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ABSTRACT 

In this paper, we address a single item supplier selection, economic lot-sizing, and order 

assignment problem under quantity discount environment and transportation costs. A mixed-

integer nonlinear program (MINP) model is developed with minimization of cost as its 

objective, while lead-time, the capacity of the supplier and demand of the product are 

incorporated as constraints. The total cost considered includes annual inventory holding cost, 

ordering cost, transportation cost and purchase cost. An efficient and effective genetic 

algorithm (GA) with problem-specific operators is developed and used to solve the proposed 

MINP model.  The  model is illustrated through a numerical example and the results show that 

the GA can solve the model in less than a minute. Moreover, the results of the numerical 

illustration show that the item cost and transportation cost are the deciding factors in selecting 

suppliers and allocating orders.  

 

Keywords: Supplier selection, Economic Order Quantity, Order allocation, Mixed-integer 

nonlinear programming. 

 

  

1. INTRODUCTION 

In today’s competitive market, firms strive to reduce their costs and maximize their profitability 

through an integrated planning and control of their entire supply chain. One function of supply 

chain management that has a potential cost-saving advantage is purchasing since raw material 

and component parts constitute the major cost of the product in some cases up to 70% 

(Ghodsypour and Brien, 1998; Setak et al., 2012). The purchasing function determines the right 

supplier(s) with the right supply quantity at the right time not only to improve profitability 

through cost reduction but also to improve firm competitiveness. Purchasing also involves 

decisions regarding the optimal allocation of the order quantities to suppliers and the best 

transportation mode to use to satisfy the buyer's demand. Past researchers and industry 

practitioners solved the supplier selection, the order allocation and the carrier selection problem 

independently (Choudhary and Shankar, 2014; Mendoza & Ventura, 2009). That is, three 

independent models will be developed so that the first model will select the suppliers and then 

the second model will determine the optimal allocation of order quantities among suppliers and 

finally the third model will select the transportation mode to transport the ordered items from 

the selected suppliers.  However, this approach could sometime result in a suboptimal solution 
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as it ignores the fact that the three decision making problems are interdependent on one another, 

and hence an optimal solution could be achieved by using an integrated modeling approach 

(Choudhary and Shankar, 2013; Liao and Rittscher, 2007; Mendoza and Ventura, 2009). In 

addition to the assignment of order quantities to suppliers, the supplier selection problem also 

needs to determine the optimal lot-sizing (economic order quantity, which is the amount of 

order at a time, when inventory costs are included in the cost function. However, only a few 

papers do consider the integrated decision of lot-sizing in the supplier selection decision 

(Pazhani et al., 2016). According to Ghodsypour and Brien (1998), there are two types of 

supplier selection problems, i) single sourcing, and ii) multiple sourcing suppliers selection 

problems. In the single sourcing, the supplier can satisfy the demand of the buyer in terms of 

quantity, delivery speed, and quality. Whereas, in the case of the multiple sourcing, no single 

supplier can fulfill the demand in terms of all the buyer’s requirement. In this case, the buyer 

has to make a decision in selecting suppliers and allocate orders among them. In this paper, a 

single product is considered for procurement from multiple  capacity-constrained suppliers 

with all-unit quantity discount offers. Since, the suppliers are located in different parts of the 

world, transportation cost for two (sea and air) alternative modes is also considered in the cost 

objective function. Once, the item arrives at a destination of one of the two alternative 

transportation modes, the item has to be transported to the main warehouse of the buyer using 

trucks. Hence, the model is made to include a transportation cost expression for using trucks in 

addition to the transportation mode selection cost function. The two modes of transportation 

are considered in the transportation cost modeling in spite of the obviously lower cost of sea 

transportation. But because the transportation cost from the ports to the warehouse and their 

impact on the speed of delivery in terms of lead-time are different. The cost function of the 

proposed model includes the inventory holding, ordering, transportation, and item costs. The 

lead-time, the capacity of supplier and truck capacity are considered as constraints.  In order to 

solve the mixed-integer nonlinear program (MINLP) model proposed for solving the problem 

in this paper, an efficient genetic algorithm with problem-specific operator is constructed and 

used. 

