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ABSTRACT 

Urban expansion and its ecological footprint are increasing at an alarming rate 
globally. This is putting pressure on the management of Urban Green Space (UGS) 
which are vital for biodiversity and ecological conservation. UGS contribute to 
sustainable development of these urban ecosystems. Recently, UGS have been 
considered to be substantially important for quality of life. In this study, UGS in the 
city of Blantyre, which has experienced rapid urbanization from 1990 to 2020, were 
delineated using remotely sensed Landsat-5 TM and Landsat-8 OLI time-series 
imagery. Maximum Likelihood Supervised Learning Algorithm was utilized to 
characterize landcover/landuse (LULC) categories, and further extrapolate to 
dynamic patterns of Urban Green Spaces (UGS).  Kappa statistical coefficient and 
overall accuracy assessment were used to validate the LULC classification. Post-
classification technique was used to compare and empirically categorize LULC and 
UGS changes between 1990 and 2020. Vector analysis change detection was 
performed to assess the dynamic patterns in UGS over time. The results indicate 
rapid decrease in UGS footprint by 19.26km2 representing a 42% decrease between 
1990 and 2020.  These changes in the study area are attributed to increased 
urbanization, population growth, socio-economic development, changes in 
microclimatic patterns and lack of policy and enforcement by the city authorities. 
The finding that the UGS in Blantyre city has substantially decreased over the past 
three decades is significant to the city’s policymakers, residents and researchers to 
better understand the shifting dynamics in LULC, and the particularities of UGS 
depletion in such a critical city for Malawi’s socio-economic growth.   

Keywords: Urban Green Spaces, Ecosystem; Landcover, Landsat, Maximum 
Likelihood Classifier, Remote Sensing, Change Detection.  
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1.0 INTRODUCTION 

Urban Green Spaces (UGS) significantly contribute to the sustainable growth of the 
urban ecosystem and, in a long run, provide a wide range of ecological and social 
benefits (GarÁon, 2012) . Jin (2013) define UGS as all-natural, semi-natural 
including artificially vegetated green land that is accessible to the public in urban 
areas including urban agricultural vegetation cover.  Recently, UGS in cities have 
been considered  a vital assert to quality of life, since they have a significant impact 
on ecosystem functions, local microclimate, air quality, noise absorption and water 
resources protection (Vatseva et al., 2016). The diversity and quality of urban green 
spaces such as parks, forests, water bodies, urban agricultural gardens are directly 
linked to human well-being due to their various ecosystem benefits to the city 
inhabitants (Kopecká et al., 2017a). Silva et al. (2019) argues that lack of human 
physical activity is linked to the lack of access to recreational zones and accounts for 
3.3% of global deaths. Beside this, environmentally, urban green spaces act as 
sufficient filter for air pollution and have an impact on moderating intense 
temperature levels within the cities (Venter et al., 2024). Several factors including 
anthropogenic activities, have been associated to significant loss and spatial 
fragmentation of green spaces (Nazombe & Nambazo, 2023). Loss of urban green 
spaces in many places is significantly attributed to rapid urbanization coupled with 
human population growth which in-turn drastically affect the landuse and landcover 
dynamics (Jin, 2013; Nazombe & Nambazo, 2023). Gondwe et al. (2021) observed 
that in Malawi, Blantyre City has experienced a wide range of changes in landuse 
and landcover due to the interaction between human activities and the environment. 
Such changes negatively affect human well-being and ecosystem’s functions, 
including increased soil erosion, run-off and flash flooding degrading water quality 
which may result in spread of water-borne diseases (Liping et al., 2018).  Rapid 
changes and growth in population and infrastructure are directly contributing factors 
to drastic changes in land use and landcover (LULC) of many cities globally, 
leading to loss of urban green spaces (Puplampu & Boafo, 2021).  

