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ABSTRACT
A class of Ruscheweyh — type harmonic functions associated with both sigmoid function and
probabilities of the generalized distribution series is defined using g —differential operators.
We then establish properties of the class such as coefficient estimate, distortion theorem,
extreme point and convex combination condition. Several applications of our results are
obtained as corollaries by varying various parameters involved.
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1. INTRODUCTION
Denote by H the set of all harmonic univalent functions of the form f(z) = h(z) + g(z) which

are sense-preserving in the open unit disk 4 = {z: |z| < 1} where h and g are also of the forms

h(z) =z+ Y, arzt and  g(z) = Xi, by 2% €))

As usual we denote by A, the class of functions h(z) which are analytic in 4 and are of
the form (1) and S to be the subclass of A consisting of univalent functions. Ruscheweyh
(1975) introduced and investigated the class X, and treated only a few properties to establish

the criteria for univalence of the functions h(z) in .

Innumerable papers have surfaced and still surfacing in the literatures dealing with
various subclasses of the harmonic univalent and other related functions classes. For example,
Lewy (1936) proved a necessary and sufficient condition for the harmonic function f(z) =
h(z) + g(z) to be locally one-to-one and orientation-preserving in 4 is that its Jacobian I =
|h'|? — |g'|? is positive or equivalently, if and only if h’(z) # 0 in 4 and the second complex

dilation w of f satisfies |w| = |g'/h'| < 1 in A. Later, he also proved that for homeomorphic
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harmonic gradient mappings, the Jacobian determinant has no zeroes in three dimensions (see
Lewy (1968)).

Clunie and Sheil-small (1984) proved that the necessary and sufficient condition for f
to be locally univalent and sense-preserving in 4 is that |h'(z)| > |g'(2)|. Clearly, |b;| < 1
and the family reduces to the well-known class of normalized starlike analytic univalent
functions if the co-analytic part of f is equal to zero, that is if set g = 0. The Goodman-Roming
type class Sy(p,i,j, ¢, ¥; a) of harmonic functions involving convolutional operators was
introduced by Sharma (2012). The author obtained a sufficient coefficient condition for the
normalized h to be in the class, which also is necessary for the functions in its subclass T'Sy.

Kanas and Raducanu (2014) used the g-difference operator d,f(z) to defined the extended
Ruscheweyh differential operator R{} and used it to defined subclasses of analytic functions
ST(k,a,A,q) and UCV (k,a, A, q). In Magesh et al. (2014), sufficient condition for f of the
form £(z) = h(z) + g(z) tobeinthe class G, (®, ¥; B, y;t) proved and it was shown that the

same condition is also necessary for functions to be in Gz (@, ¥; B,v; t). By making use of the

Salagean g-differential operator of harmonic functions f(z) = h(z) + g(z) defined by
DJ'f(z) = DJ*h(z) + (—1)’”%, Jahangiri (2018) introduced and studied the class
H7*(a) and its subclass Hy*(a) for 0 < a < 1. Properties such as sharp coefficients bounds,
distortion theorems and covering results were established.

Gbolagade et al. (2018) established some results involving coefficient inequality,
distortion bounds, extreme points, convolution and convex combinations for the class
Ty n(a, 4, u, B) of Goodman Ronning type using Salagean operator.

In Awolere and Emeike (2019), the subclass T (1) of harmonic functions associated
with Error function and Salagean operator was introduced and investigated by using
convolutional approach. The coefficient estimate, distortion bounds, growth theorem, extreme
points and convex combinations were established. By employing convolution via generalized
polylogarithm and subordination methods, Oladipo (2019) investigated the polynomials whose
coefficients are generalized distribution, obtained the upper bounds for the first few coefficients
of the classes S} (b, pi) and established their relevant connections to Fekete-Szego classical
theorem.

The class #g"(4,y) of Ruscheweyh-type g-calculus harmonic functions and its
subfamily HJ" (4, y) were defined in Murugusundaramoorthy and Jahangiri (2019). The class

HF*(A,y), is aclass consisting of f € 7 satisfying
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2D, (RI'f ()
A <<1 ) P A(RZ"f(Z))) =0

Where, zed={z:|z| <1},0<1< 1,2 = aa_e(z = reig),

zD,(RI'f(2)) = zDy(RMh(2)) — 2D, (R{{‘g(z)).

