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Abstract 

This paper presents a static overbooking model for a single-leg multi-fare class flight. A 

realistic distribution of no-show data in modeling the cost function was considered using data 

collected from the Ethiopian airlines. The overbooking model developed considers the 

interaction (i.e. the transfer of an extra passenger in a lower fare classes to higher fare class 

empty seat) between classes that may exist during boarding time. Furthermore, the 

overbooking problem is modelled in such a way that it could be constrained by user defined 

constraints such as probability of loss of the revenue. The overbooking model developed was 

solved using derivatives that give a closed form expression and Monte Carlo simulation with 

a derivative free optimization algorithm. A comparison of the revenue generated from no-

overbooking policy, the closed form solution, and the Monte Carlo simulation solution 

approach shows that the Monte Carlo simulation solution approach performs better. 

Generally, the numerical results show that the overbooking model is effective in determining 

the optimal number of overbooking for a number of classes and a variety of compensation 

cost plans.  
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1. INTRODUCTION 

Overbooking is an airline revenue management (ARM) technique which seeks to account for 

the no-shows and cancellations by making more reservations than the available capacity in 

order to maximize revenue. The approaches for the overbooking problem can be broadly 

categorized as static and dynamic models. In the static model, the dynamic nature of 

reservation (cancellations over a period of time) is ignored, and the concern is to find the 

optimal number of overbooking at the opening period of the reservation that minimizes cost 

or maximizes revenue. The dynamic model considers the dynamic nature of reservation, and 

seeks to find a policy by which the booking operator decides whether to accept or reject a 

request made by a customer for a reservation of a certain class at time T. Although dynamic 

overbooking models treat the overbooking problem in its realistic state, generally the models 

are mathematically intractable for a real world problem. As such, many of the commercial 

RM systems used by the airlines are static models (Amaruchkul and Sae-Lim, 2011).  

Therefore, this paper seeks to extend the static overbooking model by incorporating a realistic  
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cost function of overbooking and relaxing some of the assumption made in prior studies. In 

light of this, the objective of this paper is to model the overbooking problem for a single-leg 

multi-fare class as a cost minimization in such a way that it could be constrained by a user 

defined probability of loss of the revenue. The contribution of this model over existing static 

overbooking models is twofold. First the overbooking model developed considers the 

interaction (i.e. the transfer of an extra passenger in a lower fare classes to higher fare class 

empty seat) between classes that may exist during boarding time. The second contribution is 

the fact that the model is flexible to include user defined constraints such as probability of 

loss of the revenue. A literature review of the overbooking models is explained and presented 

below and also the mathematical formulation of the overbooking problem using a realistic 

distribution of the no-show data, and a solution approach using both the closed form and a 

Monte Carlo simulation with the use of the derivative free Nelder Mead algorithm. Further, 

the paper presents a numerical analysis and evaluation of the proposed solution approaches in 

solving the overbooking model.  

 

2. LITERATURE REVIEW 

Overbooking is the practice of intentionally selling more seats than the available physical 

capacity of the plane in order to compensate the number of no-shows and cancellation, which 

can be as high as 15%, during the time of departure (Chatwin, 1993). A more recent study 

shows that the benefits obtained from using overbooking accounts for an average of $1 

billion increase in revenue per year (Bailey, 2007). Though overbooking can improve the 

revenue of an airline it has also risks associated with it, when the number of show-ups is 

greater than the fixed capacity. That is, when the number of show-ups is greater than the 

available capacity, some of the passengers who already bought a ticket will be bumped (i.e. 

denied boarding) of the flight either voluntarily or involuntarily. In both case there is a 

financial loss that the airline should incur in the form of compensation cost to be paid toward 

the bumped passengers. In addition to the compensation cost, the bumped passengers will 

retain a bad image of the service that should be considered as loss of customer goodwill cost, 

which will have a massive long term impact on the business of the airline. However, it was 

estimated that financial loss due to overbooking is less when compared with not practicing 

overbooking (Siddappa, 2006). Accordingly, the objective of the overbooking model is to 

find the optimal number of overbooking level that the airline should reserve in order to 

minimize the expected cost or maximize the expected revenue.  
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The history of overbooking goes back to the pioneering work of Beckmann and Bobkowski 

(1985). Their statistical modeling of the overbooking problem laid a foundation for today’s 

revenue management in the airline industry. The first overbooking model proposed by 