For decades the use of remotely sensed data in conjunction with a geospatial 
analytical tools has proven to be effective in detecting and monitoring LULC 
changes in spatial-temporal components (Baig et al., 2022,  Chinkaka et al., 2023). 
In comparison to other conventional methods, remote sensing is a robust, reliable 
and cost-effective data assessments tool for surface landscape analysis (Baig et al., 
2022). The changes in UGS can be monitored through a process that is known as 
change detection.  The method identifies changes in any phenomenon by analyzing 
time series data (Kumar et al., 2008, Pakbaz et al., 2014, Talukdar et al., 2020). 
When evaluating changes in the spatial features of the land resources, it is important 
to consider such analysis at multi-temporal, multi-scale and multi-resolution levels 
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(Gopinath et al., 2014). In landuse/landcover analysis, Supervised Maximum 
Likelihood Classifier has been used by several researchers. It generates decision 
based on the mean and covariance of each class in the remotely sensed imagery 
(Jamali, 2019). Other machine-learning-based algorithms such as artificial neural 
networks (ANNs),  Support Vector Machine, and Random Forest have also been 
applied for LULC classification and urban green space mapping (Chen et al., 2021). 

Blantyre City is Malawi’s commercial and industrial backbone with a population 
density of 3,334 people per square kilometer according to the 2018 census 
(Chinkaka et al., 2023). The city has experienced a tremendous change in LULC 
during the past decades due to urbanization, an increase in socioeconomic 
development, and population growth (Gondwe et al., 2021). But not much research 
has been conducted to establish any multi-temporal changes in the UGS and its 
relationship to landcover/landuse changes. With Blantyre City experiencing 
increased urbanization, this lack of research attention and evidence-based policy 
direction on urban green spaces poses a huge challenge to the realization of 
sustainable development for city management efforts at spatial planning (Gondwe et 
al., 2021). This study therefore examines the spatial impacts of LULC patterns on 
the spatial distribution of urban green spaces availability and functional role of 
providing ecosystem services to urban residents. This was achieved through the 
analysis of multi-temporal changes in UGS surface extents from 1990 to 2020 using 
Landsat missions’ satellite time series data through landcover change detection. 
Satellite imagery for 1990, 2000 and 2010 from Landsat 5 TM and 2020 imagery 
from Landsat 8 Operational Land Imager (OLI) were processed to determine in 
landcover/landuse, and a change detection analysis was performed to quantify the 
dynamics of UGS and Non-UGS areas within the city. 

1.1 Study Area 

The study was undertaken in Blantyre City, located around 15°29′S and 35°00′E in 
Malawi, with an area of about 240 km2 (Figure 1). The area  was selected for this 
study owing to its high economic development and the rapid growth of urbanization 
(Gondwe et al., 2021).  It is Malawi’s second largest city after Lilongwe and is 
referred to as Malawi’s commercial city. According to the 2018 Malawi Population 
and Housing Census, the study area had a total population of 800,264 and 
intercensal growth rate of 2.0 from 2008 (National Statistical Office, 2019).  This 
rapid population increase affects the landuse dynamics which in turn puts pressure 
on the spatial distribution of urban green spaces in spatial and temporal sense.  
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Figure 1: Location of the study area 

2. Materials and Methods 

2.1. Satellite Data and Image Pre-processing 

This study utilized three multispectral Landsat 5 Thematic Mapper’s (TM) Visible-
Near Infrared (VINR), and Shortwave Infrared (SWIR) data, one Landsat 8 
Operational Land Imager (OLI) Visible-Near Infrared (VNIR) and Short-Wave 
Infrared (SWIR) data that were downloaded freely from NASA’s Earth data portal 
through their website (https://search.eartdata.nasa.gov/search, accessed on 15 
September 2020) and the administrative vector data shapefile for Malawi that was 
downloaded freely on http://www.diva-gis.org/, accessed on 20 September 2020.  
The Landsat 5-TM data comprised of three VNIR-SWIR (Level 1 – surface 
reflectance) images acquired on three different dates and years and the Landsat 8 
OLI comprised of one image of VNIR-SWIR (Level 1 – surface reflectance) data 
(Table 1). For easy visibility, four cloud free satellite reflectance images were 
collected over the study between 1990 and 2020 with a 10-year temporal difference.  

https://search.eartdata.nasa.gov/search
http://www.diva-gis.org/
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Table 10: Satellite Sensor data used 

Satellite 
Sensor 

Date of Acquisition Path/row Resolution Number of 
Bands 

L5 TM 1990/10/08 167/71 30 7 

L5 TM 2000/09/01 161/71 30 7 

L5 TM 2010/12/18 161/71 30 7 

L8 OLI 2020/10/10 161/71 30 9 

 

 

Figure 2: Research Methodology Workflow 

 

