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ABSTRACT

In this study, we describe some Network Design Peots (NDPs) as well as the network flow-
based improvement algorithm for neighbourhood selamefined by cycles. The main part of the
study is structured around the formulation of thexgected duration of stay in the educational
system as a NDP. The fundamental matrix of the afidog Markov chain is employed in
computing the expected duration of each flow in thgstem. We shall illustrate the new graph-
theoretic formulation for the educational system ing datasets from a university setting. The
paper concludes with suggestions for future dirests of research.

Keywords. absorbing Markov chain; educational system; gthglry; network design.
INTRODUCTION

Network Design Problems (NDPs) require the©f nodesnand a set of arA DN XN. A
study of graph theory. A grap@ consists of a  path in (N, A) is a sequencéa,,...,a,,) of
set of vertices and edges (or arcs). Generally, g (n=1) distinct arcs

graph G is denoted @&&=(V,E0A),

where V is a set of verticesE is a set of a =@ i) a =( i) (Hassi
edges andA is a set of arcs or directed edges = m ~ \'m?'m#l or @ = {Imwslm) (Hassin,
(Amponsatet al, 2010). 1981a).

having, for
m=212..n, ac a,UA and either

A graph G is said to be directed ¥/ # ¢, LetG= (N, A) be a directed network with a
E =¢,and A# ¢, whereg¢ is the empty set. positive integer capacityC; on every arc
Conversely, wheW # ¢, E# ¢, and A=¢, @i, )OA. Aflow F is a functiofF : A - R

the graphG s said to be an undirected graph. which assigns each directed ari,j) a
However, whenever V #Z¢ ,E#¢, and

A% ¢, the graphG is said to be a muilti-
graph. dYx;= Y% OiON-{st}, @
{i:(1.DHOA} ISECRELY

D X = p, (2)
weighted digrapHG if it consists of a finite set  {i(i.00A}

nonnegative numbex; such that:

A network (N,A) is said to be simple,
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X <Cj ad, j) OA, (3) In the planning, scheduling and control of

projects, Critical Path Method (CPM) and
for somep >0, where S and t are the source Program Evaluation and Review Technique
and sink nodes respectively. The property(PERT) have been employed for activities with

. : . “deterministic  durations and probabilistic
expressed by equation (1) is c_alled.conservatlo Yurations, respectively. CPM and PERT are
of flow. If, however, the functionF : A - R

. . . etwork-based methods designed to provide
safisfies equations (2) and (3) then equation agnalytic means for scheduling activitiesp of a

becomes: project (Taha, 2002).
DXi— 2% 20 (4)  Osagiede and Ekhosuehi (2009) determined the
anoa {60 optimum travelling cost to several schools with

emphasis on the most preferred travelling mode
then F is a preflow. The excess for eachfor a household using network design.

nodeiIN ~{s,t} in the preflowF is Ahuja et al. (2003) presented neighbourhood

search defined by cycles as well as the

g = ZX" - ZX (5) application of cyclic exchange neighbourhood
T A search to airline fleet  assignment,
multicommodity flow and minimum cost flow

If & =0,i0N,in an assignment of flow problems.

values X; to the ardi, j) J A, then we have a L
Many network optimization problems of

practical interest are NP-hard, that is, the

existence of an algorithm that finds an optimal

solution in polynomial time is very unlikely. For

This paper seeks to expose ne_twork designyig reason, nearly optimal solutions (within a
problems. We strongly feel that wide exposure

. . ) easonable computational time) to such NP-hard
to, and continued awareness of, the diversity o%

circulation. Various forms of circulation models
have been studied (Hassin, 1981a).

K desi bl helo i h roblems are obtained by employing heuristic
network design problems can help increase t approximation) algorithms. There are also

network analyst’'s range of choice amongimprovement
methods to formulate network-basgq pro.blemsalgorithm is a heuristic algorithm that generally
We shall also illustrate how transitions in the qiats with a feasible solution and iteratively
educational system can be viewed as a networEieS to obtain a better solution. Hassin and

design. Tamir (1986), for instance, mentioned that
problems that are NP-hard on general graphs
RELATED WORKS can be solved efficiently on trees by polynomial
Networks arise in numerous fields of human ajgorithms. Such polynomial algorithms rely on
endeavour. Ahuja (1982) presented the desigihe existence of an efficient construction that
and analysis of computer communicationrecursively generates larger components from
networks. previous ones, and terminate with a given tree.