1.1. Literature Review 

Supplier selection is a typical multi-objective or a multi-criteria decision problem, where cost, 

quality, delivery performance, and geographic location are the most commonly used criteria 

(Kahraman et al., 2003; Mendoza, 2007; Weber et al., 1991; Zhang & Zhang, 2011). The 

supplier selection problem depending on the number of items to be procured, the number of 

suppliers used, and the planning period is categorized as a single or multiple items, single or 
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multiple sourcing, and single or multiple planning periods respectively. The single type 

sourcing is commonly used when the supplier has sufficient capacity to satisfy the demand 

otherwise the demand is split among suppliers and hence the name multiple sourcing (Benton, 

1991; Ghodsypour and Brien, 1998; Kilic, 2013; Razmi et al., 2009; Ustun and Demirtas, 

2008). Finally, the supplier selection problem ( SSP) is also classified as a single-period 

problem where the problem is formulated for a single planning period (Ghodsypour and 

O’Brien, 2001; Narasimhan et al., 2006). When the order allocation is considered for multiple 

planning horizons it is called multiple period SSP (Demirtas and Üstün, 2008; Reza et al., 

2008). The supplier selection and order allocation problem is complex when quantity discounts 

are considered instead of fixed prices for the items (Amid et al., 2009; Benton, 1991; Lee et 

al., 2013; Razmi and Maghool, 2010; Wang and Yang, 2009; Xia and  Wu, 2007). Since, this 

paper is concerned with studies that integrate supplier selection, lot-sizing, order allocation, 

and transportation mode selection, the review concentrates on these specific studies which also 

include quantity discounts. 

 Hong et al. (2005) developed a mixed-integer linear program (MILP) with maximizing 

the revenue as an objective function while finding the optimal number of suppliers and meeting 

the demand of the customer. Liao and Rittscher (2007) proposed a multi-objective model for a 

single item capacitated multi-sourcing supplier selection, procurement lot sizing, and carrier 

selection problem with a dynamic demand under no quantity discount environment. Rajan et 

al. (2010) also developed a MILP for the multi-product multi-supplier supplier selection 

problem for an agricultural equipment retailer. Ghodsypour and O’Brien (2001) formulated the 

sourcing problem as mixed-integer non-linear programming to find the optimum number of 

suppliers and order quantity that minimizes the total cost of logistics. In their proposed model, 

the transportation cost is not explicitly modeled though it is mentioned. Karpak et al. (2001) 

proposed a goal programming formulation of the supplier evaluation and selection problem 

setting quality, cost, and delivery performance as the goals. The goal of their model is to find 

the right order quantity while meeting both demand and supply constraints. Narasimhan et al. 

(2006) formulated multi-objective programming using a minimum order size, maximum 

available supply, stipulated price, quality, and promised delivery-performance levels as criteria 

to evaluate the suppliers’ performance. The authors recommended the use of and used 

analytical hierarchy process (AHP) to generate the relative weights of the five criteria. As it is 

the case with others, their model determines the optimal suppliers and the optimal order 

quantity. Wadhwa and Ravindran (2007) also developed a multi-objective formulation of the 

supplier evaluation and selection problem with the objective of minimizing price, lead-time, 
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and rejection. They proposed three different solution approaches and compared the result of 

each approach to determine the best approach. The solution approaches used in their research 

were weighted objective, goal programming, and compromise programming method. Amid et 

al. (2009) proposed a fuzzy multi-objective model with three objectives: minimizing the net 

cost, minimizing the net rejected items and minimizing the net late deliveries with demand and 

capacity as constraints. The proposed model for the single item considers price breaks, but the 

net cost of the objective did not include the inventory holding, setup, and transportation costs. 

Mendoza and Ventura (2013), unlike the above papers, considered the question of when to 

order in addition to how much and from which supplier, by incorporating the inventory holding 

cost. They developed a mixed-integer nonlinear program to determine the order quantities with 

the objective of minimizing the sum of the item, inventory, and transportation costs while 

satisfying the capacity and demand constraints. Lee et al. (2013) proposed a mixed-integer 

program for the multi-period lot-sizing problem with quantity discounts under capacity and 

storage space constraint. The proposed objective is to minimize total cost which consists of 

ordering cost, holding cost, purchase cost and transportation cost. Choudhary and Shankar 

(2014)  proposed a multi-objective integer linear program based on the minimization of net 

cost, percent of rejected items, and late deliveries to simultaneously determine the best 

suppliers, the supply quantity and the carrier to be used to transport the procured item for the 

capacitated SSP problem. 

The literature review suggests that the case of single item, capacity-constrained multi-

sourcing, supplier selection, and order allocation problem has been studied sufficiently. 

However, to the best of our knowledge the case with a quantity discount and intermodal freight 

cost has not been adequately addressed in the literature. This paper is aimed at developing a 

model that selects the best supplier(s), allocate order quantities to suppliers, and determine the 

economic lot size in such a way that it minimizes total cost while satisfying capacity, demand, 

and lead-time constraints. 

