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Abstract 

Geomatics instruments have algorithms which derive two-dimensional and three-

dimensional coordinates in a local system based on the equipment. The collected 

coordinates undergo coordinate transformation in order to model the space in 

question.  However, Resident Engineers and geomatics engineers in the Malawian 

construction industry are still inclined to physical inspection of datasets which may 

expose some errors. In Malawi, so little use is made of adjustment and error 

detection in engineering surveys, except in datum transformation and the 

reconciliation of past and new surveys in cadastral surveying. Thus, this paper 

implemented a two-dimensional robust approach to fixing the alignment master-

points through the implementation of the least squares mathematical approach. 

Position fixing was carried out by formulating the planimetric transformation 

between the design coordinates and the as-built survey coordinates using the 

Lilongwe Western By-Pass Road as a case study. This was validated by performing 

a re-survey of the stations. The scale factor of the sampled section equated to unity 

and the positions affected by a rotational angle of 354˚ 46 32. The observation 

quality for the Northings and Eastings was 69 mm and 11 mm, respectively. Outlier 

detection revealed that 29% of the alignment master stations were geometrically in 

their actual positions while 71% were out representing a merit in the approach which 

was impossible with physical inspection. The results also indicated that the approach 

have profound technical advice to engineering surveyors on the determination of 

residuals from two sets of coordinates in different coordinate systems. 

Keyword: Coordinate Conformity, Geomatics Instruments, Position Fixing, Robust 

Approach, Two-Dimensional. 

1.0  Introduction 

Engineering surveying data are both homogeneous and heterogeneous in nature. 

When a survey engineer measures a single set of observations, for instance distances 

only, a homogeneous dataset is obtained. Most of all, the measurements are a 
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combination of numerous kinds of observations, hence heterogeneous. A position is 

defined by coordinates, either rectangular (grid) or polar. In position fixing, the 

coordinates are obtained from a vector of observations. Engineering surveyors 

employ terrestrial, satellite surveys, or photogrammetric approaches in assigning 

coordinates to positions on the ground. Normally, survey engineers use coordinates 

certified to be true based on reference points or any datum to control the alignment 

of highways. This forms a design, a control survey, such that the construction 

surveys undertaken on this site has to comply. The compliance is based on the 

tolerance with which all the survey positions are to be fixed as indicated in the 

technical specifications for the project. As indicated by Allan (2007), there is a 

distinction between industrial tolerances which are in micrometers and civil 

engineering tolerances which are in millimetres.  

1.1  Interpretation of the design on the ground 

The survey engineer ensures that the surveys executed are within acceptable limits. 

The success of this lies in checking the surveyed positions against those indicated in 

the design in terms of coordinates and parameters. Highway engineers or survey 

engineers process drawings which foremen and the entire construction team translate 

on the ground. The designs are Computer-Assisted Drawings (CAD) which just like 

cadastral maps contain errors as a result of production and deformation (Sisman, 

2014 a). The CAD drawings are printed on different sheet sizes for use on site. The 

foreman extracts some measurements from the CAD drawing and modifies others 

based on the circumstances on the ground. Furthermore, the survey team from the 

contractor carries out all construction surveys under the supervision of the Resident 

Engineer's (RE) representative (Uren and Price, 1994). The consultant surveyor 

verifies the surveys, including as-built surveys, done by the contractor or performs a 

joint survey with the contractor's survey team. Construction projects make use of 

maps and CAD drawings which require accurate geo-positioning and connection in 

order to have a uniform coordinate system.  

1.2  The rigorous and non-rigorous method  

Least squares is a rigorous method of control that plays a pertinent role in unifying 

coordinates by identifying outliers in both direct and indirect survey measurements. 

The least squares approach utilizes the same kind of fundamental principles 

regardless of varying geometric figures or configuration of polygons surveyed. 

Ghilani and Wolf (2010) define the least squares estimate as those which minimise a 

specified quadratic form of residuals. The method is applicable when the 

measurements contain only random errors.  

