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ORIGINAL ARTICLE

Anatomical prognosis after idiopathic macular hole surgery: machine learning 
based-predection
Hsouna Zgollia, Hamad H k El Zarrugb, Moufid Meddebc, Sonya Mabrouka and Nawres Khlifac

aDepartment A, Institute Hedi Raies of Ophthalmology, Tunis, Tunisia; bDepartment of Ophthalmology University of Benghazi, Faculty of 
Medicine Lybia Benghazi; cLaboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, 
University of Tuins El Manar, Tunis, Tunisia

ABSTRACT
To develop a machine learning (ML) model for the prediction of the idiopathic macular hole 
(MH) status at 9 months after vitrectomy and inverted flap internal limiting membrane (ILM) 
peeling surgery. This single center was conducted at Department A, Institute Hedi Raies of 
Ophthalmology, Tunis, Tunisia. The study included 114 patients. In total, 120 eyes underwent 
optical coherence tomography (OCT) and inverted flap ILM peeling for surgery. Then 510 
B scan of macular OCT was acquired 9 months after surgery. MH diameter, basal MH diameter 
(b), nasal and temporal arm lengths and macular hole angle were measured. Indices including 
hole form factor, MH index, diameter hole index (DHI) and tractional hole, MH area index and 
MH volume index were calculated. Receiver operating characteristic (ROC) curves and cut-off 
values were derived for each indices predicting closure or not of the MH. The area under the 
receiver operating characteristic curve (AUC) and kappa value were calculated to evaluate 
performance of the medical decision support system (MDSS) in predicting the MH closure. 
From the ROC curve analysis, it was derived that MH indices like MH diameter, diameter hole 
index (DHI), MH index, and hole formation factor were capable of successfully predicting MH 
closure while basal diameter, DHI and MH area index predicted none closure MH. The MDSS 
achieved an AUC of 0.984 with a kappa value of 0.934. Based on the preoperative OCT 
parameters, our ML model achieved remarkable accuracy in predicting MH outcomes after 
pars plana vitrectomy and inverted flap ILM peeling. Therefore, MDSS may help optimize 
surgical planning for full thickness macular hole patients in the future.
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1. Introduction

Full thickness macular hole (FTMH) is described as 
a disruption of normal anatomical structure with 
a full-thickness defect of the foveal retina [1]. It is a 
serious disease that is responsible for central vision 
loss. It is a pathology of elderly patients waged under 
65 years and affects mostly women [2]. The preva
lence of macular hole (MH) ranged from 0.2% to 0.8% 
[3]. The advent of optical coherence tomography and 
especially the spectral domain mode (OCT SD) has 
revolutionized its diagnosis and management. 
Nowadays, diagnosis is based on OCT SD [4]. 
Nevertheless, despite surgical improvement over the 
last decade, the prognosis and surgical outcomes 
remain uncertain. For that, some investigators start 
to focus on preoperative OCT to predict MH closure. 
Ip was the first to analyze preoperative OCT with MH 
[5]. Since then, many papers have been published 
defining different measurements and preoperative 
indices, helping to predict the closure and then ana
tomical and functional prognosis of the MH [6–8]. 
Machine learning (ML) is a wide-ranging branch of 

computer science concerned with building smart 
machines capable of performing tasks that typically 
require human intelligence. One approach of the ML 
is the Medical Decision Support System (MDSS). It is a 
computer application whose purpose is to provide 
clinicians with timely information describing 
a patient’s clinical situation and the knowledge appro
priate to that situation, properly filtered and pre
sented to improve the quality of care and health of 
patients [9,10].

In this paper, we describe the different steps for 
creation of an automated software to measure and 
calculate different preoperative tomographic indices 
and aim to develop an MDSS model of predicting MH 
closure after vitreoretinal surgery.

2. Methods

This study was carried out under the principles of the 
Declaration of Helsinki and was approved by the 
Ethics Committee of the Hedi Raies Institute of 
Ophthalmology.
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2.1. Collecting data

Eyes followed up at 9 months after surgery for MH 
were retrospectively included in this study. Inclusion 
criterion was age more than 18 years old. Non- 
inclusion criteria were eyes with an MH caused by 
known etiologies such as trauma, macular edema, 
epiretinal membrane, high myopia, retinal detach
ment or retinoschisis. Patients with period of follow- 
up under 9 months and poor quality of tomographic 
images were excluded from the study. All the eyes 
received a complete ophthalmologic examinations 
and SD-OCT scanning (Spectralis; Heidelberg 
Engineering®, Heidelberg, Germany) before and after 
surgery.