Beckmann was a single leg single fare-class problem, which is a very simplified form of the 

actual overbooking problem that airline faces. His model tries to determine the optimal 

overbooking level by balancing the spoilage cost (lost revenue due to empty seats) with 

compensation cost (lost revenue due to bumping of passengers). Thompson developed an 

overbooking model for a two fare class using the cancellation rates while ignoring the 

probability distribution of the demand and the no-show rates (Thompson, 1961). His model 

determines the overbooking limit for a given probability of overbooking. Thompson’s work 

has been extended by Taylor (1962) as well as Rothstein and Stone (1967). Taylor’s 

overbooking model, though is a very simplified model, has been implemented and used by 

many airlines for their booking level control. It was also considered that Taylor’s model was 

used as a basis for a family of subsequent overbooking models. Bodily and Pfeifer also 

studied the static overbooking problem using the probability of customer cancellation and no-

shows for a single fare-class problem, which is a highly simplified form of the actual scenario 

(Bodily and Pfeifer, 1992). All the above models deal either with a single fare-class or two 

fare-class overbooking model, which is not always the case for a real world problem. Latter 

researches, however, consider the multi fare-class overbooking problem (Chi, 1995; 

Coughlan, 1999; Aydm et al., 2010). Chi considers the multi fare-class overbooking problem 

and develops a dynamic programming model (Chi, 1995). His model determines the 

maximum overbooking level that should be used in every fare-class for a known demand and 

show-up distribution of every class. He further assumed that cancellations can be made 

without any penalty cost, which made his model inaccurate since there is a penalty for 

cancellations. Coughlan (1999) extends the multi fare-class overbooking problem by 

introducing the last minute passengers also called go-shows, those are customers who show-

up during service time without any prior reservation. His model assumes the demand, the no-

show, and the cancellations are all independently normally distributed. The assumption that 

the booking and the no-show are normally distributed is used, but in the literature it 

commonly is assumed to follow a Poisson distribution (Subramanian et al., 1999). Modelling 

demand data by a Poisson distribution seems more realistic as the Poisson is used for 

modelling number of occurrences or events in a specified period (booking in this case). 

However, the no-show data has to be tested for which ever distribution is to best describe the 
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behavior/distribution of the data. Furthermore, his proposed direct search algorithm for 

solving the complicated closed form overbooking model doesn’t guarantee optimality. Aydm 

et al. (2010) developed a mathematically tractable static and dynamic overbooking model that 

provides an upper and lower bound for the overbooking level based on the expected revenue 

approach. They proposed two different static overbooking models based on the demand 

information available for the user. Moreover, no-shows and cancellation probabilities are 

considered class based in order to make the model more realistic. However, their model like 

all the models in this class does not consider the interaction that exists between classes. 

In this paper a static overbooking model is developed using a realistic distribution for the no-

show data, which is generalized extreme value probability distributions for the no-show in 

modeling the cost function. An attempt was made to solve the model using both closed form 

expression and a Mote-Carlo simulation using the derivative free optimization approaches. 

Furthermore, the model was made to be flexible so that it could be transformed with a user 

defined constraint into a constrained optimization problem. This particular feature of this 

overbooking model is important for decision makers who are sensitive to both customer 

reaction upon denied boarding and profit loss. The model developed in this paper could be 

used for any classes the airline wish to make and for any kind of distribution that the 

particular airline’s data may have. Furthermore, the fact that the paper models the cost 

function based on a realistic probability distributions based on the historical data is a 

relaxation of the assumptions made in prior studies since in the past the cost function was 

mainly modeled based on the binomial distribution.  

 

3.  PROPOSED MODEL 

3.1. Notations and Terms 

  = ticket price for fare-class i 

  = number of overbooking for fare class i ,    Y     
 
    

    The number of no-shows and cancellations in class i, with p.d.f f(x). (   is a r.v.) 

  = penalty cost of an overbooking corresponding to fare-class i 

  = the opportunity cost of flying with an empty seat for fare class i 

3.1.1. Revenue 

Based on the Anderson-Darling goodness of fit test of the booking data for Ethiopian airlines, 

the distribution of the no-show follows the Generalized Extreme Distribution as opposed to 

the commonly assumed normal distribution. The generalized extreme value distribution is 
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appropriate for extreme events, which is the case with the denied boarding and empty flight 

seats. This justifies the use of the generalized extreme value distribution in modeling the no-

show data not only based on the goodness of fit test but also theoretically. The revenue 

generated from the booking (y) passengers in each class could be obtained by multiplying the 

price of each ticket the overbooking level made in that class. The revenue generated from 

overbooking is the product of the number of overbooked passengers and the fare-ticket of the 

overbooked pad. 
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The second term of the above equation implies the fact that, extra arrivals for a seat in one 

class may be assigned a seat if there is empty seat in another class. 