The satellite images were processed in ENVI 5.3 software through the following 
links; ENVI 5.3: 
https://www.nv5geospatialsoftware.com/docs/whatsnew_envi53sp2.html and 
Maximum likelihood-classifier: 

https://www.nv5geospatialsoftware.com/docs/whatsnew_envi53sp2.html
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https://www.nv5geospatialsoftware.com/docs/MaximumLikelihood.html. Post-
processing steps and geo-visualization of the results were carried out using ArcGIS 
Pro 2.8. A summarized methodological workflow is illustrated in Figure 2. In this 
research, image preprocessing techniques were applied to the Landsat time series 
imagery in order to make them usable for the landcover and landuse mapping, and 
UGS categorization and change detection. The pre-processing techniques included 
radiometric, geometric, atmospheric correction and image enhancement through 
band combinations for visual image interpretation.  

To reduce the radiometric errors in the images for the years 1990, 2000, 2010 and 
2020, the radiometric correction algorithm in ENVI 5.3 was used to calibrate for all 
the errors. Radiometric calibration is an automated process of converting the digital 
number of pixels into spectral radiance values and then radiance into reflectance 
values (Baig et al., 2022).  This process is very important since it improves the 
interpretability and quality of the multi-temporal remotely sensed data (Kumar et al., 
2008). Geometric correction was performed to ensure that the image data are 
characteristically positioned on the right locations on the surface (Jamali & Abdul 
Rahman, 2019). This was followed by removing the influence of the atmospheric 
effects in the images by using the Quick Atmospheric Correction (QUAC) algorithm 
in-built in ENVI 5.3 environment. The Blantyre City boundary vector data file was 
used to clip all the satellite images to the city boundary extent. 

2.2 Classification Scheme and Sampling for Ground Truthing 

A random design technique was utilized to collect a total of 60 field-based points 
within the city of Blantyre as ground-truthing data for various landuse/landcover 
categories. Out of these field-based samples, 15 of each belonged to the classes, 
built-up area, vegetation, bare land and water bodies. Based on (Chinkaka et al., 
2023), we utilized a simultaneous visual inspection and interpretation technique of 
maps generated from Landsat 5TM/8OLI images. These include NDVI maps, Near 
Infrared False Color Composite, RGB Orthophoto Composite Maps and high-
resolution Google Earth imagery to inspect and develop a reliable set of reference 
labels that were used for model training and accuracy assessment. 

2.3 Supervised Maximum Likelihood Classifier 

Image classification refers to the task of extracting spectral information classes from 
a multiband imagery. The resulting raster from this process is normally a thematic 
map showing the various landcover and landuse categories (Das & Bist, 2015). In 
this study, Supervised Maximum Likelihood classifier was used to classify the 
Blantyre city satellite images into four main classes namely built-up areas, 
vegetation, bare land and water bodies. The set of field-based training samples at a 
pixel level information was then run in the Maximum Likelihood machine learning 
oriented classifier algorithm in ENVI 5.3. During the sample training and model 

https://www.nv5geospatialsoftware.com/docs/MaximumLikelihood.html
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implementation, 70% of the reference labels were used for the model training and 
the rest for model testing.  

Maximum Likelihood is a supervised classification method derived from the Bayes 
theorem, which utilizes a posteriori distribution P(i|ω) (Kumar et al., 2006), which is 
the probability that a pixel with feature vector ω belongs to class i. It is expressed 
by: 

                                                                                                  (1) 

where P(ω|i) is the likelihood function, P(i) is the priori information, i.e., the 
probability that class i occurs in the study area and P(ω) is the probability that ω is 
observed, which can be written as: 

                                                                                          
(2) 

And M is the number of classes. P(ω) is often treated as a normalization constant to 
ensure  sums up to 1. Pixel x is assigned to class i by the rule: 

x ∈ i if P(i|ω) > P(j|ω) for all j≠I,                                                                              (3) 

The Maximum Likelihood Algorithm usually assumes that the distribution of the 
data within a given class i and follows a multivariate Gaussian distribution (Kumar 
et al., 2011, Pakbaz et al., 2014, Talukdar et al., 2020). Because of this assumption, 
it is then imperative to define the log likelihood as follows: 

         (4) 

Since log is a monotonic function, Equation (3) is then equivalent to: 

x ∈ i if gi(ω) > gj(ω) for all j≠i.                                                                                (5) 