This is just to mention but a few (also see, Ahuja and Jahangiri, 2002; EI-Ashwah and
Aouf, 2015; Darwish et al., 2014; Jahangiri, 1999, 2018; Sharma, 2012; Vijaya, 2014).

2. METHODOLOGY
The following preliminary results and definitions (fundamentals) are needed to in the
subsequent section where our main results will be established. Recalling these fundamentals is
necessary to acquaint the reader with the content.

Jackson (1909) conceptualized the application of g-calculus to analytic functions in
1908. If 0 < g < 1, Jackson’s g-derivative of the function h(z) = z + Y5, a; z*belonging
to S is given by

hz)-haz) for z # 0,
D,h(z) ={ -0z (2)
h1(0) for z =0,

and

DZf(z) = Dy(Dyf (2)).
Obviously for h(z) in (1) and from (2a), we have

Doh(z) =1+ ) [k]qa,z*? (3)
q kzzz q“k

_qk
Where, [k], = %. In case when k = n € N we obtain [k], =1+ q + ¢*+...+¢™*, and

when g —» 1" then
[klq = k. (4)
For more details and application of g —calculus in relation to analytic univalent
function, refer to Jackson (1909); Jahangiri (2018); Srivastava et al. (2018);
Murugusundaramoorthy and Jahangiri (2019). Kannas and Raducanu (2014) introduced and
investigated the Ruscheweyh-type g-differential operator as:
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o0 Vq(k+m)
Rglh(Z) =z+ 2k=2#¢£+m)ak2k' m>—1. (5)

Also,welet f(z) =z + X5, a"s‘l zk, S=Y¥%  arand a; =0 (6)

be the polynomial whose coefficients are probabilities of the generalized distribution
investigated in Oladipo (2019; and Porwal (2018). Recently, modified sigmoid function is
defined as Fadipe-Joseph et al. (2013):

fr(@ =z + Loy ()ay 2", (7)

2
1+e~s

referred to (Fadipe-Joseph et al., 2013) and references therein.

Where, y(s) =

and S = 0. For more about sigmoid function, interested reader is

For f(z) given by (6) and with the Taylor series g(z) =z + X, b"s‘lz", the
Hadamard (or convolution) denoted by f * gis defined as
_ c Ay-1 bk—l k
Fr@ =2+ (22)(22). (®)
k=2
Now from (8) and by using (3), (5), (6), and (7) we defined
o  [klgVq(k+m) -1 _f—
Dg(RTA(2)) = 1+ Xiea fm i v ¥ () 2! 9)
Furthermore, we define
2Dy (RMhyy(2)) = 2 — B3, [k] g 1™ (5) Bt pm (10)
a\"a vy k=2l"%la G2 gaem ¥ S
and
= Jalk+m) by
2Dg (R 9y () = ) [K] y(s) 2 %, (11)
Q( q Yyy ) ] q(k—l)' \/E(l_l_m) S
where
ZDq(Rzznfw/J(Z)) = qu(RZI”hW,(z)) + qu(RZI"gW,(Z)). (12)
Remark 1

a
If s =0, % =a, reduces D,(RI*h,,;(2)) to

- ~ o [klg/q Uk +m) .
D, (Rq h(z)) =1+ kZz e \/6(1 P ayz

which was studied by Murugusundaramoorthy and Jahangiri (2019).

(13)
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Our motivation is from earlier literatures mentioned and particularly, the work of
(Murugusundaramoorthy and Jahangiri, 2019). Now, using (9), we state the following
definition:

Definition 1: Let f € H*(A,0,a,6,S,y(s)). Then
Relelf ZDq(RZJan(Z» -
-Dz'+A(RT fyp(@) ) ) —

Where,zeA,OS/ls1,z’=;—9(z=rei9),0Sa<1,0§a<1,y(s)=

ZDq(RZInfyw(Z))
(1-z"+A(RT Fyp(2))

-1+ «, (14)

and s

1+e~S

is real.