3.1.3. Spoilage cost (cost of lost opportunity) 
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Since, the number of no-shows is a continuous variable the expected net revenue could be 

rewritten as: 

          

 

   

                             

  

 

  

 

     

   

 

  

 

 

   

      

                             

 

  

  

 

     

   

  

 

       

 

   

 

 

4. SOLUTION APPROACH 

For the purpose of this study in verifying and measuring the performance of the proposed 

model, a historical data of booking, no-shows, and cancellation was collected. An 18 months 

data was collected for the purpose of fitting the data in to a probability density function 

(PDF). An out bound station with a daily flight (ADD-DXB) and another station with a lower 

load factor as compared to other stations (due to no-shows, ADD-CAI) were chosen for the 

analysis of the data. Then, the six months data of no-shows and rate of no-shows from each 

were fit separately in to a PDF. Since the number of bookings for each day differs, first the 

rate of no-shows was fitted to see the probability density function (PDF) of the smoothed 

variable. Then, the no-show data was fitted without considering the variation in the number 

of bookings, to see if there could be a significant difference in the PDF of the two variable 

fits. For the flight destinations in our case example it was found that both the rate of no-show 

and the no-show data’s PDF follow the same distribution. A closer look at the number of 

bookings, no-shows as well as the load factor of Ethiopian airlines shows that Ethiopian has 

insignificant number of denied boarding (one per twenty thousand). However, this could be 

the case not only because of the low overbooking level but sometimes demand goes below 

the capacity. When it is the case that demands are expected to be lower than the available seat 

capacity, a competitive air fare structure should be used in order to attract potential 

customers. Ethiopian has affixed fare structure from which a customer could choose, and this 

fare structure is calculated mainly based on the minimum number of load factors forecasted 

so that the airline operates with an anticipated profit even if it is flying with a lot of empty 

seats.  The statistics toolbox of Mat Lab was also utilized in checking the distribution of the 

historical data after a general distribution fit comparisons were made on the “EasyFit‟ 

software. The “EasyFit‟ software (Mathwave, 2013) is helpful in generating the best 

distribution fit appropriate for our data. For the case of Ethiopian (with respect to the data at 
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hand), the assumption that the no-show and cancellation data follow beta, normal or gamma 

distribution is not applicable even though it might be the case for other airlines as pointed out 

in the literature review. A detailed comparison of the fit based on three (Kolmogorov-

smirnov, Anderson-Darling, and chi-squared) goodness of fit (gof) test shows that, the 

generalized extreme value distribution is the best fit distribution for our no-show and 

cancellation data. Fig 1 is an example showing the fitted data for ADD-CAI is give below 

along with the test statistic of the chosen gof test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. pdf of GED for ADD-CAI no-show data. 

 

Once the best distribution for the no-show is determined, two derivative free optimization or 

direct search algorithms, namely, the Nelder Mead and Genetic Algorithms were used to 

solve the overbooking model. As one can observe from table 1 and figure 2 as the 

compensation cost increases the level of overbooking decreases, and that is in line with our 

intuitive expectations. For compensation plans less than the price of the ticket and the cost of 

lost opportunity, the Monte Carlo simulation solution approach gives us a very huge number 

for overbooking, and that is true theoretically at least from a mathematical (economic) point 

of view. However, such a huge number for overbooking is not practical and does not reflect 

reality. Being the case, even if the model recommends huge number of overbooking for small 

amount of compensation plans, the airline should limit the overbooking level to the maximum 
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no-show observed in the past. Hence, the maximum of the no-show is used as the optimal 

overbooking for this case.  

 

Table 1. Optimal overbooking levels for different compensation plans for a two fare class 

using the Monte Carlo simulation approach. 

 Compensation 

cost (in USD) 

Optimal # of Overbooking  Current 

revenue 

generated 

Expected 

revenue 

generated 

 Probability 

of Loss 

Y1 Y2 

150 20 20 9.64E+03 9.93E+03 0 

300 20 20 5.60E+03 5.50E+03 0 

400 12 20 2.99E+03 2.55E+03 0.1966 

500 7 14 1.50E+03 -4.63E+02 0.586 

600 6 11 5.69E+02 -3.40E+03 0.7 

700 5 9 -1.19E+02 -1.00E+03 0.887 

 

Figure 2. Plot of Revenue generated vs. overbooking for two class case (at $500 

Compensation Cost Plan). 