1.2. Problem Description and Model Development 

The procurement of a single item from multiple suppliers, which offer quantity discounts, is 

considered in the present case. The objective of the buyer is to split its annual demand of the 

items (𝐷) in to total order quantities among the suppliers ( 𝑑𝑖), determine the economic order 

quantity (𝑄𝑖), and select the transportation mode to deliver the item into its warehouse with  

minimum total cost, while meeting capacity, demand and lead-time requirements. In the case 

of a decision to use foreign suppliers, procured items would be shipped either by air (Mode 1) 

or sea (Mode 2) transport. Once the item reaches at the port of the selected mode of 
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transportation then it will be transported using trucks to the warehouse of the buyer. The model 

development stage starts by defining the objective function, in this case, the cost, which 

consists of the annual inventory holding, ordering, item, and transportation costs. The 

following notations are used in the model formulation. 

 

1.3. Notations (see Table 1) 

Table 1. Notations, descriptions and parameters.  

 Notation Description 

 

Sets 

i The set of suppliers        i = 1,2,3, … , I 
k The set of price break points      k = 1,2,3, … , K 

j The set of transportation alternative modes  j = 1,2 

 

 

 

Decision 

Variables 

 

 

Qi  Economic Ordered Quantity of the item from supplier i 
di The total amount of the item to be  purchased from supplier i  

di ∈  [di,k−1, dik], where dik is the maximum amount of supply 

in the kth discount interval 

Xi Is a binary variable, its value set equal to 1 if supplier i is used  
and 0 otherwise 

Yik Is a binary variable, its value set equal to 1 if the orered quantity 

from supplier i is in the kthinterval, and 0 otherwise 

 

tij Is a binary variable, its value set equal to 1 if transportation mode 

 j is used to transport from supplier i, and 0 otherwise 

 

 

 

 

 

 

 

 

 

Parameters 

 

Ci The unit cost of the item from supplier i , where Ci is a function of di

, i.e, 

Cik the unit cost of the item  at the kth discount interval 
Si The ordering cost of the item from supplier i 
uij Unit transportation cost from supplier i using transportation 

 mode j 
Fj Frieght rate per full truck load per km from the intermodal 

 terminal of transportation mode j to the warehouse of the 

buyer 

Bj Distance between the destination point of 
transportation mode j to the warehouse of the buyer 

Capi Capacity of supplier i  
TCap Truck load capacity  

ni  Number of trucks per order required to transport Qi 

Lij  The lead time for acquiring the item from supplier i using 

 transportation mode j 
λi Percent defective of supplier i  
ωi  Score of supplier i,  
L  The maximum lead time the buyer allow for the item to be 

 Delivered. 

h The annual inventory holding cost rate 

D  Demand for the item 
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1.4. Minimize Cost  

The total cost considered include annual inventory holding cost, ordering cost, transportation 

cost, and the purchasing cost. The mathematical formulation of each cost component is as 

follows: 

1.5. Annual Inventory Holding Cost 

The annual inventory holding cost is obtained using eq. (1), where (ℎ𝐶𝑖𝑘) is the unit 

annual holding cost, and (
𝑄𝑖𝑑𝑖

2𝐷
) is the average inventory level during the planning 

period. 

∑
ℎ𝐶𝑖𝑄𝑖 𝑑𝑖𝑋𝑖

2𝐷

𝐼

𝑖=1

  … (1) 

1.6. Ordering Cost 

Equation (2) calculates the total ordering cost for the selected suppliers where 𝑆𝑖 is the ordering 

cost per order from supplier𝑖, and ⌈
𝑑𝑖

𝑄𝑖
⌉ is the smallest integer greater than or equal to  

𝑑𝑖

𝑄𝑖
 , which 

is the number of orders to be made over the planning period. 

∑ 𝑆𝑖𝑋𝑖 ⌈
𝑑𝑖

𝑄𝑖
⌉

𝐼

𝑖=1

  … (2) 

1.7.Transportation Cost 

The transportation cost is the sum of the fixed and variable transportation costs and is obtained 

by eq. (3). The fixed transportation cost, which is the first term in eq. (3), is the cost of using 

trucks to transport items from the port of the selected mode of transportation to the warehouse 

of the buyer. While the variable transportation cost is the transportation cost of using either air 

or sea to transport the item. Where 𝑢𝑖𝑗 and (𝑑𝑖𝑥𝑖𝑡𝑖𝑗)  are the unit variable transportation cost 

and the amount of the item transported from supplier 𝑖 using transportation mode 𝑗 respectively. 