Besides that, least squares method permits both pre-analysis of survey work during 

(office reconnaissance) and post-adjustment in order to determine the magnitude and 
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pattern of errors in the data for polygons and networks. The non-rigorous methods 

of adjustment do not minimise the sum of the squares of residuals. Non-rigorous 

adjustments are different for all kinds of survey tasks. For instance, levelling 

networks require the Rise-and-Fall (RF) or Height of Plane of Collimation (HPC) 

method in reducing elevations, whereas traverses use the Compass Rule (CR) or the 

Transit Rule (TR). More details about RF, HPC, CR the TR can be found in 

Schofield and Breach (2007).  

1.3  Coordinate transformation 

Coordinate transformation is simply a mathematical operation that takes the 

coordinates of a point in one coordinate system and returns the coordinates of the 

same point in a second coordinate system. This process requires at least two control 

points in order to determine the coordinates of the other system. To obtain a unique 

solution, corrections are applied to data in order to restore consistency in the data. 

This process of making the data consistent such that the unknown parameters can be 

determined uniquely is known as adjustment. Least squares is the optimal technique 

of adjusting redundant observations.  

In coordinate transformation, the method of least squares has been used in 

computing transformation parameters: scale factor, rotation angle and translation. 

Coordinates transformation is applied in industrial measurement, photogrammetry, 

and geodesy and cadastral studies. Sisman (2014 a) examines the 2D transformation 

parameters for analog cadastral maps using least squares and determines the 

erroneous measurements using least absolute value. In a similar study Sisman (2014 

b) applies a full factorial method to determine the transformation parameters 

between the cadastral maps. Yang (1999) estimates the transformation parameters 

between Global Navigation Satellite System (GNSS) network and the corresponding 

geodetic network in China using a stochastic model. Furthermore, transformation 

parameters have also been derived between World Geodetic System 1984 (WGS84) 

and local coordinate systems for various countries (for instance in Abidin et al., 

2005; Ziggah et al., 2013, and Lwangasi, 1993). Whether the transformation 

involves maps prepared in different coordinate systems or coordinates collected with 

different datums, either case assists in deducing transformation parameters and the 

transformed coordinates.  

Greenfeld (1997) categories transformation into two broad kinds: planimetric (2D) 

and spatial (3D) of which the second type is based on the functional model applied. 

Either kind can be direct or reverse transformation. Based on the functional model, 

the transformation methods differ in number of parameters. For instance, the 

planimetric is four-parameter transformation also known as the 2D conformal 

coordinate transformation (Ghilani and Wolf, 2010). Various forms of 2D 
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transformation are: 2D affine that computes parameters between map sheets and 

ground points; 2D conformal (similarity) transformation that transforms a survey in 

one coordinate system into a survey with a different coordinate system (Ghilani and 

Wolf, 2010; Congalton et al., 2001); and the 2D projective employed in 

transforming photograph coordinates to ground coordinates (Saeedi et al., 2009). 

The similarity transformation returns the shape of objects. The affine differs from 

the conformal in that in affine transformation the Eastings and Northings have 

distinct scales. Straight lines and parallelism are preserved in affine transformation 

whereas angles are not while the projective transformation maps lines to lines (and 

does not necessarily preserve parallelism). 

The spatial transformation, for example, the seven-parameter transformation is used 

in defining datums (Hofmann-Wellenhof and Moritz, 2006).  Congalton et al. (2001) 

call the seven-parameter transformation by other optional names namely: Helmert 

transformation or 3D similarity transformation or linear conformal transformation in 

three dimensions. The seven-parameter transformation has been applied in 

modelling geodetic datum transformation in geodetic surveying (Wu, et al., 2016), 

and it has also been used for expressing collinearity equations in photogrammetry 

(Moffitt and Mikhail, 1980). In the context of geodesy and geosciences, other 

functional models are defined: the nine-parameter (Awange, et al., 2008) and the 

ten-parameter (Hong-sic, 2004). Other transformation methods with profound 

application in geodesy are the Molodeskii formulae, multiple regression formulae, 

and geocentric translation.  