2.3.1 Accuracy Validation 

Accuracy assessment is essential in remote sensing-based research since decision 
making with data of unknown or little accuracy has the potential to misclassify the 
satellite data. If the reference data has information with low reliability, the accuracy 
is affected (Chinkaka et al., 2023). We performed an accuracy assessment of the 
classified images using confusion matrix analysis. This approach demonstrates the 
accuracy of a classified result by comparing it to the ground-based reference data 
(Munthali et al., 2019). Overall Accuracy (OA) and Cohen’s Kappa Coefficient (k) 
in a confusion matrix analysis (de Raadt et al., 2021, Więckowska et al., 2022) were 
used to assess the validity of the classification results as follows: 
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                                                                                            (6) 

where i stands for the class number, N, denotes the total number of classified pixels 
with respect to the field data,  representing the number of pixels of field data 
class i, which have been assigned to class i, Ci is representing the total number of 
classified pixels in class i, and Gi denoting the total number of field data pixels in 
class i.       

In this study, a total of 60 test pixels for all landcover classes were collected for each 
separate image and were used to perform the accuracy assessment of each 
classification result (He & Garcia, 2009). Thus, agreement and disagreement of the 
analysis was evaluated by using an error matrix and simple descriptive statistics 
based on (Zhai et al., 2021). 

2.4 Categorization of landcover into Urban Green Spaces (UGS) 

The four landcover classes: built-up area, vegetation, bare land and water bodies 
were further processed and categorized into urban green spaces pixels and non-urban 
green spaces pixels. This categorization is based on research by (Vatseva et al., 
2016). As such, vegetation and water bodies classes were categorized as urban green 
spaces and built-up Area and bare land were categorized as non-urban green spaces 
(Table 2). 

Table 11: Categorization criteria of the landuse-landcover classes and UGS and 
Non-UGS 

Landcover class Description Category 

Built-up Area Consists of Urban, Industrial, commercial, and 
transport units, dump, and construction sites 

Non-UGS 

Bare land Spaces with little or no vegetation, beaches, 
dunes sands, bare rocks, sparsely vegetated 
areas 

Non-UGS 

Vegetation Urban forests, Shrub and herbaceous 
vegetation association, Urban recreation 
centers, Parks, Permanent crops, Pastures, and 
Heterogeneous urban agricultural areas. 

UGS 

Water Bodies Watercourses, dam areas UGS 
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2.5 UGS and Non-UGS Change Detection 

A UGS and Non-UGS change matrix from the initial year of analysis (1990) to the 
final year of analysis (2020) were computed based on cumulative classified maps. 
We generated an evaluation of gains and losses, net change, persistence, and specific 
transitions (Meier & Mauser, 2023; Zhang et al., 2022). Based on the principle of 
land change analysis, geo-visualization maps of gains and losses of UGS and Non-
UGS were generated to quantify the changes in space and time (Panuju et al., 2020). 
The area changes of the UGS and Non-UGS categories are a result of the post-
classification, which corresponds to the area unit covered by category pixels 
(Chinkaka  et al., 2023). And change detection statistics was used to compile a 
detailed tabulation of changes between images acquired between a period of 1990 
and 2020. 

3. RESULTS 

3.1. LULC Analysis Distribution Pattern 

The Maximum likelihood Algorithm classification of the four Landsat images 
resulted in LULC thematic maps for each year (Figure 3) showing the spatial 
distribution of four classes in the study area. Figure 4 shows the area statistical 
distribution of LULC and their percentage coverage for each year based on the 
classification results.  

The classification findings indicate that the bare land class is most dominant in the 
study area. It occupied an area of 163.89km2, 160.81km2, 157.58km2 and 137.69km2 
in the years 1990, 2000, 2010 and 2020 respectively accounting for 68.13%, 
66.85%, 65.51% and 57.24% of the total area cover. From this analysis, it shows 
that the bare land class has been reducing in area coverage over the years. 
Vegetation class was detected as the second largest class only for the years 1990 and 
2000 with a total area coverage of 45.36km2 and 40.11km2 representing 18.86% and 
16.67% respectively. But for the years 2010 and 2020, vegetation class has 
drastically reduced and become the third largest class in the city with a total area 
coverage of 32.78km2 and 26.20km2 accounting for 13.63% and 10.89% 
respectively. The built-up class was the third largest class between the years 1990 
and 2000 with area coverage of 30.96km2 and 39.34km2 representing 12.96% and 
16.36% respectively. But in the years 2010 and 2020 the built-up area class has 
rapidly increased and became the second largest class with spatial statistical area 
coverage of 49.94km2 and 76.43km2 accounting for 20.76% and 31.77% increase 
respectively. And lastly, the water bodies class has been the lowest class and been 
decreasing rapidly in area size throughout the years 1990. 2000, 2010 and 2020 with 
a coverage of 0.33km2, 0.28km2, 0.25km2 and 0.23km2 representing 0,14%, 0.12%, 
0,10% and 0.10% respectively (Figure 4).  