Remarks 1:

The following special cases which are new, clearly demonstrate the significance of the class
H*(A,0,a,0,S,v(s)) where g = y.

(i) Ifg-17,thenH{"(1,0,a,0,S,v(s)) =R}(Lv,,0,S,y(s))

consisting of functions f € H satisfying

Re{et® 2D (Rmfw (Z)) =
(1-D)z"+A(R™fy(2))

Where, R™f,,(z)is the Rushewehy differential operator defined in Rushewehy (1975)

zD (Rmfyw (z))
(1—/1)Z’+A(Rmfy¢(z))

~1|+a (15)

involving probabilities of generalized distribution and which is new and shall be treated as a

corollary in this work.

(i) fg—-17,and m =0, then H’(4,0,a,5,v(s)) =H 2 (4,v,a,S,y(s)) is the class

consisting of the function f € H satisfying

i6 zf'yy (@ >
Re{e ((1—/1)2’+/1fy1p(2) =4

which is also new and shall consequently be treated as corollary.

Zf,yw (2) .
1-Dz'+Afyy(2)

1| +a, (16)

@iii) fg—->1",m=0,and1=0,0 =0,0 =0, then H?(0,,0,S,y(s)) = SH 2 (a,y(s))

is the class that consists of function f € H

Zflyw(z))
— T | >
Re( fre@ ) = a, (17)
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(iv) If2=0,then H*(0,0,a,S,y(s)) = NH* @ (v, a,y(s)) consisting of functions
f € H satisfying

Z

which is also new and will be treated as a corollary.
v) faA=1, H (A, 0,aS,y(s) =H < (v,a,y(s)) consists of functions f €

zDq (Rg“fy,/, (z))

!

- 1‘ +a, (18)

Z

H satisfying
Re{e' 2Du(RY (@) >0
Ry fyy(2)

To show that the H[*(4,0,a,0,S,y(s)) generalizes other known classes, we state the

ZDq(Rglfle(Z))
RG' fyy(2)

— 1‘ +a. (19)

Remarks 2:

following as its special cases:

Q) Wheno =0,06 =0,5 = 0,s = 0 we have

D, (R™
#H™(1,0,a,0,0,7(0)) = Re #Da (RS ) >a
(1- Dz + A(Rgnf(z))
D, (R™
= H'(1,y) = Re 7D (RP /@) >y (20)

(1—Az' + 1 (Rg,nf(z))
when a = y.
The class Hg"(4,y) is the class defined in Murugusundaramoorthy and Jahangiri

(2019).

(i) Letqg = 17 in(20), then H{"(4,¥) = R4 (4, y) such that for functions f € ', we have

zD(Rmf(z))
that Re {((1_1)2,”(%“2)))} =y, m>-—1,

Where, R™f(z) is the differential operator defined in (Ruscheweyh, 1975) and H™(1,y) is
the class studied by Jahangiri et al. (2004).

(iii)  Let A =1in (20), then HJ*(1,y) = H*(y) such that for functions f € #, we have

Zf’(Z) . . . . ..
that Re (m) > y which is the class studied in Vijaya (2014).

(iv) Letgq—-1",m=0,1=0 in (20) then . (0,y) = N;-(4,y) such that for functions
f € H,we have that Re(f'(z)) = v, studied in Ahuja and Jahangiri (2002).
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(v) Letgq—-1",m=0,1=1in(20) then #2(1,y) = SH(A,y) such that for functions

f € H, we have that Re( ;(i))) > v, studied in Jahangiri (1999).

In the next section, we shall state and prove the main results in this present work:

3. RESULTS

THEOREM 1: Let f € H*(2,0,a,6,S,¥(s)). Then

Li=2 ‘pqy(k: m) [[k]q(d +cos0) —A(o + a)] |ak5—1

+ Yi=1 Pqy (k,m) [[k]q(cos 6—o0)+

Ala + a)] |

-« (21)