In construction surveying, just like in any engineering survey, survey engineers 

encounter orthogonal and conformal coordinates. Except when a map projection is 

used, the grids form squares and the project area has no scale distortion (Allan, 

2007). With no scale distortion, it is obvious that the true shape of the project area is 

also preserved. This presents one significant trait in engineering survey work that 

calls for 2D conformal coordinate transformation. The process of transforming 

coordinates determines transformation parameters and aids in error when based on 

least squares. 

1.4     Transformation and error analysis  

In civil engineering projects, the Resident Engineer (RE) ensures that the as-built 

surveys are in conformity with the CAD drawings and the specifications. The RE, 

through the consultant surveyor, establishes the truth by confirming the origin and 

configuration of the coordinates by comparing the coordinates. This coordinate 

comparison is simply a physical inspection method which may not reveal some 

geometric errors in the dataset. The least squares estimation of 2D transformation 

parameters computes the parameters and errors between any two datasets with 
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coordinate system disparities. In Malawi, so little use is made of transformation and 

error detection in engineering surveys, except in datum transformation and the 

reconciliation of past and new surveys in cadastral surveying. Thus, the scope of this 

paper was to model and remove the coordinate system differences by determining 

the 2D coordinate transformation parameters for the Lilongwe Western By-Pass 

master points. The transformed coordinates for the master points were also checked 

against the specification and the re-surveyed station coordinates. Finally, the 

contribution of the least squares approach to the engineering surveying discipline 

was given. 

2.0     Methodology 

In Malawi, either in cadastral surveys or engineering surveys, the GNSS remains the 

more widely used geomatics measurement instrument than the Total Station (TS). 

The 2D approach to fixing the alignment master-points for the Lilongwe Western 

By-Pass road was examined using two datasets. The survey of this section was 

repeated on the basis of coordinate system differences. One set of 2D coordinate 

observations were captured with the TS (Table 1) and the other set was collected 

with GNSS receiver (Table 2).   

The GNSS defines positions in 3D as Easting (E), Northing (N) and ellipsoidal 

Height (H). To be worthwhile in construction surveying, the ellipsoidal height has to 

be converted to orthometric height (elevation) using the geoid model. From the 

geoid model, the geoid undulation plays a greater role in generating elevations 

(Nahavandchi and Sjöberg, 2001).  The geoid model for Malawi is not defined and 

hence, construction engineers substitute ellipsoidal heights for reduced levels 

collected by spirit-levelling or TS. As a result, all the elevations in Table 1 were 

collected with a dumpy level.  

Table 1: Alignment master points: design (Local)  

 

No.: 
Element 

Type 
Chainage Radius Easting(m) Northing(m) 

Bearing 

(Degrees) 
Height(m) 

1 S 0+000.000 infinite 579876.488 8455235.71 193.29293 1107.038 

2 R 0+370.630 -1090 579915.463 8454867.14 193.29293 1103.635 

3 S 0+886.857 infinite 580089.771 8454381.23 162.85330 1093.573 

4 R 1+153.662 710 580236.905 8454158.66 162.85330 1088.415 

5 S 1+379.631 infinite 580329.628 8453952.59 183.20870 1084.329 

6 R 3+512.885 -490 580885.788 8451893.11 183.20870 1049.973 

7 S 3+826.220 infinite 581059.908 8451632.61 141.77181 1048.563 
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There were coordinate inconsistencies between the 2D coordinates in Table 1 and 

Table 2 in that their origin and orientation were not matching. The requirement was 

to eliminate the coordinate disparities before checking the data in Table 2 against the 

specification (design). This was achieved by physical inspection of the coordinates 

in which two sets coordinates were compared in order to determine the differences. 

Then, the 2D transformational parameters (𝑎, 𝑏,∆𝐸 𝑎𝑛𝑑  ∆𝑁 ) were determined 

using least squares method.  

Table 2: Alignment master points: as-built (WGS84)   

 

 

 

2.1    Computation of 2D unknown parameters 

Least squares requires a good number of observations (Sorenson, 1970) of which a 

minimum of three are necessary between the two datasets (Ghilani and Wolf, 2010) 

in order to get the solution. Measurements and observations contain errors; this 

explains why Gauss and Davis (1963) note the necessity of having more 

observations than required to determine the unknown. 