∑ ∑ (𝑛𝑖𝐵𝑗 𝐹𝑗 ⌈
𝑑𝑖

𝑄𝑖
⌉ + 𝑈𝑖𝑗𝑑𝑖) 𝑋𝑖𝑡𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1

  … (3) 

1.8. Purchase Cost 

The total purchasing cost is the sum of the product of the unit cost of the item and the total 

quantity supplied from each selected supplier.  

∑ 𝐶𝑖𝑑𝑖𝑋𝑖

𝐼

𝑖=1

  … (4) 
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In the case of the all unit discount type, the cost of purchasing 𝑑𝑖 units from supplier 𝑖 

can be expressed as: 

𝐶𝑖𝑑𝑖 = 𝐶𝑖𝑘𝑑𝑖 , 𝑓𝑜𝑟 𝑑𝑖 ∈ [𝑞𝑖,𝑘−1, 𝑞𝑖𝑘], 𝑎𝑛𝑑 𝑘 = 1,2,3, … , 𝐾, ∀𝑖 

Since,  𝐶𝑖 is a function of 𝑑𝑖, the term 𝐶𝑖 in the objective function is nonlinear. To 

circumvent the nonlinearity, the following binary variable and constraints will be defined and 

added.  

𝑌𝑖𝑘 = {
1,    𝑓𝑜𝑟 𝑑𝑖 ∈ [𝑞𝑖,𝑘−1, 𝑞𝑖𝑘] 𝑎𝑛𝑑 𝑘 = 1, 2, 3, … , 𝐾

0,                      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐶𝑖𝑑𝑖 = 𝐶𝑖𝑘𝑑𝑖𝑌𝑖𝑘    , ∀𝑖  

The following two constraints should be added to enforce that the ordered quantity falls 

within the valid quantity discount interval. 

𝑞𝑖,𝑘−1𝑌𝑖𝑘 ≤ 𝑑𝑖   … (5) 

𝑑𝑖 ≤ 𝑞𝑖𝑘𝑌𝑖𝑘         … (6) 

 

 Hence, the expression for the cost objective function becomes: 

Minimize:  

𝑍1 = ∑ ∑
ℎ𝐶𝑖𝑘𝑄𝑖𝑑𝑖 𝑋𝑖𝑌𝑖𝑘

2𝐷

𝐾

𝑘=1

𝐼

𝑖=1

+ ∑ 𝑆𝑖𝑋𝑖 ⌈
𝑑𝑖

𝑄𝑖
⌉

𝐼

𝑖=1

+  ∑ ∑ (𝑛𝑖𝐵𝑗 𝐹𝑗 ⌈
𝑑𝑖

𝑄𝑖
⌉ + 𝑈𝑖𝑗𝑑𝑖) 𝑋𝑖𝑡𝑖𝑗 +

𝐽

𝑗=1

𝐼

𝑖=1

∑ ∑ 𝐶𝑖𝑘𝑑𝑖𝑋𝑖𝑌𝑖𝑘   … (7)

𝐾

𝑘=1

𝐼

𝑖=1

  

 

1.9. Model Constraints 

1.9.1. Demand   

The demand constraint states the sum total of the quantity ordered from each supplier should 

satisfy the demand of the customer. 

∑ 𝑑𝑖𝑋𝑖

𝐼

𝑖=1

≥ 𝐷  … (10) 

1.9.2. Supplier Capacity  

This constraint ensures that the total order to be made from each supplier should not exceed 

the periodic capacity of the supplier.  

𝑑𝑖 ≤ 𝐶𝐴𝑃𝑖 , ∀𝑖  … (11) 
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1.9.3. Lead-Time  

There are two ways of modeling the lead-time constraint. The first straightforward model for 

the lead-time constraint is that the lead-time of a supplier should always be less than the 

maximum lead-time imposed by the buyer (𝑙𝑖 ≤ 𝐿). However, this constraint will make the 

selection of suppliers which only meet this condition leaving other cost saving opportunities. 

In order to avoid the limitation of the first formulation of the lead-time constraint, we used the 

aggregate lead-time performance measure as proposed in Pan (1989). In the aggregate lead-

time performance measure, since the longer lead-time of a supplier is compensated by a shorter 

lead-time, the modeler has a relative freedom of choosing a supplier which might not satisfy 

the lead-time constraint on its own but satisfy the requirement on the aggregate measure.  

∑ 𝐿𝑖𝑗𝑑𝑖𝑡𝑖𝑗

𝐼

𝑖=1

≤ 𝐿𝐷   , ∀𝑗  … (12) 

1.9.4. Transportation Mode and Truck Capacity  

Either of the transportation modes (sea or air) in the case of international suppliers should be 

selected. Once the item arrives at the destination of the selected mode of transportation, trucks 

will be used to transport the item to the company’s warehouse, and hence the following 

constraints are added. 

