HR = 1.8, Logrank P = 7.2E-05; AURKA, 
HR = 1.3, Logrank P = 0.047; CDCA8, HR = 1.6, Logrank 
P = 0.0026; TTK, HR = 1.7, Logrank P = 0.00029 and 
CDC45, HR = 1.6, Logrank P = 0.00032, respectively).
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Table 2 cBioPortal analysis of the 10 genes most closely related to ribonucleotide reductase (RR) subunit 
genes

Correlated Gene Cytoband Spearman’s Correlation P-Value Q-Value
RRM1 KIF18A 11p14.1 0.698001886 1.03E-76 2.07E-72

FAM111B 11q12.1 0.693762037 1.97E-75 1.98E-71
CLSPN 1p34.3 0.68926361 4.26E-74 2.86E-70
SMC2 9q31.1 0.687361417 1.54E-73 7.75E-70
WDHD1 14q22.2 0.674410008 7.47E-70 3.01E-66
FEN1 11q12.2 0.673995442 9.73E-70 3.26E-66
DTL 1q32.3 0.671944148 3.58E-69 1.03E-65
CKAP2L 2q14.1 0.668892998 2.44E-68 6.13E-65
HELLS 10q23.33 0.662470872 1.28E-66 2.87E-63
E2F8 11p15.1 0.660312594 4.75E-66 9.57E-63

RRM2 NCAPG 4p15.31 0.897566 2.61E-185 3.37E-181
CCNA2 4q27 0.897463 3.35E-185 3.37E-181
BUB1 2q13 0.892723 1.99E-180 1.34E-176
CCNB2 15q22.2 0.885582 1.22E-173 6.16E-170
CENPA 2p23.3 0.883024 2.57E-171 1.03E-167
CKAP2L 2q14.1 0.880323 6.37E-169 2.14E-165
SGO1 3p24.3 0.88003 1.15E-168 3.30E-165
NUSAP1 15q15.1 0.878449 2.70E-167 6.27E-164
SPC25 2q24.3 0.878429 2.80E-167 6.27E-164
CDC6 17q21.2 0.87369 2.78E-163 5.59E-160

RRM2B EDA2R Xq12 0.553944 6.50E-43 1.31E-38
FCHO2 5q13.2 0.5323 3.63E-39 2.30E-35
PKMYT1 16p13.3 -0.53192 4.20E-39 2.30E-35
CD302 2q24.2 0.531706 4.56E-39 2.30E-35
CPNE3 8q21.3 0.528915 1.32E-38 5.33E-35
TACC3 4p16.3 -0.524 8.44E-38 2.83E-34
TROAP 12q13.12 -0.52348 1.02E-37 2.95E-34
TEDC1 14q32.33 -0.52254 1.45E-37 3.66E-34
TEDC2 16p13.3 -0.52113 2.46E-37 5.50E-34
KIFC1 6p21.32 -0.5193 4.84E-37 9.74E-34

Discussion
In this study, we found that each RR-related gene was 
associated differentially with OS of  LUAD patients. Elevated 
expression levels of  RRM1 and RRM2 were associated 
with worse prognosis, while higher RRM2B expression was 
found to be associated with better prognosis in the whole 
cohort of  LUAD patients. Moreover, RRM2B mRNA levels 
correlated with the abundance of  tumor-infiltrated immune 
cells compared with RRM1 or RRM2. Importantly, we also 
found five new hub genes (PLK1, AURKA, CDCA8, TTK 
and CDC45), both significantly increasing expression and 
with poor prognosis in LUAD prognosis, were significantly 
positive correlated with RRM1 and RRM2 expression 
whereas were negatively correlated with RRM2B expression.
RR plays a critical role in DNA synthesis and thus is essential 
for cell proliferation and the development of  malignancy29. 
In normal human cells, three RR subunit proteins from two-
types of  holoenzymes (RRM1- RRM2 and RRM1 - RRM2B) 
and their genes are separately distributed in three different 
chromosomes. Although RRM2 and RRM2B are highly 
homologous in their gene sequences, their expressional 