The vector of observations, g; was 2D GNSS observations in the assumed 

coordinate system (the as-built coordinates), and d was the vector of coordinates 

extracted from the CAD drawing (design coordinates). Then, the reverse 

transformation parameter was defined by:  

 Translation in E (E);  

 Translation in N (N);  

 Scale factor (k), and  

 Rotation angle (𝜃).  

The vector of 2D GPS coordinates was (𝐸g, 𝑁g) and the 2D TS coordinates was 

(𝐸𝑑 , 𝑁𝑑). For the ith position, the 2D GPS position was (𝐸g𝑖
, 𝑁g𝑖

) and the 2D TS 

position was (𝐸𝑑𝑖
, 𝑁𝑑𝑖

). To solve for the unknowns, two observation equations were 

generated from each alignment master point (Allan, 2007), i.e.: 

Chainage Easting(m) Northing(m) 

0+000.000 579779.073 8455198.312 

0+370.630 579851.445 8454834.816 

0+886.857 580069.270 8454366.797 

1+153.662 580235.859 8454158.532 

1+379.631 580347.158 8453961.780 

3+512.885 581088.521 8451961.492 

3+826.220 581285.636 8451717.925 
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Where  

Coska .  (3) 

Sinkb .  (4) 

In equations 3 and 4,  was computed by:  

    122  bak
                                                                                             (5) 

The rotational angle was calculated by the following relationship: 
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2.2 The least squares theory 

Implementing the least squares theory, equation 5 becomes: 

  vWbAWAA TT ̂  (8)  

In equation 6 is the normal equation where 
TA is the transpose of Jacobian Matrix 

(coefficient matrix); W is the variance-covariance matrix (weight matrix); ̂  is the 
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least squares solution (vector of unknowns); b is the vector of Observed values 

minus Computed values (O-C), v  is the vector of residuals. 

The paper tested the alignment master points from chainage 0+000 to 3+837.709, a 

stretch with seven fixed positions. In this mathematical model, these points were 

explicit in matrix 
TA and A. The seven fixed points, occupy 14 rows in the model (

4

14 A ) with four columns containing the 2D coordinates and ones and zeros (in any 

order) depending on the definition of the translation. On the other hand, the as-built 

coordinates were plugged in vector b , 
1

14 b , for the seven fixed points. 

2.3 Unweighted least squares 

The precision of the instrument according to the instrument manufacture was not 

specified. For this reason, the design survey that led to the processing of the CAD 

drawing and the as-built survey were given an equal weight of unity, i.e,  𝑊 =  1. 
Hence, equation 6 was simplified to: 
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Implementing the multi-dimensional case of 14 equations and plugging in the 

values from tables 1 and 2 in (7), the alignment coordinates (Eastings and 

Northings) were loaded and coded in MATLAB R2017b to compute the four 

parameters   T
NEba  . The Cholesky decomposition was applied and ̂  

was reduced to:  
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Where: 

 AAN T   

 

(11) 

 bAd T  (12) 

Here, the least squares solution  b and the vector of residuals were computed from 

equations (13) and (14), respectively. The computed 2D transformation parameters 

were used to re-compute the original coordinates using the forward 2D similarity 

coordinate transformation.  

bAv  ̂  (14) 

2.4 Quality assessment and outlier detection 

The Root Mean Square Error (RMSE) was performed to determine the 2D (for the 

Eastings and Nothings) quality of the section from 0+000 and 3+826.220 and was 

given by: Using where n is the number of occupied stations (which is seven) and iE

and iN  is the Easting and Northing in the i th row. The ERMSE land 
NRMSE  for 

each survey station was computed and then compared to the specified technical 

specifications of 2 cm 
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The outliers were computed from the square root of equation 15 and 16 for each 

(𝑖𝑡ℎ) chainage by equation (17). The outliers were used for deducing the positional 

errors for the stations. Regardless of orientation, linear error is simply the 

hypotenuse which equates to the square root of the sum of squares of the residuals 

in Eastings and Northings (i.e., ERMSE and
NRMSE ). Further details on the 

definition linear error can be sourced from most geomatics books, for example 

Kavanagh (2007) and other literatures on traverse adjustment.  

e =     2
1

22

ii NE RMSERMSE 
                                                                           (17) 

3.0  Results and discussion 

Through the physical inspection, all the stations (100%) were denied which 

resulted in redoing the survey for the whole stations with the TS without clear 

picture of misplaced chainages.  