The training data set, consisting of 450 macular SD- 
OCT scans from 98 subjects (100 eyes), was used for 
deriving the best algorithmic and parameter settings 
by cross-validation. The testing data set, containing 
another 60 macular SD-OCT scans from 18 subjects 
(20 eyes) collected, was used for testing the perfor
mance on novel images. We used the Spectral 
Domain Spectralis™ OCT (Heidelberg Engineering®, 
Heidelberg, Germany) for all our patients. This device 
has an axial resolution of 5–7 microns, a transverse 
resolution of 10 microns and an acquisition speed of 
40,000 scans per second.

2.2. Proposed method for the creation of 
a decision support system in OCT

Figure 1 presents the phases of the workflow to 
extract the parameters of the input OCT image. 
These phases are explained below:

Image preparation: We start by extracting the 
region of interest by considering only the area around 

the macular region. To do this, we automatically 
select the region around the macula to reduce the 
execution time of the algorithms.

Image denoising using the nonlinear filtering: OCT 
Images are susceptible to the speckle noise that 
decrease contrast and their detail structural informa
tion, thus imposing significant limitations on the diag
nostic of the OCT images, especially the computing of 
quantitative indices. Various preprocessing techni
ques for improvement images quality are possible. 
Here, we use the median filter to reduce the intensity 
variations within each region of the image while 
keeping the transitions between the homogeneous 
regions and preserving the significant elements of 
the image. The median filter is one of the simplest 
and most effective nonlinear filters.

Image segmentation using OTSU thresholding: To 
delineate the external layer, we use an automatic 
region-based segmentation method. Image segmen
tation is a key task in computer vision and pattern 
recognition. The quality of segmentation affects the 
understanding of images. It is the basis for more 
computer-aided diagnosis system. It consists of deli
neating all the .00 objects in an image and then to 
extract the object of interest from it. Traditionally, 
image segmentation methods include mainly region- 
based segmentation and edge-based segmentation 
methods. In practical applications, many algorithms 
have important limitations to delineate the regions 
in medical images, which is due to the weak contrast, 
and the blurred contours. Generally, the threshold 
method based on grayscale histogram has good per
formances on the medical image segmentation, espe
cially the OTSU, which is a global adaptive 
binarization threshold image segmentation algorithm, 
initially created by Japanese scholars OTSU in 1979. 

Figure 1. Different phases of the workflow.
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This algorithm divides the image into two or more 
regions according to its grayscale characteristics using 
as the threshold selection rule the maximum inter
class variance between the clusters. Obviously, more 
than the variance between clusters is maximized, 
more than the probability of misclassification is mini
mized, thus ensuring good image segmentation.

Image postprocessing using morphological mathe
matical: To remove holes and small isolated regions, 
we propose to use mathematical morphology techni
que that is essentially a nonlinear theory that allows 
to analyze objects in images according to their 
shapes, sizes, neighborhoods, textures and sizes. It is 
based on set theory, trellis theory, closed topology 
and probability theory. Here we retain the alternating 
sequential filters (ASF) that have a more symmetrical 
behavior by an alternating composition of openings 
and closings operations and then filter both bright 
and dark structures. ASFs are widely used for achiev
ing a simplification of a scene and for the removal of 
noisy structures.

External contours detection: To detect the contours 
of the macular regions, we use derivative methods 
that are high-pass filters, and they are very efficient 
on binary images since the contours are well defined. 
Then, we apply a labeling to retain only the external 
contours.

2.3. Measurements with MDSS (Figure 2)

After the image processing, the MDSS proceeds to 
measure different quantitative parameters. Figure 2 
resumes the different measurements, which are the 
basal diameter, the MH diameter and the right and 
left arm. From these measurements, the following 
indices were derived:

Quantitative parameters:

(1) Hole forming factor (HFF) = (nasal arm length + 
temporal arm length)/maximum basal 
diameter.

(2) Macular hole index (MHI) = height/ maximum 
basal diameter.

(3) Diameter hole index (DHI) = minimum inner 
hole diameter/maximum basal diameter.

(4) Tractional hole index (THI) = height/minimum 
inner hole diameter.

Qualitative parameters:

(1) MH angle: First, the angles formed by the inter
section of the right or left arm line with the 
maximum basal diameter are calculated. Two 
angles are then defined for each hole: a left 
angle and a right angle. The average of the 
two angles defines the angle of the macular 
hole.

(2) MH area index (MHAI) macular area/total area.
(3) Macular hole volume (MHV): Was described as 

a space under the imaginary line defined by 
the minimum extent of the hole. Since this 
space is a truncated cone, MHV was calculated 
with the following formula for a truncated 
cone: MHV = π/3 h(r2+ Rr + R2) (r is half the 
minimum diameter, R is the basal diameter and 
h is the height of the hole).