algorithms. An improvement

Borndorfer (2008) discussed planning problemsin the remaining part of this section, we shall
in public transit using network optimization discuss some network design problems
models. including NP-hard problems under various sub-

. ) headings and propose a network optimization
Hillier and Lieberman (2005) enumerated areasproblem for the educational system.

where network representations are employed to
include: production, distribution, project
planning, facilities location, resource
management and financial planning.
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The maximum flow problem The shortest route problem
The maximum flow problem is one of the most The shortest route problem involves finding the
fundamental problems in network flow theory shortest route between a source and the
and has been investigated extensively. Hassidestination in a transportation network. Floyd’s
(1981b) proved that a maximum flow function algorithm is one method that can be used to
F can be constructed as follows: For each edgéetermine the shortest route between any two
(i,))OE, let (i',j"YOE' be the dual edge nodes in a network. The algorithm represents an
. _ .. . . N —node network as a square matrix with—
associated with it. LefE (i, j) =u(j") —u(i")

rows and N—columns. Entry i, j) of the
, wWhere u(v) is the length of a shortest path

from s' to V, for everyvV', wheres' is . ]

d L, node| , which is finite if I is linked directly to
the source of the dual grafB ™ = (V E ) of j, and infinite otherwise. = Dynamic
G. Then a tree of shortest paths rooteg'at programming can also be employed to solve the
which can be found iro(nlogn) time, defines ~ shortest  route  problem.  The  dynamic

not only a minimum cut but also a complete programming approach IS expressed
(maximum) flow function mathematically as: Letf, (%) be the shortest

matrix gives the distanc«dij from nodei to

distance to nodeX at stagei and define
Basically, the maximum flow problem is to

determine a flowF for which o in equation

(2) is maximized. Ahuja and Orlin (1989) nodeX . Then f(X) is computed from
tabulated a list of maximum flow algorithms in f
literature and their running times. There are also !
preflow-push algorithms for the maximum flow f;(X) = min all feasibleroutes ()g_l, >q)
problem. Preflow-push algorithms maintain a g C(x -

preflow at every step and proceed by pushin {d()g_l,x>+ a6 i =1, . ©)
the node excess closer to the sink using onl hgre N is the number of St‘?‘ges in the system
local information. The iterative steps involve &/iSing from the decomposition of thél—
choosing an active node to send its excess clos¢friable problem (Sharma, 2009; Taha, 2002).
to the sink until the network contains no active In the dynamic programming approach, there is
nodes. A fast and simple excess scalingalso a backward recursive equation for the

algorithm was developed by Ahuja and Orlin Shortest route problem.

(1989) for maximum flow problems. The . )
The Survivable Network Design problem

algorithm ensures that flows from active nodes . .
with sufficiently large excesses are pushed toThe Survivable Network Design (SND) problem

nodes with sufficiently small excesses while Seeks to find a minimum weight subgraph(f
never letting the excesses become too large.  such that each pair of nodds] has a pre-

d(xi_l, Xi) as the distance from nod_; to

_1(X_1) using the forward recursive equation

specified requirement; of edge-disjointi — |
The minimum spanning tree problem P g 1 9 ) ]

Given the nodes of a network and the length fopaths. Whenr; =1 for alli, j, we have the

each potential links (or any othgr alternatlveclassical minimum  spanning tree problem.
measures for the length of a link such as

distance, cost, and time). The problemWhenr; D{O’l}’ we have the NP-hard
associated with linking the nodes of the networkminimum Steiner tree problem. If given two

directly or indirectly using shortest length of ¢ . .ial nodesp and d such thatr . = k and
connecting branches is referred to as thep P q pa

minimum spanning tree problem. Algorithms for = 1 for aII{i, J} * { p, q} , then we have the
the minimum spanning tree problem are foundk ~ K )
in Hillier and Lieberman (2005) and Taha K —Path tree problem. If,,, =K for the given