Employing equation (10) ̂  was deter100mined as follows.  
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The integrity of engineering surveying relies on performing independent checks. 

The two parameters 𝑎 and 𝑏 in (14) were used as an independent check. From 

equations (3) and (4), 996.0a and 091.0b , and the scale factor  k  equated to 

unity. The computed scale factor of unity means that the survey measurements were 

orthogonal; there was no scale distortion in both dimensions over the survey area 

(section).  

The rotation angle was deduced from simple trigonometry according to (6) as

32" 46' 354° . The rotational angle provided the first evidence of shifting of the 

master stations because it presented a solution to the probable geometric locations of 

the stations with respect to the design. In addition, if  𝜃 were zero then it would 

mean zero translation in both dimensions.  
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The four parameters in ̂  were as a result of the shift of the survey depicted in Table 

2. To validate the argument, the translations, rotational angle and the scale factor 

were used back in formula (7) and the solution matched the coordinates. At this 

stage, the method may be used to detect coordinate differences but may require a 

thorough error analysis. 

3.1  Residual analysis  

To determine the residual, the solution for 𝑏 was computed first as represented by 

the vector (19). The residuals computed residuals are depicted in equation (20).  
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3.2     Observation quality for master points 

The 2D quality for the master points were computed from equations (14) and (15) as  

meters069.0  and meters011.0  for Eastings and Northings, respectively. The 

accuracy of the Northings was six-times better than that of the Eastings. Mihajlović 

and Cvijetinović (2017) performed a similar study for the 3D uncorrelated datum 

observations. In this study, seven transformation parameters were determined from 

non-linear dataset.  
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580347.126

68454158.55

580236.025

18454366.80

580069.235

18454834.82

579851.407

68455198.31

579779.032

58451717.92

581285.636

28451961.49

581088.521

08453961.78

580347.158

28454158.53

580235.859

78454366.79

580069.270

68454834.81

579851.445

28455198.31

579779.073

v
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Table 3: Outlier detection for the master points 

 

Chainage 

Residual 

(Ei (cm)) 

Residual 

(Ni (cm)) 

Linear 

Error (cm) 

Tolerance (2 

cm) Discrepancy Condition   

0+000.000 4.108 -0.427 4.130 2.000 2.130 Outside the specification 

0+370.630 3.866 -0.413 3.888 2.000 1.888 Outside the specification 

0+886.857 3.528 -0.478 3.560 2.000 1.560 Outside the specification 

1+153.662 -16.547 -2.380 16.717 2.000 14.717 Outside the specification 

1+379.631 3.228 -0.594 3.283 2.000 1.283 Outside the specification 

3+512.885 1.821 -0.756 1.972 2.000 -0.028 Within allowable tolerance 

3+826.220 1.632 -0.847 1.839 2.000 -0.161 Within allowable tolerance 
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With the specification of 2 cm, table 3 presents the outlier detection results. As it 

can be seen in table 3, the values in column four have to be less than those in 

column five for the master station to be within the specified tolerance. Based on this 

argument, only two master positions (3+512.885 and 3+826.220) were within 

acceptable limits being characterised by discrepancy values of -0.028 cm and -

0.161cm, respectively. This follows that 29% of the alignment master stations were 

geometrically in their actual positions in their coordinate system and 71% were out 

by the discrepancies demonstrated in table 3 for this dataset and figure 2. Figure 1 

illustrates the reference points within allowable tolerance and those outside. 