2.3.1. Graphical interface (Figure 3)
To facilitate the handling of our algorithm developed 
in this work and to be able to compare the results 
obtained, we have developed a simple and accessible 
graphical interface (Figure 3).

2.4. Statistical analysis

Data collected were analyzed with IBM SPSS 20.0 for 
Windows. Demographic data, pre- and postopera
tive visual acuities and MH indices were analyzed 
using the Mann–Whitney U test; comparing two 
groups closure/no closure of the MH. For categori
cal variables, difference between the two groups 

Figure 2. Different measurements: (a) basal diameter; (b) macular hole diameter; (c) right and left arm; (d) angle diameter; (e) 
macular hole volume.
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were analyzed using the chi-square test. A receiver 
operating characteristic (ROC) curve analysis was 
carried out to evaluate the predictive ability of the 
different MHindices for the two groups. The areas 
under the ROC curve (AUC) were calculated to 
judge the efficiency of each indices on comparison 
with the different model of closures. The cutoff 
values from the ROC curve were obtained for high
est possible sensitivity and specificity for the differ
ent indices.

The performance of the MDSS was assessed by 
comparing the results obtained from the software 
and the clinician using the kappa value and the AUC 
value of the ROC curve.

3. Results

3.1. Demographic data

The mean age of our population was 65.97 ± 4.7 years 
old with feminine predominance (68%). The symp
toms duration was 7 ± 2.04 months. The mean pre
operative BCVA was 1.6 log mar.

Surgical outcomes: Final anatomical and visual 
outcomes were assessed at 9 months after the 
primary MH surgery. MH closure was achieved in 
84 eyes. The remainder eyes showed a none clo
sure of the MH. Mean postoperative visual acuity 
was 0.52 log mar.

3.2. Tomographic data

The mean basal diameter was 1436.06 ± 200.246 µm; 
the mean diameter was 692.59 ± 147.207 µm; the 
mean MH height was 1216.43 ± 306.77 μm; the 
mean nasal arm length was 955.5 ± 360.5 μ; the 
mean temporal arm length was 917.4 ± 330.2 μ; and 
the mean MH angle was 65.66 ± 6.6°. The mean MH 
area was 1. 029 mm2. The derived MH indices are 
summarized in Table 1.

3.3. Prediction system

To decide closure/not closure of the MH, the MDSS is 
referred to the ROC curve analysis for each indices 
(Table 2). From the ROC curve analysis, it was derived 
that MH indices like MH diameter, DHI, MHI, and HFF 
were capable of successfully predicting MH closure 
while basal diameter, DHI and MHAI predicted none 
closure MH.

Figure 3. Medical decision support system (MDSS) interface.

Table 1. Different preoperative tomographic indices.
Indices 25 percentiles Median 75 percentiles

THI 1.32 1.91 2.59
DHI 0.43 0.52 0.60
MHI 0.72 0.97 1.21
HFF 0.97 1.25 1.61
Macular hole area 0.655 mm2 1. 029 mm2 1.190 mm2

Total area 2.493 mm2 3.104 mm2 3.954 mm2

MHAI 0.25 0.29 0.33
Macular hole angle 61.13 65.82 67.47

Table 2. Receiver operating curve analysis using the different macular hole indices.
Indices Cutoff value AUC 95% CI Sp Se PPV NPV P

MH diameter 732 0.635 0.468 0.781 70 83.33 89 58 0.046
Basal diameter 909 0.53 0.366 0.689 100 26 100 31.2 0.049
Height 1087 0.507 0.344 0.668 40 83.3 80.6 44.4 0.543
THI 1.85 0.59 0.423 0.743 70 63.3 86.4 38.9 0.070
DHI 0.56 0.572 0.406 0.727 60 63.3 82.6 35.3 0.024
MHI 0.68 0.56 0.394 0.716 40 86.67 81.2 50 1.000
HHF 0.93 0.587 0.42 0.74 40 86.67 81.2 50 0.19
Macular area 779.398 0.53 0.366 0.689 30 90 75 25 0.024
Total area 2.929.782 0.594 0.418 0.724 62.5 67.8 86 36 0.24
MHAI 0.2729 0.531 0.531 0.699 100 50 100 36 0.049
Macular hole angle 66.4 0.547 0.382 0.704 70 63.3 86 39 0.493
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3.4. MDSS performance

For the validation of the MDSS, we compared its 
performance with the results obtained by an expert. 
The ROC curve identifying the performance of the 
MDSS is shown in Figure 4; the AUC of the MDSS 
performance was 0.967 (95% CI; 0.941–0.993).