 

Looking into the probability of loss plot (Fig 3) gives an insight of the critical values of 

overbooking where potential loss could occur. In the case example, the overbooking level for 

class-1 is near ten while for class-2 is greater than ten. This once more confirms our 

simulation result given above as seven for class-1 and fourteen for class-2 with probability of 
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loss around 0.586. One of the advantages of this graph is that it does not only show the 

optimal values but also gives the decision maker an insight how and what level of 

overbooking in each class could affect the probability of loss in revenue. Furthermore, the 

graph gives the decision maker the freedom of relaxing the overbooking value by a certain 

amount as long as the probability of loss is acceptable. 

 

Figure 3. Plot of Probability of loss vs. overbooking for two class case ((at $500 

Compensation Cost Plan). 

 

The results found by the Nelder Mead algorithm have been confirmed with the results 

obtained from the GA. Furthermore, a closed form expression for the solution was obtained 

by making simplifying assumptions of the actual problem. Finally, the optimal number of 

overbooking obtained from the closed form expression and the Monte Carlo simulation was 

compared. Results show that, the simulation approach used generates maximum revenue and 

performance well for any number of classes without compromising the interaction between 

classes.  

 

5. CONCLUSION 

Two approaches of solving the model are proposed and their advantages and disadvantages 

identified. The closed form solution, which is based on the News boy Model, could be 
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effective relative to the Monte Carlo simulation in minimizing the number of denied 

boarding.  However, this approach did fail in attaining the maximum revenue as it is based on 

minimizing the costs involved in the model. In contrast, the Monte Carlo simulation solution 

approach of the derivative free optimization using Nelder Mead was observed as maximizing 

the expected revenue generated from overbooking. Furthermore, this solution approach has 

the advantage of specifying the overbooking limits for each class with an estimated 

probability of loss while the News Boy model couldn’t. Moreover, the simulation approach 

can handle problems of any classes of size having different compensation and losses of 

revenue, which the closed form solution could not handle. However, the derivative free 

optimization approach adopted and proposed in solving the model in this study does not 

guarantee optimality. The model developed and proposed in this study uses less input data as 

compared to other models in the literature, which is an advantage for the airline that usually 

has difficulty in collecting and organizing its data. When the number of fare-classes increases 

beyond three, it has been observed an insignificant change in the number of overbookings, 

while the revenue generated decreases dramatically. The probability of loss (generating 

negative revenue) increases as the number of fare classes considered increases.  This study 

focuses on developing the static overbooking model based on a data obtained from Ethiopian 

airlines. In doing so, a one way trip was considered in both the development and the analysis 

of the model. However, a round trip booking is common practice among customers and this 

should be considered as future work in extending and improving the performance of the static 

overbooking model.  

Furthermore, the static overbooking problem considered here was treated as if it is 

independent of other activities of the revenue management system such as pricing and seat 

inventory control. Integrating the overbooking model into the other two major airline revenue 

management problems would be an interesting future work. 

Considering the number of no-shows and cancellation resulting in empty seat flight at 

Ethiopian, one can extend to use the static overbooking model in determining the minimum 

ticket price that could be offered without loss. Hence, developing a flexible or negotiable 

pricing system (model) to some of the seats could be a future work. 
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Appendix 

Sample Mat Lab Codes used 

MatLab codes used to calculate the optimal number of overbooking, expected net revenue, 

and probability of loss. 

function [muNetRev,stdNetRev,ProbLoss] =  

 

NetRevObj(y,k,mu,sigma,Prices,compcost,lostrev,NumSimulations) 

 

%This function defines the objective function along with the desired measuring parameters  

 

[NumClasses,m] = size(y(:)); 

 

x = zeros(NumClasses,NumSimulations);   %pre-location for speed 

C = zeros(NumClasses,NumSimulations); 

L = zeros(NumClasses,NumSimulations); 

A = zeros(NumClasses,NumSimulations); 

B = zeros(NumClasses,NumSimulations); 

R = zeros(NumClasses,NumSimulations); 

NetRev = zeros(1,NumSimulations); 

 

% generation of x values 

 

fori=1:NumClasses 

    x(i,:) = gevrnd(k(i),mu(i),sigma(i),1,NumSimulations); 

x(x(:,:)<0)=0; %no-shows can not have negative values. 