Proof: From Definition 1, we have that

Re {e® Da(RF 4/ 2) >0 2Da(RY () -1 +a (22)
(1—;1)z+/1(Rg"fy(z)) = |a-Dz+A(RT S (2)
If we denote by
_ Vq(k+m)
Qqy(k,m) = m)’( ) (23)
Then we have  RI'f,(2) = z = %is gy (k,m) 228 + T2, gy (k, m) Dt 1zk (24)

oo

= D, (R(rznfy(Z)) =z— Z[ lq®qy (k,m) Ap—1 K Z 140y (k) by 1k 25)

k=2 k=1

Thus, on substitution for (25) in (22) yields

1= Sl g0q e m) B2 2671 52 (1], (k) 2t 701
Zic=2 A% (k,m) %Zk + Xkt /1(Pq (k,m) Ifg‘_l'z

0o k— k-1_ k bk—l Sk—1
>g 1- Zk 2[ ] Zk 1[ ]q§0q( ,m)—— (26)
1-A+X5 2/1<pq(k m) Zk+Z,°;° 1 Apq(km) k zk

Red et

Further simplification yields

cos 0 — Y-, cos 0 [k] 9, (k,m) %Zk_l — Yy cos 0 [k] 0, (k,m) %z’“l

(o] a — —_ (o]
1-Y2, 0.k, m)%zk L4 3, Ag,
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11— SRkl gq (ke m) 451 261 — 52 K]0, Ok, m) 2t 74

>0l ——
> - - . S
1= iz Apq (e, m) M + Xye1 Agq(k,m) lfg L zk-1

1-%iZ,
o —Zk 1[k]quq(km) D=1 zk1
\ 1-33 2/’L<pq(km) 1+Z;° 1 A9 q(km)— Dk=17k-1

27)

Since, |Re(z)| < |z| for all z we note that e?® = cos 6 + i sin @ and we are dealing

with real part and therefore (27) becomes

0 Ay — _ . b, _ _
cos 0 — Yi[kly cos 6 ¢gy (k, m) =2 271 — F32 [k, cos 6 g (k, m) = 271

%] a _ _ o b ~ _
1= k=2/1§0qy(k,m)%zk Lt Yi=1 A9y (k,m) ]fgl'zk 1

1 k—1+2,;00 2[ ] k 1,k-1

k 1

- Xke 1[ ]
1-332, A9 qy (k)5

v

(28)

1k

—Lzk-143%  A@qy(k, m)

Since |Re(z)| < |z| for all z, we have

cos 6 — Xy=[klq cos 8 ¢q, (k,m) = ak L2171 = Yesalk]g cos 6 g (ke m) %zk‘l
[ee] _ _ . b B _
1= Yicz2 A9y (kym) %Zk Lt Yie1 Apgy (k,m) Ifg 17k-1

> g 1-Yr 2[0& k]qa+al]<pqy(k m) Y- 1[0/1— k] a+a/1]<pqy(k,m). 29)

1= 2xtaA@qy (k,m) k 2R+ X Apgy (K, m) —L Zk-1

Choosing value of z on the real axis, so that

Dg(RT
q( q f(Z)) (30)
(1-Dz+2(Rf(2))
is real, and letting z - 171, through real axis, we get
k-1 b1 k-1
[k]q4 cos B @gy, (k,m) | | |z = > [klq cos 8 @qy (k,m) S [z
k=2 k=1
< Z,}'c’:z[a/l — [klqo + a)l]cpqy(k, m) |2t |Zk_1|—S Z,io:z[a/l — [k]go +

al]pg, (k,m) |% |25 + cos 6 — a, (31)
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which implies the complete the proof.
Let & = 0 in Theorem 1, we have Corollary 1

Corollary 1: Let f € HX(0,a,4,5,S,v(s)). Then

Z ooy 41 +0)—2A(c + a')] |ak 1| N Z 00y () [[k]q(l —0)+ Ao+ a)] |bk 1

1—-«a 1—-«a

If s=0 in Corollary 1, we corollary 2.

Corollary 2: Let f € H(0,a,4,0,S,¥(s)). Then

Z(pq(k ) lq(a+0) - A(a+a)]|ak1

1—«a

+Z<Pq(k m) (a—0)+/1(a+0)]|bk 1

1—«a

_ Iy (k+m)
Where, ¢, (k,m) = DIy
If 6 =0, ¢ =0inTheorem 1, Corollary 3 is immediate.