4. Discussion

This study was undertaken to develop an MDSS 
model of predicting MH closure after vitreoretinal 
surgery. For this, we measured the different macular 
diameter, height and angle. Different indices were 
extracted from quantitative parameters to predict 
the closure of idiopathic MH after surgery.

The measurement and the final decision were auto
mated and an MDSS was created to predict the prog
nosis of MH before surgery and help surgeons as well 
as patients to make the decision.

Our study was, to our knowledge, done after 
a large reviewing of the literature, the first study 
using ML as a scientific tool to predict preoperatively 
the anatomic prognosis of the MH.

As is known, the development of FTMH is leading by 
anterior and tangential vitreoretinal traction of the fovea. 
Vitrectomy and internal limiting membrane peeling is 
the common surgical procedure with up to 99% anato
mical success [11–13]. Nerveless, the MH remains open 
in same cases and a second surgery is often needed, 
with more medical cost and less effective results. An 
automated predictive system for MH prognosis after 
surgery will help to decide the surgical indication and 
technique and reduce the patient’s preoperative anxiety.

Artificial intelligence (AI) is nowadays a turnover in 
image classification. Proving its expert performance in 

image interpretation has allowed a large spread in 
medicine [14,15]. On ophthalmology, it plays an 
important role in preventive medicine and telemedi
cine, especially in diabetes and diabetic retinopathy. 
AI and fundus images are becoming more and more 
a common practice. The involvement of AI in the 
interpretation of OCT is still limited. It is widely used 
in age-related macular degeneration and macular 
edema. The involvement of AI in MH and VMTS in 
general remains very limited if not nonexistent [16]. In 
fact, OCT, one of the most commonly used technolo
gies in ophthalmology, is a method used for high- 
resolution retinal imaging, providing excellent train
ing material for AI. De Fauw et al. [17], Lu et al. [16] 
and Lee et al. [16] used AI models based on OCT 
images and have demonstrated excellent perfor
mance in diagnosing retinal diseases, including dia
betic retinopathy, macular oedema, retinal 
detachment and choroidal neovascularization in age- 
related macular degeneration.

The advent and technological advances in SD OCT 
and MHs have made it possible to establish, nowa
days, objective and exact predictive factors of the 
probability of closure MH visual acuity gain. The first 
study to use OCT to analyze MHs preoperatively was 
published by Ip et al. in 2002 [5]. Since then, various 
studies have been published describing the role of 
MH measurements and derived indices such as HFF, 
MHI, DHI and THI in the preoperative prediction of 
anatomical closure and visual gain after MH repair 
surgery [6,18,19].

In a recent analytical study, published in 2020 by 
Ramesh Venkatesh et al. [20], a significant correlation 
between the different tomographic indices and their 
predictive character in the anatomical success of wide 
MH surgery was sought. The ROC curves for each 
tomographic index (HHF, MHI, THI) as well as the 
macular area index (MAI) were studied and correlated 
with the surgical success rate. They concluded that 
MAI, calculated using the ROC curve and the basal 
diameter of the MH, could be considered the only 
index statistically predictive of closure of large idio
pathic MHs. In fact, an MAI value < 0.323 could predict 
successful closure with a sensitivity of 85% and 
a specificity of 83% (ROC curve) [20].

In the same sense, Liu et al. [21], in a prospective 
study, tried to define another tomographic index pre
dictive of both closure rate and recovery of the IS/OS 
line: the MH closure index (MHCI). They tried to inves
tigate the predictive value of this index by applying 
the ROC curve. Indeed, the MHCI includes the basal 
diameter of the MH, the retinal thickness on both 
sides, as well as the curve lengths of the detached 
photoreceptors. Through the analysis of the ROC 
curves and the ROC/MHCI correlations, they found 
that the AUC indicates that the MHCI could be used 
as an effective predictor of the anatomical results. 

Figure 4. ROC curve for medical decision support system 
(MDSS) to predict the macular hole closure.
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Indeed, cutoff values of 0.7 and 1.0 were obtained for 
the MHCI from the ROC curve analysis. Thus, MHCI 
demonstrated a better predictive effect than other 
parameters in both correlation and ROC analysis 
[21,22].

5. Conclusion

In our study, we were interested in creating a software 
to predict the prognosis of MH after surgery through 
the measurement of preoperative tomographic para
meters. The MDSS, considered as one of the ML 
approaches, was the basis of our working methodol
ogy. Our results can be the support of a large data
base of MH and OCT and a novel deep learning-based 
system that can implement automated measurement 
of preoperative tomographic indices from OCT images 
with robust performance.
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