∑ 𝑡𝑖𝑗

2

𝑗=1

− 𝑋𝑖 ≥ 0, ∀𝑖  … (13) 

𝑄𝑖 − 𝑛𝑖 ∗ 𝑇𝐶𝑎𝑝 ≤ 0  … (14) 

𝑋𝑖 , 𝑌𝑖𝑘 , 𝑎𝑛𝑑 𝑡𝑖𝑗 ∈ (0,1)  … (15) 

𝑛𝑖 , 𝑄𝑖,, 𝑑𝑖 ∈ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 

 and constraints (5) - (6). 

 

2. GENETIC ALGORITHM APPROACH 

Genetic algorithm (GA) is a search heuristic which is popular and widely used by researchers 

to solve various complex optimization problems. A GA mimics the natural selection process 

in nature to find near-optimal solutions to optimization problems by operating on potential 

solutions, which are called chromosomes. Each chromosome has a fitness value, which is a 

measure of how good a solution is to a particular problem. First, artificial chromosomes or a 

population of potential solutions are generated. Then a fitness base selection, crossover, and 

mutation operators will be applied to produce the new population called offspring. The 
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following GA steps are utilized to find the best supplier and the corresponding optimal values 

of the decision variable.  

2.1. Step 1: Chromosome representation 

The chromosome representation (Table 2) for the problem in this paper is a 2-dimensional 

matrix where the column corresponding to the suppliers, the rows correspond to the decision 

variables. The economic order quantity and the order quantity are represented as positive 

integer value while the selection of supplier(s), mode of transportation are represented as binary 

integers. As shown in the mathematical model, the quantity of supply and the number of trucks 

are an integer multiple of the economic order quantity, and hence are functions of the EOQ. 

Therefore, the EOQ and the transportation mode selection variables are the sole decision 

variables required to be represented in the GA.  

 

Table 2. Genetic representation of sample solution for a single item. 

 Suppliers 

D
ec

is
io

n
 

V
ar

ia
b
le

 

 1 2 3 4 5 

EOQ 130 145 110 170 120 

Supplier selection 1 0 1 0 1 

Transportation Mode 1 0 0 1 0 0 

Transportation Mode 2 1 0 0 0 1 

 

2.2. Step 2: Initial Population Generation 

In the population generation, a random initial solution is generated based on the maximum 

capacity of the supplier [𝑈𝐵] and the minimum amount[𝐿𝐵] a supplier is willing to supply, and 

hence the economic order quantity within[𝐿𝐵, 𝑈𝐵]. The gene for the supplier selection and 

transportation mode selection is generated to have a binary value of 0 if the option is not 

selected 1 otherwise. 

2.3. Step 3: Fitness Value 

A fitness function is a function that returns a single value, which is supposed to reflect how 

good an individual chromosome is compared to a population. The higher the fitness value of 

an individual chromosome, the higher its probability of survival and reproduction in the next 

generation. The fitness function for each potential solution, in this case, is the minimum of the 

sum of the objective function and the constraint penalty function. For the model in this paper, 

demand and lead-time of delivery of the item are inequality constraints that are included as 

penalty functions in the fitness function as follows: 
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𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑜𝑏𝑗𝑓𝑢𝑛 + 𝑑𝑒𝑚𝑎𝑛𝑑_𝑝𝑒𝑛𝑎𝑙𝑖𝑡𝑦 + 𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒_𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

𝑤ℎ𝑒𝑟𝑒, 𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒_𝑝𝑒𝑛𝑎𝑙𝑖𝑡𝑦 =

{
2𝑛𝑢𝑚_𝑔𝑒𝑛 ∗ (∑ ∑ 𝑙𝑖𝑝𝑗𝑑𝑖𝑝𝑡𝑖𝑝𝑗

𝐽
𝑗=1

𝐼
𝑖=1 − 𝐿𝑝𝐷𝑝), if ∑ ∑ 𝑙𝑖𝑝𝑗𝑑𝑖𝑝𝑡𝑖𝑝𝑗 > 𝐿𝑝𝐷𝑝

𝐽
𝑗=1

𝐼
𝑖=1  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑑𝑒𝑚𝑎𝑛_𝑝𝑒𝑛𝑎𝑙𝑖𝑡𝑦 = 2𝑛𝑢𝑚_𝑔𝑒𝑛 ∗ |∑ 𝑑𝑖𝑋𝑖

𝐼

𝑖=1

− 𝐷| 

Where, 𝑛𝑢𝑚_𝑔𝑒𝑛 is the number of generations. The penalty will only be applied to late 

deliveries and hence the above inequality condition included. 