Emmanuel etal 
__________________________________________________________________________ 
 

51 

 

Figure 3: LULC maps of Landsat-5 and Landsat-8 images for the year 1990, 2000, 
2010 and 2020 

Accuracy assessments for the 1990, 2000, 2010 and 2020 images indicated an 
average overall accuracy of 91% and a Kappa Coefficient of 0.88. According to 
Baig et al. (2022), this is a good result since the overall accuracy for all the 
classified maps were above 85%. A confusion matrix in Table 3 indicates the user’s 
and producer’s accuracies for the given individual landcover/landuse classes for 
each thematic classified map for each year. 
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Figure 4: Area statistics in LULC changes for the years 1990, 2000, 2010 and 2020 

Table 12: Confusion Matric for the accuracy assessment for classified thematic 
maps (1990, 2000, 2010, and 2020) 

LULC Class Built-
up Area 

Vegetation Water 
Bodies 

Bare 
land 

Total User’s 
Accuracy 
(%) 

1990 
Built-up Area 15 0 0 3 18 83.33 
Vegetation 0 15 0 0 15 100 
Water bodies 0 0 15 0 15 100 
Bare land 0 0 0 12 12 100 
Total 15 15 15 15 60  
Producer’s 
Accuracy (%) 

100 100 100 80   

Overall Accuracy 
(%) 

95 
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LULC Class Built-
up Area 

Vegetation Water 
Bodies 

Bare 
land 

Total User’s 
Accuracy 
(%) 

Kappa 
Coefficient 

0.933 

2000 
Built-up Area 15 1 0 5 21 71.43 
Vegetation 0 14 3 0 17 82.35 
Water bodies 0 0 12 0 12 100 
Bare land 0 0 0 10 10 100 
Total 15 15 15 15 60  
Producer’s 
Accuracy (%) 

100 93.33 80 66.67   

Overall Accuracy 
(%) 

        85 

Kappa 
Coefficient 

        0.8 

2010 
Built-up Area 13 0 0 2 15 86.67 
Vegetation 1 15 0 1 17 88.24 
Water bodies 0 0 15 0 15 100 
Bare land 1 0 0 12 13 92.31 
Total 15 15 15 15 60  
Producer’s 
Accuracy (%) 

86.67 100 100 80   

Overall Accuracy 
(%) 

     93.33 

Kappa 
Coefficient 

     0.91 

2020 
Built-up Area 15 0 0 3 18 83.33 
Vegetation 0 15 0 1 16 93.75 
Water bodies 0 0 15 0 15 100 
Bare land 0 0 0 11 11 100 
Total 15 15 15 15 60  
Producer’s 
Accuracy (%)  

100 100 100 73.33   

Overall Accuracy 
(%) 

91.67 

Kappa 
Coefficient 

0.88 
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3.2. UGS – Non-UGS Classification  

The classified LULC maps for all the four years were further post-processed into 
two categories of UGS class and Non-UGS class. The post-processing findings 
indicate that in all the four images, Non-UGS class is dominant in the study area. It 
occupied an area of 194.85km2, 200.15km2, 207.52km2 and 214.11km2 in the years 
1990, 2000, 2010 and 2020 respectively accounting for 81%, 83.21%, 86.27% and 
89.01% of the total spatial area cover (Figure 5). This indicates that the UGS 
Category has been reducing drastically from 1990, 2000, 2010 and 2020 with the 
area coverage of 45.70 km2, 40.39km2, 33.03km2 and 26.43km2 respectively. 
Between 1990 and 2020 the UGS category has drastically reduced with an average 
of 36.50%. This is a huge reduction to the urban green spaces in the city, which in-
turn reduces the biodiversity functionalities in the city. The spatial dynamic 
distribution of UGS and Non-UGS in Blantyre city is depicted in Figure 6.   