    I = find(y(i) > x(i,:)); 

    J = find(y(i) <= x(i,:)); 

 

    A(i,I)=y(i)-x(i,I); 

    B(i,J)=x(i,J) - y(i); 

 

    aa=sum(A,1); 

    bb=sum(B,1); 

 

    a=sum(aa); 

    b=sum(bb); 

 

if a>b 

        B(i,I)=0; 

        A(A>=a-b)=a-b; 

else 

        A(i,J)=0; 

        B(B>=b-a)=b-a; 

 

end 

    C(i,I) = compcost(i)*A(i,I); % compensation cost 
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    L(i,J) =lostrev(i)*B(i,J); %cost of lost opportunity 

 

    R(i,:) = Prices(i)*y(i) - C(i,:) - L(i,:); % net revenue 

 

NetRev = NetRev + R(i,:); 

 

end 

 

ProbLoss =  sum(NetRev< 0) / NumSimulations;  %The probability that the mean net 

revenue will be less than zero 

 

stdNetRev = std(NetRev); 

muNetRev = mean(NetRev);  %the mean net revenue 

 

 

Clear 

close all 

%this code will generate the three dimensional plot of the expected net revenue vs. the 

optimal overbooking for the two classes under consideration. 

yLB = [0,0]; %lower limit of overbooking in any class, required when using the GA 

algorithm 

yUB = [20,20]; %upper limit of overbooking in any class 

y1 = 0:20; %possible values of overbooking in class-1 

y2 = y1; 

[Y1,Y2] = meshgrid(y1,y2); 

k = [-0.16629,-0.16629]; %Gen. Extreme distribution shape parameter 

mu = [4.6347,5.822]; 

sigma = [2.1998,2.7355]; 

Prices = [299,399]; % ticket prices 

compcost=[500,500]; %compensation cost  

lostrev=[280,380]; %cost of lost opportunity 

NumSimulations = 10000; %number of simulations 

fori=1:21 

for j=1:21 

        y = [Y1(i,j),Y2(i,j)]; 

        [muNetRev(i,j),stdNetRev(i,j),ProbLoss(i,j)] = 

NetRevObj(y,k,mu,sigma,Prices,compcost,lostrev,NumSimulations); 

end 
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end 

figure(1);mesh(Y1,Y2,muNetRev);xlabel('Y2');ylabel('Y1'); 

figure(2);mesh(Y1,Y2,stdNetRev);xlabel('Y2');ylabel('Y1'); 

figure(3);mesh(Y1,Y2,ProbLoss);xlabel('Y2');ylabel('Y1'); 

 

 

Clear 

close all 

% this sample matlab code will generate the values of the mean net revenue, the probability 

of loss and the standard deviation of the revenue for the two class case. 

y = [20,20]; 

k = [-0.16629,-0.16629]; 

mu = [4.6347,5.822]; 

sigma = [2.1998,2.7355]; 

Prices = [299,399]; 

compcost=[700,700]; 

lostrev=[280,380]; 

NumSimulations = 10000; 

[muNetRev,stdNetRev,ProbLoss] = 

NetRevObj(y,k,mu,sigma,Prices,compcost,lostrev,NumSimulations) 

 

 

Clear 

close all 

% This code will optimize the objective function using the Nelder Mead optimization 

algorithm of the matlaboptimization toolbox. 

 

y0 = [10,10]; 

yLB = [0,0]; 

yUB = [20,20]; 

 

k = [-0.16629,-0.16629]; 

mu = [4.6347,5.822]; 
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sigma = [2.1998,2.7355]; 

Prices = [299,399]; 

compcost=[700,700]; 

lostrev=[280,380]; 

NumSimulations = 10000; 

% Nelder Mead 

OPTIONS = foptions; 

 OPTIONS(14) = 3000; 

 [yOpt,muNetRevOpt] = 

fminsearch('NetRevObj',y0,OPTIONS,k,mu,sigma,Prices,compcost,lostrev,NumSimulations)

; 

% Genetic Algorithms 

 % The following code will optimize the objective function using the GA optimization 

algorithm developed by Dr. Ashraf. 

[NumVars,m] = size(yLB(:)); 

PARAMS = [NumVars,0,100]; 

[muNetRevOpt,yOpt,BestFitness,Generations] = 

garu('NetRevObj',yLB,yUB,PARAMS,k,mu,sigma,Prices,compcost,lostrev,NumSimulations)

; 

%[F,muNetRev,stdNetRev,ProbLoss] = 

NetRevObj(y,k,mu,sigma,Prices,compcost,lostrev,NumSimulations) 

% Sequential Quadratic Programming 

% this code will optimize the objective function under a user defined probability of loss 

constraint. 

OPTIONS = foptions; 

 OPTIONS(14) = 4000; 

 [yOpt,FOpt] = 

fmincon('NetRevObj',y0,[],[],[],[],yLB,yUB,'NetRevConstr',OPTIONS,k,mu,sigma,Prices,co

mpcost,lostrev,NumSimulations); 

 

 