The chainages 3+512.885 and 3+826.220 were not identified to be within the 

specification of 2 cm with the physical inspection method neither were the rest of 

the chainages. The 2D transformation adjustment managed to expose the 

discrepancy between the dataset due to the least squares approach. This method 

enabled all the master stations to be simultaneously incorporated in the adjustment 

in order to determine the precision of the adjusted quantities.  

 

Figure 1: Master points within allowable tolerance and those outside 
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Figure 2: Alignment points within acceptable limits and those outside  

The accepted stations in Table 3 were within their spatial locations as checked with 

the TS re-survey whereas the other five chainages were adjusted on the ground 

based on the transformed coordinates. Other than that, the computed discrepancies 

were also within the same range to the newly fixed positions on the ground. This 

follows that a mathematical difference on the design may not always be a problem 

on the ground. The 2D coordinate transformation technique may, apart from being 

used in deducing transformation parameters, also be utilized in preliminary planning 

of engineering surveys. In addition to that, the technique may also mitigate the 

burden of revisiting the ground when the problem is only on paper. This can save 

time and resources at the construction site and the survey team can concentrate on 

other tasks instead on repeating the job as a result of coordinate system differences. 

The strength of this technique is grounded on the detection of errors in observations 

using the mathematical theory of probability in that it is applied when random errors 

only exist in observations. The method would as well detect the differences if the 

sample size were increased.  

3.3   Conclusion 

Through physical inspection, the origin and orientation of the coordinate system 

used in analysing the spatial location of the seven master-points was not matching 

those on the design drawings. Instead, of the points were rejected and the section re-

resurveyed.  It has thus, been proved that physical inspection of survey data may 

increase the field workload of engineering surveyors. Furthermore, repeating the 

survey in the field may be a waste of time and resources when the disagreement is 

on the paper.  
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The least squares 2D coordinate transformation approach was validated with the TS 

as-built survey. The survey marks which were out of tolerance as a result of the 

model application were really out on the ground. Incorporating different numbers of 

chainages in the analysis never changed the outcome. The approach has also proved 

that coordinate system differences be removed first before comparing with the 

project specifications. Hence, the method demonstrates its robustness to position 

fixing for the alignment master points, centre line-left side of dual carriageway: the 

Lilongwe Western By-pass Road. This section had coordinate mismatch due to 

differences in coordinate systems and the study has unveiled the discrepancies using 

mathematical models. The paper has also provided profound technical advice to 

engineering surveyors on the determination of residuals from two sets of coordinates 

in different coordinate systems.  

It can therefore be discerned that the engineering surveyor can re-survey station 

numbers one to 5 in order to establish the geometric relationship between the two 

sets of coordinates. The necessity of redoing the survey is to reduce the linear errors 

so that the discrepancy becomes negative (as the accepted ones). In the course of the 

re-survey, the geomatics engineer should also undertake an independent check (for 

example, using different control points) of those stations within acceptable limits. 

Then, the station coordinates for both sets: those within limits and outside should be 

included in the analysis to for outlier detection.  

The analysis in this research involved only the seven chainages because it was 

surveyed twice as a result of physical inspection of the datasets. For this reason, the 

results are just restricted to this stretch of the road. Further research will involve 

larger sample size and parameters will be determined using the Cholesky 

decomposition and the centroid method (not discussed in this paper). The computed 

rotation angle, the scale factor and the translations will be used in weighted least 

squares for outlier detection.  

Acknowledgements 

The author acknowledges the reviewers comments which refined the coherence and 

presentation of this paper. 

 

 

 

 



Robert S.B. Galatiya Suya 

___________________________________________________________________ 

55 

 

References 

Abidin, H. Z., Sutisna, S., Padmasari, T., Villanueva, K. J. & Kahar, J. (2005). 

Geodetic datum of Indonesian maritime boundaries: Status and problems. Marine 

Geodesy, 28(4):291–304. doi: 10.1080/01490410500411745. 

Allan, A.L. (2007). Principles of geospatial surveying, Scotland: Dunbeath. 

Awange, J. L., Bae, K. H. & Claessens, S. J. (2008). Procrustean solution of the 9-

parameter transformation problem, Earth, Planets and Space, 60(6):529–537. doi: 

10.1186/BF03353115. 