(2002). pairp,q, and r; D{O,l}, then we obtain the

K —path Steiner tree problem. Several
algorithms have been developed for the SND
problem (see Arkin and Hassin, 2007).
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The minimum balance problem The cyclic exchange problem
The minimum balance problem is formulated asLet A:{ai,__,,an} be a set of1 elements. The

follows: Let G be a digraph angt E(G) - R.
The problem is to find a potential:V(G) - R

such that the vector of slacks
slack(e) := 72(w) - 72(v) — c((v,w)) (e = (v, W) D E(G)) 0] S, #¢, j=1..k

are optimally balance: for any subset of . o

vertices, the minimum slack on an entering edge (i) SNnS =¢ i#] and

should be equal to the minimum slack on a (iii) k _

leaving edge. The minimum balance problem USJ- =A-

was applied by Albrechet al, (2003) to the 1=

design of logic chips and its solution was For any subsetS of A, let d[S] denote the
obtained via a parametric shortest path
algorithm.

collection {S,,...,S,} defines ak-partition of

A if each setSj satisfies the following:

cost ofS. Then the set partitioning problem is
to find a partition of A into at mostk subsets
The minimum cost flow problem SO0 as to minimizzd[SK]. Let {s,...s} be

k

The minimum cost flow problem holds a central _ N _
position among network optimization models, any feasible partition. The s¢T,,....T,} is a 2-

because it encompasses a broad class gfeighbour Of{sl’_”,sk} if it can be obtained by

application and it can be solved eXtremelyswapping two elements that are in different
efficiently. Suppose(N,A) is a connected g psets The 2-exchange neighbourhood of
network of N nodes with at least one supply {S.Sk} consists of all 2-neighbours of

node and at least one demand node. Xgetbe {Slsk} The set{r,..T} is a cyclic-

flow through aré — j, d; the cost per unit neighbour of{S,,...,S,} if it can be obtained
the arc capacity by transferring single elements among a
sequence of k<K subsets 5. Let
(Sﬁ sz, S’ .,S'F‘,) be such a sequence &

1M~

flow through ardé — j, C;

forarci — j,andb the net flow generated at

nodei. The minimum cost problem can be

. . subsetsthenh = p, that is the last subset of the
formulated as a linear programming problerh as

sequence is identical Sﬁ This process is
referred to as cyclic exchange.

max z =iid,j %;
i=1 j=1

Ahuja et al, (2003) described the construction
of improvement graph for cyclic exchange as
subjecto % - x, =h, for eachnode, @)  follows: Let A={a,..a,} be the set of

=R elements for the original set partitioning
problem and let gfi] denote the subset
and 0=x, <g;, for eacharci - j. containing elemer@, . The improvement graph
In some of the applications of minimum cost is a graphG = (V, E) therev :{1"_“"_1} IS a
flow problem, it is necessary to have a lowerSet of nodes corresponding to the indices of the
elements of A of the original problem.

bound L; >0 for the flow through each arc

i - ] .An example is the primal minimal cost
network flow problem in Hassin (1983). One LetE:{(i,j):S[i];t S[j]}, where an arc
way to deal with this lower bound is to use a (i, j) corresponds to the transfer of nodle

translation of variablest; = X; —L; so as to from S[i] o S[j] and the removal off from

convert the model back to the format in (7). S[j] For each arfi, j) O E,, let

Another approach to this problem using tree-
search algorithm is found in Hassin (1983).
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C[i j] - d [{|} 0 s[j]\{j}]— d [S[j]], vertices (which are the levels in the educational
system) and a seE of edges (which are the

_ . arrows indicating the flows) such that each
is added to the set anfl is deleted. A cycléV unique edge €= (i ’ J)D EOVXV, is a

in G is subset-disjoint if for every pair and  unique ordered pair. Let the cardinality of set
J of nodes ofW,S[I];t S[J] that is, the \/ be k and 0};;(€) be the weight (duration)

elements of A corresponding to the nodes of ¢y the flow in edge€ starting from vertek.
W are all in differgnt subsets. There is a one-t0rhea duration of each path
one cost-preserving correspondence between
cyclic exchanges for the partitioning problem vertex
and subset-disjoint cycles in the improvement (J[i](e))_k__*, where K is the highest grade in
graph. In particular, for every negative cost =

cyclic exchange, there is a negative cost subsethe system. To estimate the durauirm (e,
disjoint cycle in the improvement graph. It is
important to mention here that the problem of
finding a negative cost subset-disjoint cycle is

that is, the increase in the cost Sh] wheni

i> starting from

i* is given by the sequence

we employ the Fundamental MatribEM, of
the absorbing Markov chain (lbe, 2009). The

. . . -1
NP-hard (Ahujeet al, 2003). matrix FM is given as: FM = (I —P) :
where | is a k xk identity matrix andP is a
The Travelling Salesman’s Problem k xKk sub-stochastic internal transition matrix.