2.4. Step 4: Cross Over 

Cross over in GA is the process through which we simulate the recombination of chromosome 

strings that are cut at a randomly chosen points to produce two new offsprings. The two 

offsprings will inherit some part of their gene from each part (Beasley et al., 1993). To perform 

the cross over a standard vertical one-cut-point operator (Table 3) is applied for our n-

dimensional matrix with crossover probability of 0.85. 

 

Table 3. Example of the vertical one-cut-point crossover. 

 

A. Parent 1 solution     B. Parent 2 solution

 Suppliers 

 D
ec

is
io

n
 V

ar
ia

b
le

 

 1 2 3 4 5 

EOQ 130 145 110 170 120 

Supplier 

selection 

0 0 1 1 0 

Mode 1 0 1 0 0 0 

Mode 2 0 0 1 0 1 

 Suppliers 
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n
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  1 1 3 4 5 

EOQ 85 60 260 40 190 

Supplier  1 0 1 0 1 

Mode 1 1 0 0 0 0 

Mode 2 0 0 1 0 1 

C. Offspring 1 solution      D. Offspring 2 solution

 Suppliers 
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 1 2 3 4 5 

EOQ 130 145 110 40 190 

Supplier 

selection 

1 0 1 0 1 

Mode 1 0 1 0 0 0 

Mode 2 1 0 1 0 1 

 Suppliers 
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n
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 1 2 3 4 5 

EOQ 85 60 260 170 120 

Supplier 

selection 

1 0 1 1 0 

Mode 1 1 0 0 0 0 

Mode 2 0 0 1 0 1 
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2.5. Step 5: Mmutation 

The mutation process is applied to each individual child after cross over to change the value of 

a randomly selected gene. While the cross over enables the GA to quickly explore the solution 

search space, the mutation ensures that no points in the search space has a zero probability of 

being examined (Beasley et al., 1993). The mutation operator is applied to an offspring by 

altering the value of its gene (Table 4) randomly with a mutation probability of 0.01. That is, a 

random number is first generated from a uniform [0,1] distribution, and if the number 

generated is less than or equal to 0.01, a randomly selected gene of the new offspring is mutated 

without violating the capacity constraint of the supplier.  

 

 Suppliers 

 D
ec

is
io

n
 

V
ar

ia
b
le

s 

 A B C D E 

EOQ 130 145 110 205 190 

Supplier 

selection 

1 0 1 1 1 

Mode 1 0 1 0 0 0 

Mode 2 1 0 1 1 1 

Table 4. Gene selected for mutation. 

 

2.6. Step 6: Problem Specific Operators 

Like Liao & Rittscher (2007)  problem-specific operators are included to speed up the GA and 

at the same time to include the supply-demand equality constraint. However, unlike Liao & 

Rittscher (2007) our problem-specific operator does not add or subtract the difference between 

demand and supply, to randomly selected suppliers. Instead of adding or subtracting the 

difference on a randomly selected supplier, our proposed problem-specific operator adds or 

subtracts the difference using an elitist selection approach as described below. The following 

steps describe how this problem specific operator is used to guarantee the demand constraint 

and speed up the search for a near-optimal solution. 

1. Calculate the difference between the total supply and the demand for each 

item(supply. difference). And let 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑖  𝑎𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑖 represent the 𝑖𝑡ℎ 

smallest and largest supplied quantities respectively. 

2. If  supply. difference > 0 ∶ 

If 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑖 ≥ supply. difference:  

 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑖 = 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑖 − supply. difference 
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Else: 

 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑖 = 0 

3. If  supply. difference < 0: 

If supply. difference + 𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑖 > 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖: 

    𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑖 = supply. difference + 𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑖  

Else:  

  𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑖 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 

4. Repeat steps 1-3 until the difference between the supplied quantity and the demand 

for each item is zero. 

2.7. Step 7: Termination 

Repeat the processes of steps 3-6 until a defined stopping criterion is met. In this paper, the 

number of population generation is set to 200 and is used as the stopping criterion (Mitchell, 

1996).  