Corollary 3: Let f € H*(0,a,1,0,S,y(s)). Then

= k], — oA a qtal||b
> gy e, m) |2 1|+Z<pqy(k . — b
k=2

S

<1

3.1. Growth and Distortion Theorems

THEOREM 2: Let f € H*(6,a,4,0,S,y(s)). Then

bo)
5 T
I(1+m) cosf — a

Y($)I;(2 +m) [[2]4(cosb + o) — A(a + o)

bol] ,

el < (1+

+cosf — a
[2],(cosB + o) — A(a + o)
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and
r@is (14 [
- S
I(1+m) cosf — a
- Y($)IL(2 +m) [[2],(cosb + o) — Ala + o)
+cosf — a b, 5 .
_[2]q(c056+0)—ﬂ(a+a) ?lr (33)

Proof: Sincef € H*(6,a,4,0,S,y(s)). Then

b o _ by b o - b
ron (1o ) sl )< o0 ) s (] o )
bo
= (1+ )
cosf — a - [2]4(cosb + 0) — Aa + 0) gy (2,m) (a5
+ [2]4(cosO + o) — A(a + o) Pay (2,m) kZ—z cosh — a <| S
bk—l 2
+)r (34)
and so
|f (2]
<(+[5))
< S|)7
0 — > (2 0 +0)—Aa+ 2, _
N cosf — a 00y 20) Z [2]4(cosO + o) — Aa + 0) g, (2,m) a4
[2]4(cosB + o) — A(a + o) — cosO — a S

N [2],(cosO + 0) — Ala + 0) @4y (2,m) |by_4 )rz

cosl —a S

= (1 + )r

N cosb —a cosd —a+ Ala + o) |br_1
[2]4(cosB + o) — A(a + 0) g, (2,m)

= (1+ [

bo

S

cosl — «a S

)
S

1 cosf — a cosf —o + A(a + o) bol\ , 35
+ Pqy(2,m) <[2]q(c056 +0)—Ala+ o) B [2],(cosB + o) — A(a + o) ?D (35)
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The method of proof of (32) is similar to that (31) making use of

Jrk=(1+

THEOREM 3: Let f € H™(0,a,1,5,S,y(s)). Then

Ak—1
S

[
S

f(z) = (1+

bo
S

)r =T

bg—1
+ [

bo
S

)7”—7"221%0:2(

bg—1
+[

) 39

b
ff(z) <1+ |?0|
2I,(1+m) cosf — a
B Y52 +m)|[[2]4(cosb + o) — A(a + o)

by
S

cosf@ —o + A(a + o)
[2]4(cos6 + o) — A(a + o)

l r (37)

b
f'iz) =1+ ’?0’
I(1+m) cosf — a
Y52 +m) [[2]4(cosO + o) — A(a + o)

bg
S

cosf —o + A(a + o)
[2]4(cos6 + o) — A(a + o)

lr (38)

The proof (37) and (38) are similar to proof in Theorem (2) except that we make use of

= P Sk (e« ) s (1 [ 2mma]+ P]) o
and
Fr@iz [ e sk (P PR < (0 B s (P ) e
Corollary 4: Let f € H*(0,a,4,0,s,y(s)). Then
s o+ f2)

21:7(]_'+ 171) 1—«

yOL2+m)|[2],(1+ o) — A(a + o)
Ma+o)+ (1 —0) |b
" [21;(1 + o) — A(a + o) ?lr (41)

and
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b
s f2)
2I[;(1+m) 1—a
TYOLE+m |21, +0) - Aa+0)

Ma+0o)+ (1A —-0) |by
[m41+@—zm+a)?lr

Corollary 5: Let f € H*(0,a,4,y,S5,y(0)). Then  f'(z) < (1 + bs—o )
and
21+ m) 1-a

IL2+m) |[2],(1 +0) — A(a + o)

Ma+o0)+(1-0)
[2],(1+ 0) — A(a + o)

by
S

]r
and
bo
r@ = (1+[5)
2I,(1 +m) 1-a
IL2+m) |[2],(1 +0) — A(a + o)

Ma+o)+(1-0) bolr

[2],(1+0) — A(a + o) S
Corollary 6: Let f € #*(0,0,4,7,s,7(0)). Then

r=(+[2)