The Travelling Salesman’s Problem (TSP)

basically deals with a salesman starting at Since theFM matrix gives the expected period

certain city who wants to find a route Ofaof stay in the system before absorption, the
minimum length, which traverses each of theentrles in theFM matrix give the respective

destination cities exactly once and leads himexpected duratiorE[U[i](e)] for each flow.

back to the starting city. Amponsaét al,

(2010) formulated the TSP as a graph problemp practice, the policy framework in the
as follows: Given an undirected complete graphgqycational system may allow new entrants into
K, = (V,E) and edge weighwy: E — Rg specific grades of the system so that the starting

. M * . .
where N is the cardinality of the set of vertices Pint 17 is not unique. Furthermore, the
V  The task is to find a Hamiltonian cvcle with MaXimum duration for a student to complete the
) y programme may be fixed so much so that any

minimum weight inK,,. The authors solved the student who exceeds the maximum period

TSP by computing the total cost for distinct allowed is withdrawn from the system.

circuits so as to select the one with minimum Similarly, the minimum duration for a student to

cost. graduate is fixed. In this light, the problem
associated with the duration of stay in the

Formulation of the expected duration of stay in System is formulated as a NDP by minimizing

the educational system as a NDP the expected duration of each path that leads to

The educational system is a well-known graduation as:

hierarchical system in literature (Gani, 1963;

Ekhosuehi and Osagiede, 2011). In analyzing _ ( k

flows in the educational system, the Markov MiN UE[Um(e)] (8)

. . . Oe

chain model is often employed (Osagiede and

Ekhosuehi, 2006; Nicholls, 2009). In this sub- subject to

section, we shall formulate the minimum period k

of stay in the educational system using graph-n < Z Elg;,(€)] < m, (9)

theoretic concepts. i=i,

i* =max(, ), for eactr , (10)
r

i=i*

Consider a digrapls = (V, E) with a set o¥/
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where N and M are respectively the minimum Thus, the inverse relatio(1<>R)‘1 cannot hold.
and maximum number of sessions required for e can graph the relatio®R on the set

student to graduate arigl is ther ™ grade in 0=S0{0} by drawing an arrow from each

which new entrants are allowed. elementi to each elemerjt, wheneveri is

related toj. The resulting graph is depicted in

RESULTSAND DISCUSSION Fig. 1.

We shall illustrate the use of graph theory by

considering  a - six-year-graded academicryg yansition diagram in Figure 1 is a digraph
programme of a university setting in Nigeria

with a set of Ievel§={1, 2,...,6}. New C=V.E) with\V| = 6, |E| =15. The edges;

entrants are allowed into the programme onlyandg,, and €, and €5 are respectively
through Year 1 and Year 2. The maximum )

periods allowed in the programme are nineParallel edges, while the edd® forms a loop.
sessions for a student starting from Year 1 an .
eight sessions for a student starting from Year Z%dg?s _e8 f"md Go represent a. direct entry
A student starting from Year 2 spends aadmission into the programme in Year 2 and
minimum of five sessions. The flolr in the Wastage from Year 2 of the programme,

programme is a functionF :E - Z,, where respectively; and the edgess, and &g

Z, is the set of positive integers, satisfying therepresent wastage in Year 6 and graduation,

state-transition relation OR on the set respectively. The loop € denotes an

0 =S0{0}, ORO O %0, such that: aggregation of referred cases with the provision
that the maximum number a student can repeat
is not exceeded.

OR={(0, 1), (0.2), (1,2), (23), (34), (45),

(5.6), (6,6), (1,0), (2,0), (3,0),(4,0),(5,0),(8,0)  Data was obtained for the academic programme
for a period of six sessions from the approved

Observe that the relationOR is neither results by Senate of the institution. We represent

reflexive nor symmetric, since for soing 6, the data in the following flow matrices and

i00, ¢,iy0oR, and for (i, j)00R,i<j  Vectors:
and j 20, (j,i) OOR. The reason for this is

that, in the programme, there is no repetition of
levels except at the apex level and there is no
demotion.