levels and subcellular localizations are differently regulated 
in cells. Some studies showed that high RRM1 expression 
was associated with better survival in early stage NSCLC30 or 
had poor prognosis in LUAD31, while another study showed 
that RRM1 protein expression had no significant predictive 
value for early NSCLC patients32. The controversial results 
were also found in RRM2, some studies suggested that 
high expression of  RRM2 correlated with a shorter overall 
survival for NSCLC patients33,34, while others did not find 
any predictive value30,35. Previously studies have shown 
that high expression of  RRM2B protein was a favorable 
prognostic factor in early NSCLC patients36. However, 
other authors reported that RRM2B expression did not play 
a prognostic role in NSCLC patients with resected TNM 
stages I–III tumors32,37. These results implied the different 
roles of  RR subunits in LUSC and LUAD, suggesting that 
it is necessary to separate tumors by their histological or 
pathological subtypes during research and clinical evaluation 
of  molecular biomarkers in NSCLC. In our study, we focus 
on the relationship between RR subunit genes and LUAD. 
After combining RNA-seq and clinicopathologic data 
from several public databases, we found that expression of  
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RRM1 and RRM2 genes was both significantly increased 
and correlated with a worse prognosis in LUAD patients 
and demonstrated a tumor-promoting role for the RRM1-
RRM2 holoenzyme. In contrast, the expression of  RRM2B 
was significantly decreased in LUAD by analyzing data from 
Oncomine, TIMER, and GEPIA. However, our results 
demonstrate that high expression of  RRM2B protein was a 
favorable prognostic factor in LUAD patients.
In this study, the relationship between the expression of  
RR subunit genes and immune infiltrating in LUAD was 
also analyzed using the TIMER database. Expressions of  
RRM2B were significantly associated with various immune 
infiltrating cells compared with RRM1 or RRM2, suggesting 
that RRM2B might play prominent roles in regulating tumor 
immune cell infiltrating other than RRM1 and RRM2, this 
might partly explain why high RRM2B expression patients 
always have a favorable prognosis. In addition, we explored 
the potential mechanisms that RR subunit genes are 
involved in the carcinogenesis of  LUAD, and constructed 
a PPI network and performed GO and KEGG analyses for 
co-expression genes with RR subunit genes in LUAD by 
cBioProtal data analysis platform. The results showed that 
RRM1 and RRM2 top co-expression genes were very similar. 
These genes mainly participate in cell cycle process, the 
mitotic cell cycle, mitotic cell cycle process and cell division. 
MF indicated enrichment predominantly involved in ATP 
binding, catalytic activity and drug binding. KEGG pathway 
analysis revealed that these genes were significantly enriched 
in the cell cycle, DNA replication, oocyte meiosis and 
fanconi anemia pathway. Our results also suggested that high 
RRM1 and RRM2 expression were significantly associated 
with poor prognosis, while high RRM2B expression with a 
favorable prognosis of  LUAD patients. The co-expression 
gene network of  RR subunit genes further shown genes with 
poor prognosis (such as PLK1, AURKA, CDCA8, TTK 
and CDC45) tends to be highly expressed at the same time. 
Therefore, clinical relevance of  RR subunit genes and their 
co-expression gene network in LUAD should also be further 
illustrated in the future.
This study provided potential biomarkers for clinical 
prognosis of  LUAD. However, there were some limitations. 
Firstly, although the dysregulation of  RR subunit genes 
expression has been found closely related to prognosis 
of  LUAD patients, the related molecular regulatory 
mechanisms should be further tested. Secondly, clinical 
validations and functional studies were needed to reveal 
the inner mechanisms of  how RR subunit genes and their 
co-expression gene network correlated with the clinical 
outcomes of  lung cancer patients.

Conclusions
In conclusion, high RRM1 and RRM2 expression and low 
RRM2B expression suggested poor prognosis in patients 
with LUAD. Meanwhile, by co-expression gene network 
analysis of  RR subunit genes, we found that five new hub 
genes (PLK1, AURKA, CDCA8, TTK and CDC45) tend to 
be highly expressed and associated with a poor prognosis in 
LUAD patients at the same time. These findings demonstrate 
that RR subunit genes may be a prognostic marker and 
therapeutic target for LUAD.
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