2I;(1+m) 1
I;2+m) |[2],(1+0) — 4o
Ao+ (1—0) |b

2],(+0)—10lS lr

r=(+[2)

2I;(1+m) 1
r;2+m) |[2];(1+0) — Ao
Ao+ (1 —0) |bg

|

© CNCS, Mekelle University 208

[2],(1+0) - 20 S

(42)

(43)

(44)

(45)

(46)
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For two harmonic functions

-1

fo(@) = 2 — Tit, |4 2 + T, |4 2 (47)
Fy(2) = 2 = X |° "+zk1” =117 (48)
We defined the convolution of two harmonic functions f and f = h + g by

(o * Fo)(2) = 2 — Xty || [Pt 2% + mi, || || 2° (49)

Using the immediate definition above, we show that the class H,;n(e, a,ly,S, y(s)) is
close under the convolution.

THEOREM 4: Let f € H™(6,a,4,0,5,y(s)) and F € H*(6,a,4,0,5,y(s)). Then

(fs * Fg)(z) € HM(0,a,1,0,5,7(s)).

Proof: Let
fo(2) =z - X, zF + Yo 1|aks1 z°, (50)
Fo(z) = z — T, [%=t| 2% + ype, || 2 (51)

be in class #*(6,a,4,0,S,y(s)). Then the convolution f * Fy is given by (49).

We are to prove that the coefficient of fy * Fy satisfy the required condition given in Theorem

1. For Fy € HJ*(6,a,4,0,5,y(s)), we note that |% <1 and % <1.

Now for the convolution fy * Fy, we obtain

Z Pqy (e, m)[[K]q(y + cos 6) — A(y + )| |a,c 1 ak 1
cosb —a
z gy (k, m)[[k]q(cos 0—y)+Aa+ V)] by_1||bk-1
+
cosf —a S S
o  Paykm)[[Klg(y+cos 0)-Ay+a)] |az_y w wqy(k m)|[klq(cos 6-y)+A(a+V)] |b_y
SZ k=2 cosO—-a S +Z cosO—a S =1 (52)

Since f € 7-[;”(9, a, A, O',S,]/(S)), Therefore, f xF € 7—[5”(9, a, A, a,S,y(s)).

THEOREM 5: The class (6, a, 4,0,S,y(s)) is close under combination.
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Proof: For j = 1,2,3..., let f;; € H"(8,a,1,0,S,y(s)),where f; is given by

brj-1
S

_k
zk+ ¥, Z

(53)

fio(2) = z — ¥, [

S

Then by theorem 4, we have

P qy(km)[[klq(y+cos 6)—A(y+a)]
cos0—a

bk] 1
S

Akj-1
S

+ ZOO @qy(km)[[k]q(cos 6-y)+A(a+y)]
cosf—-a

Yic=2

For X72,t; =0, 0 <t; <1, the convex combination may be written as

<1 (54)

oo oo oo j—1 oo 0 byj—1
552 = 74 N (5524 22) 2 + 5, (N7, 6 242 24 (55)

By convolution-

i Oy (k, m)[[k]o (v + cos 6) — A(y + )] Z ak, .

cosl —a ;

<1 (56)

© <pqy(km)[[k]q(cos(9 Y)+A(a+y)] bk] 1
Yi= cosO—a 21 1Y

Thus, we have

o 4 [y @qy(km)[[k]q(y+cos 0)-A(y+a)]
j=1% k=2 cosO—-a

ZOO (pqy(k,m)[[k]q(cos9—y)+l(a+y)]
k=1 cosf—-a

Akj-1
S

+

brj-1

)sqs1 (57)

Therefore Y%, f;t; € H"(6,a, 2,7, S,v(s)), which complete the proof.

4. CONCLUSION

In this paper, we define a class of Ruscheweyh — type harmonic functions which generalizes
some well-known earlier classes of harmonic univalent functions as pointed out in Remark 2.
Special cases of the class studied also reduces to various new ones as illustrated in Remark 1.
Thus, we have presumably new special cases of the class defined in this work. Consequently,

interested reviewers can further investigate these presumably new classes.
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