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ABSTRACT 

This study underscores the critical role of graph theory in optimizing the functionality of Wireless 

Sensor Networks (WSNs). Our research aims to enhance network efficiency by utilizing a variety of 

centrality metrics, including degree, betweenness, closeness, eigenvector, Katz, PageRank, subgraph, 

harmonic, and percolation centrality, to identify pivotal nodes. Employing an extended Barabási-Albert 

model graph of a 50-node network, our methodology focuses on pinpointing nodes crucial for optimal 

data processing, monitoring, and analysis in WSNs. This comprehensive approach deepens our 

understanding of sensor networks and significantly boosts operational efficiency by leveraging strategic 

node functionalities. The findings from our study are poised to revolutionize network management 

strategies, promoting the development of more robust and efficient WSN operations. 
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1. INTRODUCTION 

In contemporary technology, Wireless Sensor Networks (WSNs) have emerged as foundational 

components across diverse domains, including environmental surveillance, urban smart 

infrastructure, and automated industrial processes. These networks, comprising spatially 

distributed, autonomous sensors, monitor various physical or environmental parameters such 

as temperature, acoustics, vibration, pressure, motion, and contaminant levels across different 

locales. Recent advancements in WSN applications highlight the growing need to enhance 

operational efficiency and reliability, a crucial area of research in recent studies (Anisi et al., 

2011; Zytoune et al., 2010; Li et al., 2023; Dudin et al., 2014). 

This paper introduces a novel approach to analyze WSNs by applying a spectrum of 

centrality measures—degree, betweenness, closeness, Eigenvector, Katz, PageRank, subgraph, 

harmonic, and percolation centrality. These metrics serve as tools to identify and examine 

nodes of paramount importance within networks, which are critical in data acquisition, 

dissemination, surveillance, and analysis. Such nodes significantly influence the network's 

http://dx.doi.org/10.4314/mejs.v16i2.7
mailto:suneelakallakunta@gmail.com
https://orcid.org/0009-0000-9169-3815
https://orcid.org/0009-0000-9169-3815
mailto:salluri@gitam.edu
https://orcid.org/0000-0001-6872-8004


 Suneela Kallakunta and Alluri Sreenivas (MEJS)                                  Volume 16(2):289-295, 2024 

 

© CNCS, Mekelle University                            290                                                         ISSN: 2220-184X 

 

resilience, operational efficiency, and data accuracy (Njotto, 2018; Mbiya et al., 2020; Ugurlu, 

2022). 

Our research uniquely focuses on methodically applying and examining these centrality 

metrics to pinpoint key nodes that sustain network integrity and functionality. By identifying 

these critical nodes, our study enables targeted enhancements and strategic interventions to 

improve network performance, reduce energy consumption, and extend network longevity. The 

insights and methodologies derived from this research contribute significantly to WSNs, 

promoting more efficient and durable network designs and operations. This work extends the 

current understanding of WSNs and sets the stage for future innovations, enhancing their 

efficacy and utility across a broad spectrum of applications. 

 

2. OPTIMIZING WSNS: INSIGHTS FROM GRAPH THEORY CENTRALITY 

MEASURES 

 

Graph theory, an essential branch of mathematics focused on analyzing interconnected systems 

through graphs, is particularly influential in studying and optimizing WSNs. In these networks, 

which consist of sensor nodes distributed over geographical areas, graphs depict nodes as 

sensors and edges as communication links, transforming complex network characteristics into 

manageable mathematical problems. This approach enables detailed network connectivity 

analysis, data pathways, and node roles, facilitating improved network design and operation 

(Klein, 2010). 

The application of graph theory in WSNs leverages various centrality measures to offer 

insights into node significance, enhancing network performance and management. Degree 

centrality points out nodes with many direct connections, which are crucial for network 

integrity and information dissemination. Betweenness centrality identifies nodes as essential 

conduits for data flow, improving network cohesion and efficiency. Closeness centrality 

evaluates how quickly a node can communicate with all other nodes, enhancing monitoring 

and response speed. Eigenvector centrality highlights nodes that, through strategic connections, 

exert substantial influence on the network (Latora et al., 2017; Gómez, 2019). 