 

 

Figure 5: UGS and Non-UGS changes based on Landsat-5 and Landsat-8 for the 
years 2005, 2010, 2015, and 2020 

3.3. Urban Green Space Trajectory Dynamics 

The post classification and categorization comparison change detection analysis 
results show that urban green space has rapidly changed in the study area over the 
last three decades.  Table 6 shows the change matrix that has occurred of the last 
three decades. It stipulates the amount and type of change that has occurred between 
urban green spaces and none-urban green spaces classes. 
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The change matrix and corresponding statistics from 1990, 2000, 2010 and 2020 
were modeled using the categorization of the urban green space and non-urban green 
space cover based on the landcover and land use classifications for each year. The 
analysis focused primarily on the initial state classification changes; that is, for each 
initial state class, the analysis identifies the classes into which, those pixels changed 
in the final state image. The change matrix (Table 4) gives an account of the 
transitions in changes of urban green spaces and non-urban green spaces classes 
between 1990 and 2020. 

 

Figure 6: Spatial distribution of urban green spaces and Non-Urban Green Spaces 
in 1990, 2000, 2010 and 2020 
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The “Class Total” row shows the total surface area in square kilometers (km2) in 
each initial and final state class. The “Image Difference” row shows how a class has 
either grown or shrunken whereby positive values mean to gain and negative values 
mean loss. From the table above there has been a loss in green spaces, over the past 
three decades, a total surface area of 19.26.72km2 for urban green spaces has been 
lost. Table 4 shows that there has been tremendous growth in the non-urban green 
spaces by 19.2672km2. Figure 7 depicts the spatial models of the change detection 
analysis for 1990 to 2000, 2000 to 2010, 2010 to 2020 and an overall change 
detection showing change to urban green spaces for 1990 to 2020.  
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Figure 7: Change detection maps of urban green spaces for 1990 to 2000, 2000 to 
2010, 2010 to 2020 and overall change detection for 1990 to 2020. 

 

4. DISCUSSION 

Based on the results from this study, it has been revealed that Blantyre City has 
undergone massive LULC change as indicated by the confusion matrix for the post 
classification analysis. The built-up area class has rapidly increased by 146.87% 
between 1990 and 2020. This increase is attributed to population increase due to  
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Table 13: Category/Class transitions from the initial state (1990) to the final state 
(2020) 

Fi
na

l S
ta

te
 (2

02
0)

 (2
02

0)
 

Initial State (1990) 

Category/Class Green Spaces Non-Green Spaces Class Total 

Urban Green 
Spaces 

11.89 14.61 26.4303 

None- Urban 
Green Spaces 

33.88 19.2672 214.1127 

Class Total 45.6975 194.8455  

Image Difference -19.2672 19.2672  

 

urbanization subsequently leading to significant reduction in UGS in the city. 
Reduction of UGS areas by 42.16% in the past three decades is associated to 
increased urbanization depicted by rapid expansion of the building footprint in the 
city over the year. 

Urban green spaces being public spaces, are supposed to be regulated by the policy 
and regulations of the city council or other state agencies. As such this reduction is a 
contribution of the lack of enforcement and policy guidance. Due to this, there has 
been more built-up area development in these urban green spaces leading to 
informal settlements within the city. This urban and unplanned settlement structures 
result in emerging of various negative health related impacts in the city such as 
malaria, diarrhea and cholera (Gordon, 2001, M’bangombe et al., 2018). According 
to Malawi Housing Population Census of 2018, Blantyre city shows an increase in 
population of 23.34% between 2008 and 2018, because of this increase the non-
urban green spaces increased drastically from an area spatial value of 194.84km2 to 
214.11Km2 accounting for an increase from 81% to 89.01% respectively in 1990 
and 2020. Another critical contributor to the increased non-urban green space is the 
increased socio-economic growth of the population. This involved the clearing of 
vegetative space for construction of various built-up areas for settlement and 
economic ventures. However, this can be controlled better by the policy support 
from the city council in environmental management of the urban green space which 
is a very important component of the ecosystem functions and biodiversity increase 
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(Rakhshandehroo et al., 2017). Water bodies are among the most important UGS 
classes that provide the most benefits to the inhabitants and the functionalities of the 
ecosystem (Bowler et al., 2010,  Rakhshandehroo et al., 2017). The water bodies 
class in the study area has reduced from 0.33km2 in 1990 to 0.23km2 in 2020 
representing 30% reduction on space. Water bodies are important as habitants of 
aquatic life in the city. This poses a threat to quality of life since water is one of the 
basic needs of life for humans, animals and plants which are essential to biodiversity 
balance in the ecosystem (Rouquette et al., 2013). 