Fig. 1: A transition graph, G of therelation OR.
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where F is a matrix, which contains the flow
from level i to levelj, andW is a column vector
of wastage flow out of levall.

By considering the state-transition relati®fR
on the sef] = SO{0}, we form a matrix, A=
(aj), whose rows and columns are labelled by

the elements of ], whered; is given as:

p; if Darelationfromito j,i0S, jOD
g =

0 otherwise
So, we have

Nonabsorhig Absorbing
Pu Po - P i P

p Sop
A_Nonabsorlnig :21 p:22 . p..ze : :20

pGl p62 s p66 pBO

0O 0 .. 0 : 1

The transition matribA is called the absorbing
Markov chain as it contains an absorbing state.
We shall then estimate the transition
probabilities of A from the flow matrices using
the maximum likelihood method described in
Zanakis and Maret (1980). Thus we obtain the
canonical form ofA as

0 09891 O 0 0 0 0010
0 O 09551 O 0 0 0044
0 O 0 09636 O 0 0036
A={0 O 0 0 09724 0 0027
0 O 0 0 0 091020089
0 O 0 0 0 038910610
0 O 0 0 0 0 1000

From matrixap, we have, on the average that
over 90% of students are promoted to the next
higher level (and those who are not promoted
drop-out), while about 39% of the students
repeat the final year. Next, we compute the
Fundamental Matrix kM) using the formula

(I-P)*, where | is an 6x6 identity matrix.

Entries in theFM give the respective expected
duration E[g};, (€)] for each flow. So we have
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[1.0000 09891 09447 09103 0.8851 13187 Thus, we compare the expected duration for
0 10000 09551 09203 08949 13333 graduation using Year 2 as the starting point.
0 10000 09636 09370 13960 So we obtain:
0 10000 09724 14487

0
6 6
0 0 0 10000 14899 ZE[JU] (8] =5047%@nd Z Elg;;(€)] =5.1037
0 0 0 0 16368 i=2* i=2*

FM=

O O O o

. _Hence, the expected duration of each path that
From theFM , the expected number of Sessions| e 1o graduation is optimal when new

a student starting from Year 1 will spend in gnirants start from Year 1, since

Year 2 is 0.9891, then 0.9447 in Year 3, 0.9103 6

in Year 4 and so on, before completing thef‘gi UE[CT[i](e)]J=

programme. Similarly, a student starting from =

Year 2 is expected to spend 0.9551 of the{1000Q098910944709103088511318F

session in Year 3, 0.9203 in Year 4, and so on

before °,°mp'e“”9 the programme. The SaMerpe implication of this result is that students
explanation holds for a student in Years 3, 4, 5;4mitted through Year 1 are expected to

and 6. However, in Year 6, a student is eXDECte@ommete the programme earlier than new
to spend over one session and a semestemtrants into Year 2.

because the entries in the sixth column are

greater than one. Thus there is a delay in Year 6¢ON_C|-US|ON

The delay in Year 6 may be occasioned by thén this paper, we have presented several aspects

duati . ¢ wh tudent of NDPs with particular reference to the
graduating requirement where students  ar§, ., jation of the expected duration of stay in

expected to accumulate a minimum of 130the educational system as a NDP. We have also
credit passes and therefore repeat all failednentioned preflow-based algorithms without

courses at the lower level(s). pointing-out the length of time in executing such
algorithms as a snag. An improvement on the

From the foregoing, we obtain the expected length of time for preflow-based algorithms and
duration of each starting point that leads to effective implementation of the resulting
graduation as algorithm to a real-world system are topics for
6 6 further research. Another grey area is the
D Eloy;(8)] = 6.0479 D El0;;(e)]=5.1037  maximum flow problem on a network where the
izl ;:2 nodes are partiioned so much so that
;E[J[i](e)] =4.2966' ;E[U[i](e)] =34211 G= (N’A) is such thatN = N1 0 N2 and

6 _ AON,xN,.

Y Eloy,(e)] = 24899 El0p(€)] =1.6368 1
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