 

3. AN ILLUSTRATION 

This section demonstrates the effectiveness of the proposed MINP model through an 

illustration. In this numerical illustration, nine suppliers are considered for selection and order 

allocation. The buyer’s demand and lead-time requirements are 535 units and 2 months 

respectively. The unit price, price break offers, delivery lead-time, the capacity of suppliers are 

provided in table 5. The estimated order processing or management cost per order is 1000 Birr 

for local suppliers and 5000 Birr for foreign suppliers. The estimated fixed transportation cost 

per truck per km is 40 Birr for all distances greater than 100km and 100 Birr otherwise. The 

distance between the seaports to the buyer’s warehouse is 884km, and the distance from the 

airport to the warehouse is 50km. furthermore, all suppliers offer all unit quantity discounts 

with two discount intervals and the upper limit of the discount interval is also considered as the 

capacity of the supplier. In order to test the applicability of the proposed GA approach, the 

number of suppliers has been increased from one to nine with an increment of one supplier at 

each problem instance. 

The proposed mathematical model and the proposed solution approach is coded in 

python 3.6.5 and the computational analysis was executed on a personal computer with a 

Core™ i5-6200U @ 2.3 GHz, and 3.48 GB of RAM. As outlined in section 4 the GA’s 

parameters has to be detrmined to find the optimal solution of any optimization problem. The 

GA parameters that has to be tuned are the crossover probability (Pc), the mutation probability 
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(Pm), and the population size (N). According to  Srinivas & Patnaik (1994), an experimental 

trial is the appropriate way to determine the optimal values of the GA parameters.  Hence a 33 

factorial experiment is setup, and the program was run for 20 iterations. Table 2 presents the 

different values of the GA parameters used in testing the applicability and reliability of the 

proposed solution approach.  

 

Table 5. Discount plan, transportation cost, and lead-time values.  

Suppliers Purchase 

quantity 

Unit 

cost  

Transportation 

cost 

Lead-time* 

(months) 

Mode 1 Mode 2 Mode 1  Mode 2 

1 [20 , 250] 

[251 , 400] 

344.9 

340.0 

0 0 3.0 3 

2 [10 , 199] 

[200 , 520] 

423.2 

421.2 

35.8 4.2 1.5 2.25 

3 [15 , 249] 

[250 , 520] 

627.1 

622.1 

18.2 1.9 1.5 2.25 

4 [10 , 299] 

[300 , 480] 

419.5 

415.5 

113.2 69.9 1.25 2.5 

5 [20 , 200] 

[201 , 480] 

302.1 

300.0 

71.0 5.0 2.5 4 

6 [20 , 250] 

[251 , 520] 

812.8 

810.8 

52.4 34.9 2.0 3 

7 [10 , 199] 

[200 , 400] 

489.4 

487.0 

62.9 13.9 2.75 4 

8 [20 , 250] 

[251 , 400] 

518.4 

515.5 

36.3 6.6 2 3 

9 [20 , 250] 

[251 , 440] 

465.5 

462.0 

43.1 NA 2 3 

Note: *the lead-time includes the manufacturing and transportation time 

 

Table 6. GA parameter values. 

Pc Pm N 

0.75 0.01 100 

0.85 0.02 150 

0.95 0.03 200 

 

From table 6, 27 different combinations of GA parameter values are constructed and 

used to carry the experiment. Table 7 shows the GA parameter set and the minimum cost 

obtained for the particular GA parameter combination in use.  
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Table 7. GA parameter sets and minimum cost value. 

S.No. GA Parameter sets  

(Pc ,Pm ,N) 