Additional measures include Katz's centrality, which considers both direct and indirect 

connections, providing a broader view of node influence—vital in densely interconnected 

networks. PageRank assesses nodes based on the quality and quantity of their connections, 

focusing on their role in disseminating information. Subgraph centrality examines nodes' 

involvement in tightly knit groups, offering insights into local and comprehensive network 

dynamics. Harmonic Centrality, considering the inverse of shortest paths to all nodes, identifies 
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influential nodes even in partially disconnected networks. Percolation Centrality evaluates the 

ability of nodes to maintain network connectivity under various conditions, highlighting their 

importance in network robustness and fluidity of information flow (Piraveenan et al., 2013; 

Deverashetti and Pradhan, 2018; Ma et al., 2010; Estrada and Rodríguez, 2005; Mbiya et al., 

2020; Njotto, 2018). 

This strategic integration of graph theory into WSNs advances network performance 

and reliability and provides a structured methodology for addressing challenges in deploying 

extensive sensor networks. Beyond mere technological enhancement, applying these 

mathematical models has broad implications across diverse fields such as environmental 

monitoring, security, healthcare, and more. The adaptability and efficiency brought by graph 

theory showcase its potential to reshape technology solutions, meeting contemporary 

challenges and pushing the boundaries of digital innovation in various sectors. 

 

3. CENTRALITY MEASURES AND THEIR MATHEMATICAL FORMULAS IN 

GRAPH THEORY 

 

1. Degree Centrality (DC): 𝐶𝐷(𝑣) =
𝑑𝑒𝑔(𝑣)

𝑁−1
, where 𝐶𝐷(𝑣) is the degree centrality of node 𝑣, 

d𝑒𝑔(𝑣) is the degree of node 𝑣 (i.e., the number of edges connected to 𝑣), and 𝑁 − 1 

represents the maximum possible degree of 𝑣 in a network of 𝑁 nodes. 

2. Betweenness Centrality (BC): 𝐶𝐵(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
,𝑠≠𝑣≠𝑡  where 𝐶𝐵(𝑣)is the betweenness 

centrality of node v,  𝜎𝑠𝑡 is the total number of shortest paths from node 𝑠 to node 𝑡, and 

𝜎𝑠𝑡(𝑣) is the number of those paths that pass through 𝑣. 

3. Closeness Centrality (CC): 𝐶𝐶(𝑣) =
𝑁−1

∑ 𝑑(𝑣,𝑢)𝑢≠𝑣
, where 𝐶𝐶(𝑣) is the closeness centrality of 

node v, 𝑑(𝑣, 𝑢) is the shortest path distance between nodes 𝑣 and 𝑢, and 𝑁 − 1 is the total 

number of other nodes in the network. 

4. Eigenvector Centrality (EVC): 𝑥𝑖
(𝑘)

= ∑ 𝑎𝑖𝑗𝑗 𝑥𝑗
(𝑘)

, 𝑥𝑗
(0)

= 1,  where 𝑥𝑖
(𝑘)

 is the eigenvector 

centrality of node 𝑖 at the kth iteration and 𝑎𝑖𝑗 are the entries of the adjacent matrix.  

5. Katz Centrality (KC): 𝐶𝐾(𝑣) = ∑ ∑ 𝛼𝑘𝑁
𝑗=1

∞
𝑘=1 (𝐴𝑘)𝑗𝑣, where 𝐶𝐾(𝑣) is the Katz centrality 

of node v, 𝛼 is an attenuation factor that penalizes paths according to their length, and 

(𝐴𝑘)𝑗𝑣  represents the number of paths of length 𝑘 from node 𝑗 to node 𝑣. 

6. PageRank (PR): 𝑃𝑅(𝑖) =
1−𝑑

𝑁
+ 𝑑 ∑

𝑃𝑅(𝑗)

𝐿(𝑗)
,𝑗∈𝑀(𝑖)  where PR(i) is the PageRank of node i, N 

is the total number of nodes in the network, and d is the damping factor, usually set to 
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around 0.85, which accounts for the probability that a node communicates directly with 

another node versus randomly linking to a node in the network. M(i) represents the set of 

nodes that link to node i (in the context of WSNs, these are the nodes that directly 

communicate with node i. L(j) is the number of links (or direct communication connections) 

that node j has. The term 
1−𝑑

𝑁
 is a factor that ensures there is always a chance of reaching 

any node, providing a baseline importance level to every node. 

7. Subgraph Centrality (SC): 𝑆𝐶(𝑖) = ∑
(𝐴𝑘)𝑖𝑖

𝑘!