The analysis of this study focused primarily on the initial state (1990) classification 
changes; that is, for each initial state class, the analysis identifies the classes into 
which those pixels changed in the final state image (2020). As visualized in Figure 
7, the transitions of UGS and None-UGS classes between 1990 and 2020, indicates 
the spatial distribution through post-classification a vector change detection analysis. 
It shows that there has been a depletion of UGS in the southern part of the city 
transitioning to None-UGS in 1990 and 2020 respectively. This drastic three-decade 
decrease in UGS (Table 4) with about 19.26Km2 of UGS has transitioned to None-
UGS areas. And none of the Non-UGS areas have transitioned to UGS areas, this 
shows that not even the bare-lands are being developed into UGS areas. This means 
that only the UGS areas have been declining in the city. Based on this, Blantyre City 
has seen a remarkable increase in built-up areas and a decrease in undeveloped 
territory such as bare land. This indicates that various natural forests and habitats 
have been deforested, resulting in the conversion of previously green landscapes into 
non-green ones. Therefore, this drastic decline of UGS will results into pressure on 
water resources in the city, not only due to decline in water bodies but also because 
of increase in population growth and urbanization. These two have a direct negative 
impact on the ecosystem landscape. Further to this, the reduced UGS shall result into 
improper balance of the rainfall and temperature intensities in the city, causing 
increased dry spells. This is consistent with the findings of (Gondwe et al., 2021) 
who revealed using climate data that the study area has been experiencing 
occasional dry spells in which the amount of rainfall received decreased 
significantly between 1990 to 2019. Further to this, the reduced UGS impacts 
negatively on the biodiversity as it reduces the habitats of most wildlife both aquatic 
and terrestrial species that are normally found with the urban perimeters. The loss of 
such ecosystem functions in-turn affects the quality of air and life since UGS are 
utilized as recreation centers for wellbeing improvement through physical exercise, 
reducing the need to treat for anxiety and mental health conditions (Soininen et al., 
2007) . 

5. CONCLUSION 

The present study has identified changes in LULC and UGS patterns in the 
commercial city of Blantyre from 1990 to 2020 using Landsat 5 TM and Landsat 8 
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OLI time-series imagery.  In combination with LULC field-based sampling, a 
machine learning-powered multi-temporal change detection analysis was performed 
to assess the LULC and UGS dynamics in the study area.  Maximum Likelihood 
Classifier algorithm was employed to determine the LULC dynamics with four main 
classes (built-up area, bare land, and vegetation and water bodies). Our results 
showed that urban green spaces in the city of Blantyre has experienced loss and 
dynamic fragmentation with depletion of urban green spaces transitioning to non-
urban green space with a decrease of 19.26Km2 between 1990 and 2020. This is 
significantly a huge change in LULC where the built-up areas have increased with 
146.87% between 1990 and 2020. This increase is due to urbanization, increased 
socio-economic growth and population increase. Such information is crucial to 
understanding the transformation processes and human–environment with the 
growing city population. The increase in built-up areas has also resulted in reduction 
of green spaces since people have transitioned urban green spaces into settlements 
(built-up areas). Among the factors that have led to this reduction include lack of 
enforcement of urban green spaces conservation, poor planning and policy 
implementation strategies. Most urban green spaces such as vegetated parks and 
forests have been depleted due to increased demand for timber, and charcoal as a 
source of energy in the peri-urban wards within the city (Gondwe et al., 2021).  
Additionally, the decrease in the water bodies is attributed to changes in 
microclimate and siltation in the dams resulting in the reduction of the spatial area 
size of the dams. The presence of urban green spaces is beneficial to the city 
residents in such a way that they provide quality health and wellbeing, regulates 
temperature levels and climate, provides good quality air and act as habitats for 
various wildlife and restores the ecosystem. Therefore, a better understanding of 
LULC dynamics and urban green spaces patterns is critical to the realization of the 
high standard of living and quality of life, and increasing accessibility to green 
public spaces as outlined in the African Union’s Agenda for 2063 and United 
Nation’s Sustainable Development Goals 2030.    
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