Minimum 

cost 

Average 

cost 

Difference 

1 (0.75,0.01,100) 354,006.15 363,411.86 9,405.71 

2 (0.75,0.02,100) 354,006.14 361,976.89 7,970.75 

3 (0.75,0.03,100) 353,598.17 362,605.00 9,006.83 

4 (0.75,0.01,150) 353,598.17 359,475.41 5,877.24 

5 (0.75,0.02,150) 353,903.65 359,157.81 5,254.16 

6 (0.75,0.03,150) 353,801.49 360,534.07 6,732.58 

7 (0.75,0.01,200) 353,598.17 356,604.62 3,006.45 

8 (0.75,0.02,200) 353,699.66 356,745.61 3,045.95 

9 (0.75,0.03,200) 353,801.49 357,842.11 4,040.62 

10 (0.85,0.01,100) 353,699.66 367,340.92 13,641.26 

11 (0.85,0.02,100) 355,599.94 367,383.16 11,783.22 

12 (0.85,0.03,100) 354,315.66 369,590.49 15,274.83 

13 (0.85,0.01,150) 354,212.15 364,230.16 10,018.01 

14 (0.85,0.02,150) 353,699.66 359,535.16 5,835.50 

15 (0.85,0.03,150) 353,699.66 360,514.15 6,814.49 

16 (0.85,0.01,200) 353,903.65 357,920.40 4,016.75 

17 (0.85,0.02,200) 353,598.17 359,574.71 5,976.54 

18 (0.85,0.03,200) 353,598.17 359,995.34 6,397.17 

19 (0.95,0.01,100) 355,476.51 383,071.39 27,594.88 

20 (0.95,0.02,100) 356,900.98 394,443.81 37,542.83 

21 (0.95,0.03,100) 356,126.88 381,219.62 25,092.74 

22 (0.95,0.01,150) 355,800.17 370,205.81 14,405.64 

23 (0.95,0.02,150) 353,598.17 374,374.43 20,776.26 

24 (0.95,0.03,150) 356,336.00 371,422.27 15,086.27 

25 (0.95,0.01,200) 355,584.06 371,671.33 16,087.27 

26 (0.95,0.02,200) 354,108.98 372,163.15 18,054.17 

27 (0.95,0.03,200) 355,688.67 372,303.59 16,614.92 

 

In order to select the optimal combination of GA parameters, we select the GA 

parameter set that results in the minimum cost value and the minimum difference. The 

difference column is the difference between the average cost and the minimum cost. Hence, 

from table 7, the optimal GA parameters for our numerical example are 0.75, 0.01, and 200 for 

cross over rate, mutation rate, and population size respectively.  Since no single supplier has 

the capacity to satisfy the demand of the buyer, at least two suppliers should be considered in 

the first case.  That is, in the case of two suppliers, the buyer would select and allocate only to 

two suppliers from the nine potential suppliers. Hence, for this case, the best combination is to 

order 268 units from supplier 2 and 267 units from supplier 5. For the case of three suppliers, 

the result shows that 5, 270, and 260 units of the item should be ordered from supplier 1, 2, and 
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5. Table 8 shows the order quantities and the resulting minimum cost for each number of 

suppliers considered. Since the total order allocated to a supplier is the same as that of the 

economic order quantity, the table only provides the value for total order quantity. Furthermore, 

the selected mode of transportation for each option considered is mode 1. From Table 8 we 

observe that as the number of suppliers increased, the total cost also increases. The optimal 

number of suppliers for this particular numerical example is 2.  

 

Table 8. Results for a different number of suppliers. 

No. of 

suppliers 

Suppliers Total order quantity Minimum 

cost 

1 No feasible 

solution 

  

2 [2,5] [268,267] 353,598.17 

3 [1,2,5] [5,270,260] 359,498.82 

4 [1,2,5,9] [5,270,255,5] 370,008.99 

5 [1,2,4,5,9] [5,260,10,255,5] 380,255.13 

6 [1,2,4,5,7,9] [5,260,10,245,10,5] 386,729.39 

7 [1,2,4,5,7,8,9] [5,255,10,245,10,5,5] 396,968.02 

8 [1,2,3,4,5,7,8,9] [5,250,5,10,245,10,5,5] 402,664.31 

9 [1,2,3,4,5,6,7,8,9] [5,250,5,10,240,5,10,5,5] 414,970.18 

 

4. CONCLUSION 

In this paper, we studied the economic lot-sizing, order allocation, and supplier selection 

problem under all-unit quantity discount and transportation costs. A mixed-integer nonlinear 

model is developed to make the decision of selecting the best supplier(s), determine the 

economic order quantity, the assignment of total orders, and which mode of transportation to 

use. The objective is to minimize the total cost, which includes the inventory holding cost, the 

ordering cost, the item cost, and transportation cost. The demand and lead-time requirements 

of the buyer have to be satisfied while not violating the capacity constraints of suppliers. 

Consideration of all parameters such as the capacity limitation of suppliers, quantity discount 

offers, intermodal transportation costs, and lead-time constraints make the supplier selection 

and order allocation problem more complicated but realistic. To solve the proposed model, a 

GA with a problem-specific parameter is proposed and tested on a numerical example, and the 

solution is obtained in 0.33 seconds. The results of the numerical illustration show that the item 

cost and transportation cost are the deciding factors in selecting suppliers and allocating order 

quantities. Moreover, as the minimum number of suppliers that are required to be used for 

procurement increases, the numerical illustration show that, the total cost increases. However, 
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where there is no requirement on the number of suppliers to use, the model will determine the 

optimal order quantities and the suppliers. Since our proposed model is only applicable for a 

single item, future research could extend it to include the case of multiple items. Furthermore, 

since the model of this paper assumes a deterministic demand, considering the case of 

stochastic demand could also be a future direction. Another interesting extension to the 

problem could be the case of incremental quantitity discounts and business volume discounts, 

instead of the all-unit discount which is considered in this paper. 
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