∞
𝑘=0 , where SC(i) is the subgraph centrality of 

node i, A is the adjacency matrix of the network, 
(𝐴𝑘)𝑖𝑖

𝑘!
 is the i-th diagonal element of the k-

th power of the adjacency matrix A, representing the number of closed walks of length k 

starting and ending at node i and k! normalizes the count of walks based on their length, 

making longer walks contribute less to the centrality measure due to the factorial term in 

the denominator. 

8. Harmonic Centrality (HC): 𝐶𝐻(𝑣) = ∑
1

𝑑(𝑢,𝑣)
,𝑢≠𝑣  where 𝐶𝐻(𝑣) is the harmonic centrality 

of node v, d(u,v) represents the shortest path distance between node u and node v, and the 

summation is taken over all nodes u in the network except v itself. If d(u,v) = ∞ (i.e., if u 

and v are disconnected), then 
1

𝑑(𝑢,𝑣)
= 0. 

9. Percolation Centrality (PC): 𝑃𝐶(𝑣) =
1

𝑁−2
∑

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
(𝑥𝑠 − 𝑥𝑡),𝑠≠𝑣≠𝑡  where 𝑃𝐶(𝑣) is the 

percolation centrality of node v, xs and xt are the states of nodes s and t respectively, with 1 

indicating an active (functioning) state and 0 indicating an inactive (failed) state.  

In this paper, we utilized Python programming to construct and analyze a network 

comprising 50 nodes, along with the implementation of various centrality measures to assess 

node significance within the network. 

 

4. RESULTS  

Our analysis is highlighted in figure 1, which presents a network modeled on an extended 

Barabási-Albert graph with 50 nodes. This choice is based on the original Barabási-Albert 

model, known for generating scale-free networks through preferential attachment, where nodes 

with higher degrees are more likely to acquire new connections (Zadorozhnyi and Yudin, 

2014). Such a model mimics the degree distribution commonly observed in many real-world 

networks characterized by a power-law distribution. Consequently, this results in a network 

structure where a few nodes act as significant hubs with considerably higher degrees while 
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most have lower degrees. Using 50 nodes allows for a manageable yet sufficiently complex 

network to effectively demonstrate the utility of various centrality metrics in identifying crucial 

nodes. These metrics include degree, betweenness, closeness, eigenvector, Katz, PageRank, 

subgraph, harmonic, and percolation centrality. As shown in table 1, our findings rank these 

nodes based on their centrality, providing a detailed examination of each node's unique role 

and importance. This analysis helps to elucidate their contributions to the overall architecture 

and functionality of the network, shedding light on how pivotal nodes influence network 

dynamics and efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graph Configuration of a 50-Node Network. 

 

Table 1. Node Rankings: Network Centrality Metrics in 50-Node Network. 

Rank DC BC CC EVC KC PR SC HC PC 

1 4 4 0 0 4 4 0 4 4 

2 2 5 3, 4 4 0 2 4 0 5 

3 0, 5 2  3 2 5 2 3 2 

4  0 2, 5 2 3 0 3 2 0 

5 3, 9 3  5 5 9 5 5 3 

6  9 9 9 9 3 9 9 9 

7 12, 14, 26 14 14 14 14 26 14 14 14 

8  20 6, 20 8 8 14 8 20 20 

9  18  6 20 12 26 8 18 

10 8 26 8 20 26 18 10 10 26 

 

5. CONCLUSIONS 

In conclusion, our research presents a comprehensive analysis aimed at enhancing the 

efficiency and resilience of WSNs through the strategic identification of key nodes using a 
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suite of centrality measures which computed through Python. By employing an extended 

Barabási-Albert model to represent a 50-node WSN, we have successfully pinpointed nodes 

critical for the network's optimal data processing, surveillance, and analytical functionalities. 

This identification is made possible by leveraging centrality metrics such as degree, 

betweenness, closeness, eigenvector, Katz, PageRank, subgraph, harmonic, and percolation 

centrality, each providing unique insights into node significance within the network's 

architecture. Our findings reveal that specific nodes play pivotal roles in maintaining network 

integrity, facilitating efficient data dissemination, and ensuring the robustness of the entire 

system. The rankings presented in Table 1 underscore the varied importance of nodes based on 

different centrality dimensions, offering a nuanced understanding of network dynamics that 

can inform targeted interventions for network enhancement.  
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