Congalton, R. G., Goodchild, M. F., Habib, A. F., Bossler, J. D., Snay, R., Habib, A. 

F. & Habib, A. F. (2001). Manual of Geospatial Science and Technology. Manual of 

Geospatial Science and Technology 95–114.  

Gauss, C.F, and Davis, C. H. (1963). Theory of the motion of the heavenly bodies 

moving about the Sun in conic. New York: Dover. 

Ghilani, C. & Wolf, P. R. (2010). Adjustment computations: Spatial data analysis. 

(5th ed.). Hoboken, New Jersey.  

Greenfeld, J. S. (1997). Least Squares Weighted Coordinate Transformation 

Formulas and their Applications. Journal of Surveying Engineering 123(4):147–161. 

doi: 10.1061/(ASCE)0733-9453(1997)123:4(147). 

Hong-sic, Y. (2004). Computer program for datum transformation by a 10-

parameter model, Computers and Geosciences 30(7): 777–783. doi: 

10.1016/j.cageo.2004.05.003. 

Hofmann-Wellenhof, B. & Moritz, H. (2006). Physical Geodesy.  (2nd ed.). Wien; 

New York. 

Kavanagh, B.F. (2007). Surveying with construction applications (6th Ed.). Upper 

Saddle River, N.J. 

Lwangasi, A. S. (1993). Datum Transformation Parameters for The Kenya Geodetic 

System. Survey Review 32(247): 39–46. doi: 10.1179/sre.1993.32.247.39. 

Nahavandchi, H. & Sjöberg, L. E. (2001). Precise geoid determination over Sweden 

using the Stokes–Helmert method and improved topographic corrections, Journal of 

Geodesy, 75(2–3): 74–88. doi: 10.1007/s001900000154. 

Mihajlović, D. &  Cvijetinović, Ž., (2017). Weighted coordinate transformation 

formulated by standard least-squares theory. Survey Review 49(356):328–345. doi: 

10.2478/v10156-011-0036-5. 

Moffitt, F. & Mikhail, E. (1980). Photogrammetry. (3rd edn.), Harper & Row, New 

York. 



A robust approach to position fixing: Two-dimensional … 

___________________________________________________________________ 

56 

 

Saeedi, S. S., Farhad; El-Sheimy, Naser. (2009). Vision-Aided Inertial Navigation 

for Pose Estimation of Aerial Vehicles. Proceedings of the 22nd International 

Technical Meeting of the Satellite Division of the Institute of Navigation (ION 

GNSS 2009): 453-459 

Schofield, W. &  Breach, M. (2007). Engineering sSrveying. (6th ed.). Amstedam: 

Boston. 

Sisman, Y.(2014 a). A Full-Factorial Design Approach for Coordinate 

Transformation, Arabian Journal for Science and Engineering 39(1):227–235.  

Sisman, Y. (2014 b). Coordinate transformation of cadastral maps using different 

adjustment methods, Journal of the Chinese Institute of Engineers, Transactions of 

the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch’eng Hsuch K’an  

37(7):869–882.  

Sorenson, H. (1970). Least-squares estimation: From Gauss to Kalman. Spectrum, 

IEEE, 7(7), 63-68. doi: 10.1109/MSPEC.1970.5213471. 

Uren, J. & Price, W. F. (1994). Surveying for engineers (3rd ed.). Basingstoke. 

Wu, Y., Liu, J. & Ge, H. Y. (2016). Comparison of Total Least Squares and Least 

Squares for Four- and Seven-parameter Model Coordinate Transformation, Journal 

of Applied Geodesy 10(4). doi: 10.1515/jag-2016-0015. 

Yang, Y. (1999). Robust estimation of geodetic datum transformation. Journal of 

Geodesy, 73(5):268–274. doi: 10.1007/s001900050243. 

Ziggah, Y. Y., Youjian, H., Amans, C. O., Fan, D. L. & Engineering, S. (2013). 

Determination of GPS Coordinate Transformation Parameters of Geodetic Data. 

International Journal of Engineering Sciences & Research Technology 2(4):1–16.  


